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Abstract

The Lotka-Volterra competition model is a system that consists of the pair of differential
equations given in (1), where the variables x and y are the competing species, and ax and
by are their respective growth rates. But what happens if one of the competing species,
say x, is subjected to a toxicant stress? In this paper, we study the qualitative analysis on
the effects of the decrease in the birth rates and an increase in the mortality rates due to
exposing one of the species in the competition under a toxicant stress. Results show that
the effect of the toxicant changes only the outcome of the competition but not the stability
of the equilibrium solutions. A persistence and extinction analysis can lead to indicators
that can be used to assess risk in this type of a competition model.

1 Introduction

A fundamental problem faced by ecologists is that the spatial and temporal scales of which
measurements are practical, are typically smaller than those at which the most important
phenomena occur [4]. For example in plant ecology, the growth, survivorship, fecundity and
seed dispersal of individual plants can be measured by using simple differential equations. Hence,
ecological modeling is concerned with the use of mathematical model and systems analysis for
description of each system [3], [2]. The Lotka–Volterra competition dynamical system is one
model to consider. This model is frequently used to describe the dynamics of ecological systems
in which two species interact [6]. It is a model system that consists of the pair of differential
equations

dx

dt
= [a−Ax− αy]x (1)

dy

dt
= [b−By − βx]y

with initial conditions x(0) = x0 > 0 and y(0) = y0 > 0. The variables x and y are the
competing species and ax and by are their respective growth rates. Many studies about the
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Lotka-Volterra model have been made since then. In particular, a persistence and extinction
analysis have been established for the said model in [1], [3], and [8]. Interspecific competition
of this model was studied in [7]. This type of competition refers to the competition between
two or more species for some limiting resources like food, nutrients, space, mates and resting
sites. It can theoretically predict the outcomes of two species. Depending on the initial size,
carrying capacity and competition coefficient, either species is always the sole survivor or the
two species will co-exist [7].

But what happens if one of the competing species, say x, is subjected to a toxicant stress? In
this case, the growth rate of the affected species becomes a function of the toxicant concentration
denoted by co and is called the body burden. Thus, the per capita growth rate x of the affected
species can be written as 1

x
dx
dt = a − H(co)–Ax − αy, where H(co) = r1co is called a linear

dose-response function with r1 > 0, so that the new model having a toxicant stress has the
following pair of equations

dx

dt
= [a−H(co)−Ax− αy]x (2)

dy

dt
= [b−By − βx]y

with initial conditions x(0) = x0 > 0 and y(0) = y0 > 0.

This paper focuses on the qualitative analysis on the effects of the decrease in the birth rates
and an increase in the mortality rates due to exposing one of the species in the competition
under a toxicant stress. A persistence and extinction analysis can lead to indicators that can
be used to assess risk in this type of a competition model.

2 Fundamental Concepts

Definition 2.1. [2] The Lotka-Volteraa competition model is a system consisting of the pair of
differential equations

dx

dt
= [a−Ax− αy]x

dy

dt
= [b−By − βx]y

with initial conditions x(0) = x0 > 0 and y(0) = y0 > 0. The variables x and y are the
competing species, and the ax and by are their respective growth rates.

Definition 2.2. [5] The Bernoulli equation is a differential equation which has the form
y′ + P (x)y = Q(x)yn, where n ̸= 0, 1.

Definition 2.3. [5] An equilibrium solution of a system of ordinary differential equation is a
point (x, y) where x′ = 0 and y′ = 0. An equilibrium solution is a constant solution of the
system and is sometimes called a critical point.

Definition 2.4. [5] The stability of an equilibrium solution is classified according to the behavior
of the integral curves near it. The integral curves represent the graphs of the particular solution
satisfying the initial conditions. If the nearby integral curves all converge to an equilibrium
solution as t increases, then the equilibrium solution is stable, and if the nearby integral curves
all diverge away from an equilibrium solution as t increases, then the equilibrium solution is
unstable.
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3 Main Results

3.1 The Lotka-Volterra competition model with a toxicant stress

When the LV-competition model is subjected to a toxicant stress, we may have many possible
outcomes. In this study, we will focus only on the effects to a decrease in the birth rate and
an increase in the mortality rate. Let x be the affected species and y be the unaffected species,
so that this time, the growth rate of the affected species becomes a function of a toxicant con-
centration, denoted by co, which is also called the body burden. Hence, the per capita growth
rate of the x species may now be written as 1

x
dx
dt = a−H(co)− Ax− αy, where H(co) = r1co,

a commonly used linear dose-response with r1 > 0. There are other forms of dose-response
function such as the Sigmoid dose -response function curve but here, we assume H(co) = r1co.

The first toxicant system (2) we will consider is having a constant accumulation of toxic
chemical in the body of the exposed species. That is, a non-dynamic body burden co. Thus, we
will have the pair of differential equations

dx

dt
= [a−H(co)−Ax− αy]x

dy

dt
= [b−By − βx]y

with initial conditions x(0) = x0 > 0 and y(0) = y0 > 0. Table 1 shows the parameters used in
this section.

Table 1: Description and Definitions of Parameters

Parameter Dimension Definition

a time−1 ax− growth rate of x
b time−1 by − growth rate of y
A biomass−1time−1 Ax− intra-specific competition rate of x
B biomass−1time−1 By − intra-specific competition rate of y
α biomass−1time−1 αx− inter-specific competition rate of x
β biomass−1time−1 βy − inter-specific competition rate of y

co
µg

g tissue
body burden

cE
µg

g tissue
concentration of toxicant in the environment

θ
µg

g tissue
concentration of toxicant in the food

γ time−1 γθ − rate of food intake

3.2 The integral representations of the competing species

Since the differential equations in the system (2) are Bernoulli type equations, then we have the
following integral representations of the two competing species given by

x(t) =
x0e

∫ t

0
[a− r1co − αy(s)]ds

1 +Ax0

∫ t

0
e

∫ s

0
[a− r1co − αy(u)]du

ds

(3)
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and

y(t) =
y0e

∫ t

0
[B − βx(s)]ds

1 +By0

∫ t

0
e

∫ s

0
[B − βx(u)]du

ds

(4)

The positivity and boundedness of the components follow immediately from these integral rep-
resentations. The following results simply say that under what condition one species wins over
the other species.

Theorem 3.1. (Extinction Theorem 1)

Assume that lim
t→+∞

y(t) = y∗ exists. If y∗ >
a− r1co

α
, then all components have limits and

(i) lim
t→+∞

x(t) = 0

(ii) lim
t→+∞

y(t) = y∗ =
b

B
.

Proof. Using the integral representation of x(t) given in (3) and taking the limit as t → +∞,
then we have

lim
t→+∞

x(t) = lim
t→+∞

x0e

∫ t

0
[a− r1co − αy(s)]ds

1 +Ax0

∫ t

0
e

∫ s

0
[a− r1co − αy(u)]du

ds

≤ lim
t→+∞

x0e

∫ t

0
[a− r1co − αy(s)]ds

.

By assumption that y∗ >
a− r1co

α
, then lim

t→+∞
x(t) = 0.

To establish (ii), consider the integral representation of y(t) given in (4) and taking the
limit as t → +∞, then we have

lim
t→+∞

y(t) = lim
t→+∞

y0e

∫ t

0
[B − βx(s)]ds

1 +By0

∫ t

0
e

∫ s

0
[B − βx(u)]du

ds

= lim
t→+∞

y0e

∫ t

0
[B − βx(s)]ds d

dt

[∫ t

0
[b− βx(s)]ds

]

By0
d

dt

∫ t

0
e

∫ s

0
[B − βx(u)]du

ds


by applying L’Hôpital’s Rule
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= lim
t→+∞

e

∫ t

0
[b− βx(s)]ds

[b− βx(t)]

Be

∫ t

0
[b− βx(s)]ds

= lim
t→+∞

b− βx(t)

B

=
b

B

since lim
t→+∞

x(t) = 0. Thus, the feasible equilibrium solution

(
0,

b

B

)
is stable.

Theorem 3.2. (Extinction Theorem 2)

Assume that lim
t→+∞

x(t) = x∗ exists. If x∗ >
b

B
, then all components have limits and

(i) lim
t→+∞

y(t) = 0

(ii) lim
t→+∞

x(t) = x∗ =
a− r1co

A
.

Proof. Using the integral representation of y(t) given in (4) and taking the limit as t → +∞,
then we have

lim y(t) = lim
t→+∞

y0e

∫ t

0
[B − βx(s)]ds

1 +By0

∫ t

0
e

∫ s

0
[B − βx(u)]du

ds

≤ lim
t→+∞

y0e

∫ t

0
[B − βx(s)]ds

.

By assumption that x∗ >
b

B
, then lim

t→+∞
y(t) = 0.

To establish (ii), consider the integral representation of x(t) given in (3) and taking the
limit as t → +∞, then we have

lim
t→+∞

x(t) = lim
t→+∞

x0e

∫ t

0
[a− r1co − αy(s)]ds

1 +Ax0

∫ t

0
e

∫ s

0
[a− r1co − αy(u)]du

ds

= lim
t→+∞

x0e

∫ t

0
[a− r1co − αy(s)]ds d

dt

[∫ t

0
[a− r1co − αy(s)]ds

]

Ax0e

∫ t

0
[a− r1co − αy(s)]ds

by applying L’Hôpital’s Rule
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= lim
t→+∞

a− r1co − αy(t)

A

=
a− r1co − α(0)

A

=
a− r1co

A

since lim
t→+∞

y(t) = 0. Thus, the feasible equilibrium solution

(
a− r1co

A
, 0

)
is stable.

Remark 3.3. The following are immediate.

1. The extinction condition in Theorem 3.1 simply says that y wins over x (y >> x) if the
intraspecific competition is less. This means that the intraspecific competition among the
y species is very less compared to the intraspecific competition among the x species. This

is so because of the assumption that y∗ >
a− r1co

a
.

2. Similarly, the extinction condition in Theorem 3.2 with the assumption that x∗ >
b

β
shows that the effect of the toxicant lessens much the intraspecific competition among
the x species compared to the intraspecific competition among the y species. Thus, the x
species wins over the y species.

3. One can verify that the equilibrium solutions (x∗, 0) and (0, y∗) are stable solutions.

4 Dynamics of the Body Burden

In this section, we discuss the inclusion of the body burden co in the system. That is, the new
system contains the third component, the dynamics of the body burden co given in (5)

dx

dt
= [a−H(co)−Ax− αy]x (5)

dy

dt
= [b−By − βx]y

dco
dt

= γθx+ a1cE − (L1 + L2)co

with initial conditions x(0) = x0 > 0, y(0) = y0 > 0 and co(0) > 0. Table 2 shows the additional
parameters used in this section

Table 2: Description and Definitions of Parameters

Parameter Dimension Definition

mE ∗ ∗ ∗ unit of mass of the environment
mO ∗ ∗ ∗ unit of mass of the organism

a1 mEm
−1
O t−1 a1cE − rate of intake from environment

L1 t−1 L1co − rate of egestion
L2 t−1 L2co − rate of depuration
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Theorem 4.1. (Persistence Theorem)

Assume that lim
t→+∞

c0(t) < ∞. If
a

r1
>

a1cE + γθx∗

L1 + L2
and

b

B
>

a− r1co
β

, then a feasible equilib-

rium exist with components

(i) lim
t→+∞

co(t) = c∗o =
a1cE + γθx∗

L1 + L2

(ii) lim
t→+∞

x(t) = x∗ =
a− r1c

∗
o − αy∗

A

(iii) lim
t→+∞

y(t) = y∗ =
b− βx∗

B

The feasible equilibrium solution is stable.

Proof. Since the first two equations in system (5) are Bernoulli type and the last equation is
linear, then the integral representations of the components are as follows:

x(t) =
x0e

∫ t

o
[a− r1c0 − αy(s)]ds

1 +Ax0

∫ t

0
e

∫ s

0
[a− r1co − αy(u)]du

ds

(6)

y(t) =
y0e

∫ t

o
[b− βx(s)]ds

1 +By0

∫ t

0
e

∫ s

0
[b− βx(u)]du

ds

(7)

co(t) = e−(L1+L2)t

∫ t

0
[a1cE + γθx(s)]e(L1+L2)sds. (8)

To establish (i), consider the integral representation of co(t) given in (8) and taking the limit
as t → +∞, then we have

lim
t→+∞

co(t) = lim
t→+∞

e−(L1+L2)t

∫ t

0
[a1cE + γθx(s)]e(L1+L2)sds

= lim
t→+∞

∫ t

0
[a1cE + γθx(s)]e(L1+L2)sds

e(L1+L2)t

= lim
t→+∞

d

dt

[∫ t

0
[a1cE + γθx(s)]e(L1+L2)sds

]
d

dt

[
e(L1+L2)t

]
by applying the L’Hôpital’s Rule. Now, suppose that f ′(s) = [a1cE + γθx(s)]e(L1+L2)s.

Then

∫ t

0
f ′(s)ds = f(s)|t0 = f(t)− f(0). Moreover,

d

dt

[∫ t

0
f ′(s)ds

]
=

d

dt

[
f(s)|t0

]
=

d

dt
[f(t)− f(0)] =

d

dt
[f(t)− 0] = f ′(t).
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Hence,
d

dt

[∫ t

0
[a1cE + γθx(s)]e(L1+L2)sds

]
= [a1cE + γθx(s)]e(L1+L2)t.

Thus,

lim
t→+∞

d

dt

[∫ t

0
[a1cE + γθx(s)]e(L1+L2)sds

]
d

dt

[
e(L1+L2)t

] = lim
t→+∞

[a1cE + γθx(s)]e(L1+L2)t

(L1 + L2)e(L1+L2)t

= lim
t→+∞

[a1cE + γθx(s)]

(L1 + L2)

=
[a1cE + γθ lim

t→+∞
x(s)]

(L1 + L2)

=
[a1cE + γθx∗]

(L1 + L2)
.

Now, let us show that lim
t→+∞

x(t) is finite. Since lim
t→+∞

co(t) =
[a1cE + γθx∗]

(L1 + L2)
, we have that

lim
t→+∞

x(t) = x∗ =
(L1 + L2)c

∗
o − a1cE

γθ
is finite since c∗o is finite.

To establish (ii), consider the integral representation of x(t) given in (6). Taking the limit
on both sides as t → +∞, then we have

lim
t→+∞

x(t) = lim
t→+∞

x0e

∫ t

o
[a− r1c0 − αy(s)]ds

1 +Ax0

∫ t

0
e

∫ s

0
[a− r1co − αy(u)]du

ds

= lim
t→+∞

x0e

∫ t

o
[a− r1c0 − αy(s)]ds d

dt

[∫ t

0
[a− r1co − αy(s)]ds

]

Ax0
d

dt

∫ t

0
e

∫ s

0
[a− r1co − αy(u)]du

ds



= lim
t→+∞

x0e

∫ t

o
[a− r1c0 − αy(s)]ds

[a− r1co − αy(t)]

Ax0e

∫ s

0
[a− r1co − αy(s)]ds

= lim
t→+∞

[a− r1co − αy(t)]

A

=

[
a− r1 lim

t→+∞
co(t)− α lim

t→+∞
y(t)

]
A

=
[a− r1c

∗
o − αy∗]

A
.

Lastly, to establish (iii), consider the integral representation of y(t) given in (7). Then taking
the limit as t → +∞, we have

88



A Qualitative Analysis on the Effects · · · REFERENCES

lim
t→+∞

y(t) = lim
t→+∞

y0e

∫ t

o
[b− βx(s)]ds

1 +By0

∫ t

0
e

∫ s

0
[b− βx(u)]du

ds

= lim
t→+∞

y0e

∫ t

o
[b− βx(s)]ds d

dt

[∫ t

0
[b− βx(s)]ds

]

By0
d

dt

∫ t

0
e

∫ s

0
[b− βx(u)]du

ds


by applying L’Hôpital’s Rule

= lim
t→+∞

e

∫ t

0
[b− βx(s)]ds

[b− βx(t)]

Be

∫ t

0
[b− βx(s)]ds

= lim
t→+∞

b− βx(t)

B

=
b− β lim

t→+∞
x(t)

B

=
b− βx∗

B
.

Thus, the feasible equilibrium solution (x∗, y∗, c∗o) is stable.

Population dynamics, being the branch of science that studies the size of population as
dynamic system has been continues to be a dominant branch of mathematical biology. One
such model is the Lotka-Volterra competition model in (1). The most common application
of the Lotka-Volterra model in economics is the description of concurrence in fund markets,
technological competition, marketing and trade relationships [9]. Some other applications of
the model are in sociology and other social sciences.
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