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Abstract

The effect of constant-rate harvesting has been investigated by many authors and there
are very rich and interesting behaviors in the dynamics of the predator-prey system. This
paper studies the effect of harvesting on the predator-prey model of N.H.Mohammad. It is
assumed in this study that the prey outside the refuge and predator are harvested at constant
rates. The stability of the system, when prey inside the refuge is growing exponentially, is
analyzed explicitly. The bifurcation point has been computed and numerical simulations are
made in this paper.

1 Introduction

The Predator-prey model has been studied by many mathematicians, biologists, and ecolo-
gists. In 1920’s, the first Predator-prey model has been proposed by Alfred Lotka and permanent
oscillation of the population has been shown [5]. In 1926, the same model has been studied
and developed by Italian mathematician Vito Volterra [18]. The history of the model has been
developed through the variations and extensions proposed in the 1930s, 1950s, and 1970s [9].
In [7], a simple predator–prey interaction was studied where the predator population is sub-
jected to harvesting. Gause predator-prey models have been analyzed by Martin and Ruan
[12] where the prey is harvested at a constant rate. Kar [10] considered the predator-prey
model with the predator harvested and suggested that studying the combined harvesting of
predator and prey population models is ideal. Later, Toaha and Hassan [16] investigated and
studied this suggestion. The prey response to predators have been the center of the study of
Andrew Sih in 1987-1988 [13]. He, together with Petranka and Kats, later examined the effect
of the cost of prey refuge use on the Lotka-Voltera type of predator-prey system [14]. Later in
1993, R. Serquiña modified A. Sih et. al’s model [14] by incorporating the four fundamental
demographic parameters-birth, natural death, immigration, and emigration. In 2018, N.H.R.
Mohammad made a local stability analysis of Serquiña’s model with refuge when birth and
death are being considered. Models of predator-prey interactions with refuge have been for-
mulated when considering functional responses such as Holling Type II and Ratio-Dependent
Functional Response.
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This paper seeks to modify the N.H. Mohammad’s predator-prey model by incorporating a
constant rate of harvesting. Also, to investigate the persistence or coexistence condition of the
predator and prey population. Moreover, the author only considers the case where the growth of
prey inside the refuge is exponential. The center of the analysis is the persistence or coexistence
of both predator and prey when harvested. Stability analysis is done by nondimensionalization
and linearization techniques. Routh-Hurwitz Criterion is also used to simplify the solution of
doing the stability analysis. Further investigation and verification is done using Python 3.7 as
a numerical method of the study.

2 Preliminaries

Definition 2.1. [17] Let x⃗ ∈ Rn. Consider equations of the form

dx⃗

dt
= f⃗(x⃗) (1)

in which the independent variable t does not occur explicitly. A vector equation of this form
is called autonomous. A point a⃗ ∈ Rn with f (⃗a) = 0⃗ is an equilibrium solution of the
equation (1).

Definition 2.2. [6] An equilibrium solution x⃗(t) = x⃗∗ of equation (1) is asymptotically
stable (locally asymptotically stable) if every solution x⃗ = ψ⃗(t) of equation (1) which
starts sufficiently close to x⃗∗ at time t = 0 not only remains close to x⃗∗ for all future time, but
ultimately approaches x⃗∗ as t approaches infinity.

Theorem 2.3. [6] Let x⃗∗ be an equilibrium solution of equation (1).

i) If all the eigenvalues of Jf⃗ are negative, then x⃗∗ is locally asymptotically stable.

ii) If at least one of the eigenvalues of of Jf⃗ is positive, then x⃗∗ is unstable.

Theorem 2.4. [11] (The Routh-Hurwitz Criterion) The polynomial equation

λ3 + a1λ
2 + a2λ+ a3 = 0 (2)

has only roots with negative real parts if and only if a1 > 0, a3 > 0, a1a2 > a3.

Theorem 2.5. [15] Consider the characteristic polynomial equation (2).

i) If the three roots are real and negative, the equilibrium is a attracting node.

ii) If the two roots are complex conjugate with negative real parts and the other root is real
and negative, the equilibrium is a spiral node (attracting).

iii) If the three roots are real and positive, the equilibrium is a node (repellor).

iv) If the two roots are complex conjugate with positive real part and the other root is real and
positive, the equilibrium is a spiral repellor.

v) If the two roots are real and negative and the other root is real and positive, the equilibrium
is a saddle point index 1.

vi) If the two roots are real and positive and the other root is real and negative, the equilibrium
is a saddle point index 2.

vii) If the two roots are complex conjugate with negative real parts and the other root is real
and positive, the equilibrium is a spiral saddle index 1.

viii) If the two roots are complex conjugate with positive real parts and the other root is real
and negative, the equilibrium is a spiral saddle index 2.
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3 Predator-Prey System with Constant Harvesting Rate

Consider the model with Holling Type II Functional Response of N.H. Mohammad given by

dR

dT
= −eR+ bQ+ gR

dQ

dT
= eR− bQ− acQP

1 +mQ

dP

dT
=

acnQP

1 +mQ
− rP,

where R is the number of prey inside the refuge, Q is the number of prey outside the refuge, P
is the density of predators, a is the attack rate, b is the overall rate of prey return to refuge, c
is the capture success rate, ac is the predation rate, e is the emergence rate, g is the intrinsic
growth of increase (g > 0), m be the constant handling time for each prey captured, n is the
conversion rate of consumed into the predator reproduction rate, and r is the mortality rate of
predator. Note that (R,P,Q) ∈ R3

+, a, b, c, e, g,m, n, r ∈ R+.

When prey outside refuge and predator are harvested with constant rates Hq and Hp, re-
spectively, the model is formulated as follows:

dR

dT
= −eR+ bQ+ gR

dQ

dT
= eR− bQ− acQP

1 +mQ
−Hq

dP

dT
=
acnQP

1 +mQ
− rP −Hp

(3)

where Hq and Hp are positive.

Figure 3.1: Compartmental Representation

Let x =
an

b
R, y =

an

e
Q, z =

ac

e
P, t = eT. Then, from model (3), the nondimensionalized

system is

dx

dt
= −αx+ y (4a)

dy

dt
= σ(x− y)− βyz

β + y
−Hy (4b)

dz

dt
=

(
δy

β + y
− 1

)
ϕz −Hz, (4c)
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where e > g and α =
e− g

e
, β =

an

me
, δ =

acn

mr
, ϕ =

r

e
, σ =

d

e
, Hy =

an

e2
Hq and Hz =

ac

e2
Hp,

are all positive constants.
Let (x∗, y∗, z∗) be the equilibrium point. For practical reasons, only the feasible equilibrium

points are considered in this paper, that is, x∗ ≥ 0, y∗ ≥ 0, z∗ ≥ 0. Let

dx

dt

∣∣∣∣
x∗

=
dy

dt

∣∣∣∣
y∗

=
dz

dt

∣∣∣∣
z∗

= 0.

Since Hz > 0, it follows from equation (4c) that (δ − 1)y∗ > β and so, δ > 1. By equation(4a),

x∗ =
y∗

α
. (5)

Substituting equation (5) to equation (4b), we obtain

z∗ =
[σ(1− α)y∗ − αHy](β + y∗)

αβy∗
(6)

Substituting equation (6) to equation(4c) yields

a1y
∗2 + a2y

∗ + a3 = 0,

where a1 = σ(1− α)(δ− 1), a2 = βσ(1− α) + αHy(δ− 1) +
αβ

ϕ
Hz, and a3 = αβHy. Therefore,

we get

y∗ =
a2 ±

√
a22 − 4a1a3
2a1

and x∗ =
a2 ±

√
a22 − 4a1a3
2a1α

. (7)

Lemma 3.1. If 0 < α < 1, σ(1−α)y∗ > αHy, and a
2
2−4a1a3 > 0, then the equilibrium solution

E∗
1,2 = (x∗, y∗, z∗) is feasible .

Proof. Clearly, from equation (6), z∗ > 0. Since δ > 1 and σ > 0, it follows from equation (7)
and equation (5) that y∗ > 0 and x∗ > 0 respectively, provided that a22 − 4a1a3 > 0. Therefore,
E∗

1,2 is feasible.

System (4) has the Jacobian Matrix

J =

 −α 1 0
σ −r1 −r2
0 r3 r4


where

r1 = σ +
β2z∗

(β + y∗)2
, r2 =

βy∗

β + y∗
, r3 =

βδϕz∗

(β + y∗)2
and r4 =

ϕ[(δ − 1)y∗ − β]

β + y∗

are all nonnegative. Hence, the characteristic polynomial equation of the system is

det(J − Iλ) = λ3 + b1λ
2 + b2λ+ b3 = 0 (8)

where b1 = r1 − r4 + α, b2 = (r1 − r4)α+ r2r3 − r1r4 − σ, and b3 = (r2r3 − r1r4)α+ r4σ.

Theorem 3.2. Let (r1 − r4)α + r2r3 − r1r4 > σ. If b1b2 > b3 such that b1 > 0, b3 > 0, then
E∗

1,2 is locally asymptotically stable.
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Proof. From the Routh-Hurwitz Criterion, it follows that the roots of equation (8) are all
negative. Therefore, E∗

1,2 is locally asymptotically stable by Theorem 2.3.

Moreover, the roots of equation (8) are

λ1 = A+B − b1
3

(9)

λ2 = −A+B

2
− b1

3
+
A−B

2

√
−3 (10)

λ3 = −A+B

2
− b1

3
− A−B

2

√
−3 (11)

where

A =
3

√
−q
2
+

√
q2

4
+
p3

27
, B = 3

√√√√−

(
q

2
+

√
q2

4
+
p3

27

)
(12)

such that

p =
1

3
(3b2 − b21, ) q =

1

27
(2b31 − 9b1b2 + 27b3), p, q ̸= 0. (13)

Throughout this paper, it is assumed that p ≥ − 3

√
q2

4
to avoid the complex value of

√
q2

4
+
p3

27
.

Lemma 3.3. Let (r1 − r4)α+ r2r3 − r1r4 > σ such that r1 > r4 and r2r3 > r1r4. Then, any of
the following holds;

i) If b2 <
b1
3

2

and 2b31 + 27b3 < 9b1b3, then p < 0 and q < 0,

ii) If b2 >
b1
3

2

and 2b31 + 27b3 > 9b1b3, then p > 0 and q > 0,

iii) If b2 <
b1
3

2

and 2b31 + 27b3 > 9b1b3, then p < 0 and q > 0,

iv) if b2 >
b1
3

2

and 2b31 + 27b3 < 9b1b3, then p > 0 and q < 0.

Proof. Follows from equation (13)

Lemma 3.4. Let (r1 − r4)α+ r2r3 − r1r4 > σ such that r1 > r4 and r2r3 > r1r4.

i) Let p < 0 and q < 0 such that p > −3
3

√
q2

4
. If A+B >

b1
3
, then λ1 is positive, otherwise

λ1 is negative. Also, λ2 and λ3 are complex conjugate with negative real part.

ii) Let p = −3
3

√
q2

4
and q < 0. If A + B >

b1
3
, then λ1 is positive, while λ2 and λ3 are real

and negative, otherwise λ1, λ2, and λ3 are all negative.

iii) Let p > 0 and q ̸= 0. If A > B − b1
3
, then λ1 is positive, otherwise λ1 is negative. If

A > −B, then λ2 and λ3 are complex conjugates with negative real part. If −A+B

2
>
b1
3

such that A < −B, then λ2 and λ3 are complex conjugate with positive real part.
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iv) Let p < 0 and q > 0 such that p > −3
3

√
q2

4
. Then λ1 is negative and real. If −A+B

2
>
b1
3
,

then λ2 and λ3 are complex conjugate with positive real parts, otherwise the real parts are
negative.

v) Let p = −3
3

√
q2

4
and q > 0. Then λ1 is real and negative. If −A+B

2
>
b1
3
, then λ2 and

λ3 are real and positive, otherwise λ1, λ2, and λ3 are real and negative.

Proof. Follows from (9), (10) and (11).

Theorem 3.5. Let (r1 − r4)α+ r2r3 − r1r4 > σ such that r1 > r4 and r2r3 > r1r4.

i) Let p < 0 and q < 0 such that p > −3
3

√
q2

4
.

If A+B <
b1
3
, then E∗

1,2 is a spiral node.

If A+B >
b1
3
, then E∗

1,2 is a spiral saddle index 1.

ii) Let q < 0 and p = −3 3

√
q2

4 .

If A+B <
b1
3
, then E∗

1,2 is an attracting node.

If A+B >
b1
3
, then E∗

1,2 is a saddle point index 1.

iii) Let p > 0 and q < 0. Then,E∗
1,2 is either

a spiral repellor if A > B − b1
3

and −A+B

2
>
b1
3

such that A < −B;or

a spiral saddle index 1 if A > B − b1
3

and A > −B; or

a spiral saddle index 2 if A < B − b1
3

and −A+B

2
>
b1
3

such that A < −B; or

a spiral node if A > B − b1
3

and A > −B.

iv) Let p < 0 and q > 0 such that p > −3
3

√
q2

4
. If −A+B

2
>
b1
3
, then E∗

1,2 is a spiral saddle

index 2. If −A+B

2
<
b1
3
, then E∗

1,2 is a spiral node.

v) let p = −3 3

√
q2

4 and q > 0. If −A+B

2
>

b1
3
, then E∗

1,2 is a saddle point index 2. If

−A+B

2
<
b1
3
, then E∗

1,2 is an attracting node.

Proof. Follows from Lemma 3.3, Lemma 3.4 and Theorem 2.5.

Theorem 3.6. If r1 > r4, r2r3 > r1r4 and (r1 − r4)α+ r2r3 − r1r4 < σ, then E∗
1,2 is unstable.

In particular, E∗
1,2 is either a saddle point index 2 or a spiral saddle index 2.

Proof. Not all roots of (8) are negative by Routh-Hurwitz Criterion. Thus, E∗
1,2 is unstable by

Theorem 2.3.
Since b2 < 0, it follows from (13) that λ1 is real and negative. Since E∗

1,2 is unstable, it is
either a saddle point index 2 by Theorem 2.5 (vi) or a spiral saddle index 2 by Theorem 2.5
(viii).
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Corollary 3.7. Let r1 > r4 and r2r3 > r1r4. If A + B <
b1
3

and q < 0 or −A+B

2
<
b1
3

and

q > 0 such that −3
3

√
q2

4
≤ p < 0, then the bifurcation occurs at σ = (r1 − r4)α+ r2r3 − r1r4.

Proof. Follows from Theorem 3.2, Theorem 3.5, and Theorem 3.6.

4 Numerical Simulations

4.1 Illustration 1

Consider the model (3) and assume that a = 1, b = 1.2, c = 0.8, e = 0.9, g = 0.6, m = 0.8, n =
1.05, r = 0.3,Hq = 0.01, andHp = 0.02. Then, the equilibrium solution is E∗

1,2 = (1.789, 0.596, 3.727).
From the characteristic equation (8), we get b1b2 = 1.252 > b3. Hence, by Theorem 3.2, the
equilibrium solution is locally asymptotically stable (See Figure 3.2). Also, p = −3.82, q = 3.08,

−A+B

2
= 1.14, and

b1
3

= 1.18. Therefore, by Theorem 3.5 (iv), E∗
1,2 is a spiral node (See Fig-

ure 3.3).

Figure 3.2: Asymptotic Behavior of the Predator-Prey System with initial values x(0) = 2.1,
y(0) = 0.9, and z(0) = 4.13.

Figure 3.3: The Phase Space of the Predator-Prey System. The trajectory from the initial
point (2.1, 0.9, 4.13) approaches to the equilibrium point E∗

1,2.

4.2 Illustration 2

Let a = 1, b = 1.2, c = 0.8, e = 0.9, g = 0.6, m = 0.8, n = 1.05, r = 0.3, Hq = 0.2
and Hp = 0.3. Then, the equilibrium solution is E∗

1,2 = (2.41, 0.80, 3.64). Since b2 = −0.02,
it follows from Theorem 3.6 that E∗

1,2 is unstable. In Figure 3.4, the trajectory from the
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initial point (2.5, 0.9, 3.7) goes away from the equilibrium point. Now, p = −3.21, q = 2.46,

−A+B

2
= 1.05, and

b1
3

= 1.03. From Theorem 3.5 (iv), E∗
1,2 is a spiral saddle index 2.

Figure 3.4: The Behavior of the Predator-Prey System with initial values x(0) = 2.1,
y(0) = 0.9, and z(0) = 4.13. As t increases, the trajectory fluctuates and moves away from

equilibrium points x∗, y∗, z∗.

Figure 3.5: The Phase Space of the Predator-Prey System. The trajectory from the initial
point (2.5, 0.9, 3.7) goes away from the equilibrium point E∗

1,2.

5 Discussion and Conclusion

Harvest Management plays a significant role in real-world phenomena. For species that are
managed for harvest, the manager must have an intimate knowledge of the species and its envi-
ronment. In this paper N.H. Mohammad’s predator-prey model is modified by considering the
case that prey outside the refuge and predators are harvested at constant rates.

The persistence or coexistence condition of the predator and prey population has been
investigated. Lemma 3.1 shows the feasibility of the equilibrium solution E∗

1,2 of system (3).
Theorem 3.2 shows that E∗

1,2 can be locally asymptotically stable while in Theorem 3.6, E∗
1,2 can

be unstable. Moreover, in Corollary 3.7, bifurcation point can occur at σ = (r1 − r4)α+ r2r3
−r1r4.

Finally, going through with the Numerical Simulations, it can be observed in Illustration 3.8
that when Hq = 0.01 and Hp = 0.02, the trajectory approaches to the equilibrium point E∗

1,2

(Figure 3.2 and Figure 3.3) and this implies that the predator-prey system is stable. However,
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with larger values Hq = 0.2 and Hp = 0.3, the trajectory is moving away from the equilibrium
point (Figure 3.4 and Figure 3.5), which means that the Predator-Prey System becomes unsta-
ble. Hence, it is important to consider the value of harvesting management. If both predator
and prey outside the refuge are harvested excessively, then both of these populations will surely
face the danger of extinction.
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