The Mindanawan Journal of Mathematics

Official Journal of the Department of Mathematics and Statistics

THE MINDANAWAN Mindanao State University-lligan Institute of Technology
Journal of Mathematics ISSN: 2094-7380 (Print) | 2783-0136 (Online)

Vol. 5 (2023), no. 2, pp. 45-74

SOME PROPERTIES OF HOLOMORPHIC FUNCTIONS HAVING CONVEX
ABSOLUTE VALUES AND APPLICATIONS

Abidi Jamel

Department of Mathematics
Faculty of Sciences of Tunis, 1060 Tunis, Tunisia

abidijamell@gmail.com

Received: 20th September 2023 Revised: 19th January 2024

Abstract

We study some properties concerning the convexity, plurisubharmonicity and other prop-
erties of certain special classes constructed from holomorphic functions. We prove that we
have a key role between real and complex convexity in the theory of the representation of
functions. On the other hand, let g : C* — C be a holomorphic nonconstant function. We
prove that |g|? is convex on C™" if and only if g has a classical holomorphic representation.
Several applications of this criterion are obtained in the theory consisting of convex and
strictly plurisubharmonic functions, convex and strictly plurisubharmonic but not strictly
convex functions and related topics.

1 Introduction

From Abidi [2], we can prove the following.

Lemma 1.1. Let u : C" — [—o0,+00[ be a function, n > 1. Put v(z,w) = u(w — z), for
(z,w) € C" x C™. The following conditions are equivalent

(a) u(C") C R and u is convex on C";
(b) v is plurisubharmonic (psh) on C™ x C™.

Observe that in the case where v : C" — R, and k¥ € N, we have the equivalence between
the following two technical conditions.

(c) w is convex and of class C* on C", and
(d) v is plurisubharmonic and of class C* on C" x C".

Lemma 1.1 has many applications for the development of the theory of real and complex con-
vexity and others complex analysis problems.

Several questions concerning the classes; convex and strictly plurisubharmonic functions,
convex strictly plurisubharmonic but not strictly convex on all Euclidean not empty open balls,
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convex and not strictly psh on all open balls, convex strictly psh but not strictly convex, convex
not strictly psh but not strictly convex at all points and many more related topics can be studied
in [2].

Let g1,92 : C* — C be two holomorphic functions, n > 1 and (Aj, Az) € C?\{0}. Define
u(z,w) = |Ajw — g1(2)]? + | Agw — g2(2)]?, for (z,w) € C" x C. By [3], we prove that u is convex
on C" x C if and only if we have the holomorphic representation

{ 91(z) = A1(< z/a > +b) +§(< z/c > +d)*
92(2) = Az(< z/a > +b) — A1(< z/c > +d)*

for all z € C"™ with a,c € C", b,d € C,s € N, or

91(2) = A1(< Z/al > +b1) +A726(<Z/51>+d1)
g2(2) = Ay(< z/ay > +by) — Ajel<#/cr>+d1)

for all z € C"*, where a1,c; € C", by,d; € C.

The following classes; convex and strictly psh functions, convex strictly psh and not strictly
convex functions, convex strictly psh and not strictly convex in all not empty Euclidean open
balls of C"* x C and many more, play a classical role in several problems of complex analysis
and the theory of functions.

We consider the application of the holomorphic differential equation
k" (k + ¢) = v(k')* (where k : C — C is a holomorphic nonconstant function and
(7,¢) € C?) over a classical class of functions defined on C", n > 1. The good condition
v € {#1,1/s € N\{0}} is of great importance in all of this paper.

Using the above cited holomorphic differential equation, we prove that we have a classi-
cal relation between holomorphic partial differential equations and strictly plurisubharmonic
functions on C™. We observe that we have a new proof of my result proved in [2] which is the
following.

Let a,8 € C, a # B and g : C* — C be a holomorphic function. Using holomorphic
differential equations, we prove that |g + «| and |g + (| are convex functions on C" if and only
if g is an affine function on C".

Moreover, we prove that in all bounded convex domains of C™, n > 1, this criterion is not
true for several examples. At the end we prove several observations which are fundamental for
proving technical questions between complex analysis and the theory of convex functions.

As usual, N := {0,1,2,...}, R and C are the sets of all natural, real and complex numbers,
respectively. Let U be a domain of R% d > 2. We denote sh(U) the subharmonic functions on
U and mg the Lebesgue measure on R% Let f : U — C be a function. |f| is the modulus
of f, Re(f) and Im(f) are the real and imaginary parts of f respectively. For N > 1 and
h=(h1,...,hn), where hy,...,hy : U = C, | b ||= (|12 + ... + |hn]?)2.

Let g : D — C be a holomorphic function, D be a domain of C. We denote by ¢(© = g, ¢

¢ which is the holomorphic derivative of g on D, ¢® = ¢”, ¢® = ¢’. In general (™) = gzm is
the holomorphic derivative of g of order m, for all m € N\{0}.
Let z € C", 2z = (#1,...,2n), For n > 2 and j € {1,...,n}, we write (z = (2, Z;) = (21,..., 2j-1,
ZjyZj4ls .- 2n)) Where Z; = (21, .., 2j—1, Zj+1,- -+, 2n) € C""L. For K : C" — C, K(z,.) is the
function defined for z; € C by K(.,Z;)(2;) = K(zj,72;) = K(z). Let £ = (&1, ...,&,) € C". We
denote < z/€ >= 21§ + ... + 2,€, and B(&,7) = {C € C*/ || ¢ — ¢ ||< r} for r > 0, where
V< &/€ > =| £ is the Euclidean norm of £&. We also consider the following notations:

COU) = {¢: U — C/yis continuous on U}, C*¥(U) = {p : U — C/pis of class C*¥ on U},
and CX(U) ={p:U — C/p € C*>°(U) and has a compact support on U}, where k € NU{oco}.
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Some Properties of Holomorphic Functions having Convex Absolute Values and Applications

Let ¢ : U — C be a function of class C2, A(p) is the Laplacian of ¢. Let D be a domain
of C", (n > 1). psh(D) and prh(D) are respectively the class of plurisubharmonic and plurihar-
monic functions on D. For all a € C, |a|, Re(a) and Im(a) are the modulus, real and imaginary
parts of a respectively. Also D(a,r) ={z € C/|z—a| <r}and 0D(a,r) ={z2€ C/ |z—a| =71},
for > 0. For a holomorphic polynomial p on C, deg(p) is the degree of p.

For the study of properties and extension problems of holomorphic objects, we cite the
references [1, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23]. Moreover, several
properties of holomorphic functions and their graphs are obtained in [8, 9]. The class of n-
harmonic (or n-subharmonic) functions was introduced by Rudin in [21]. Good references for
the study of convex functions in convex domains are [13, 16, 23].

2 Some fundamental analysis properties

In the sequel, using Abidi [2], we can now prove the following.

Lemma 2.1. Let f,g: C — C be two holomorphic functions. Put

ui(z,w) = [wf(z) +g(2)]

(z,w) € C2, f # 0. Suppose that uy is convexr on C2. Then f is constant and g is an affine
function on C.

Proof. Let u = u?. Then u is a function of class C* and convex on C2. Hence | 2 (z,w)| <
8‘1(;%( z,w), for all (z,w) € C2. Note that
u(z,w) = [wPf(2)? + |9(2)|* + g(2)@ f (2) + g(2)wf(2). Then

{ p(z,w) = |f"(2) F(2)[w]® + ¢"(2)g(2) + " ()W f(2) + g(2)wf"(2)] <
Wl f ()P +19'(2)P + ¢ () (2) + g (2w f'(2) = (2, w),

for all (z,w) € C2. Observe that if w = z; € R\{0}, we have

lim So(zvgtl) S lim ¢(272x1)'
xr1—+00 ml 1 —+00 {1;1

It follows that | f”(2) f(2)| < |f'(2)|?, for all z € C. This implies that f”(2)f(z) = v(f'(2))?, for
each z € C, where v € C. Then |f|? is convex on C.

Now if wp = 0, then u(.,wp) is convex on C. It follows that |g|? is convex on C. By Abidi
[2], we have for all z € C,

f(z) = (CLZ =+ b)m7 or f(Z) — e(a1z+b1)

and
9(z) = (cz +d)*, or g(z) = olerz+di)

where a,b,a1,b1,c,d,c1,dy € C, m,s € N.

Case 1. f(z) = (az+b)™ and g(z) = (cz + d)*, for all z € C.
Note that u(z,w) = |w(az + b)™ + (cz + d)*|?, (z,w) € C2.

Assume that m = 0. It follows that f = 1. Now since u(z,w) = |w + g(2)|* and u is convex
on C?, then g is an affine function on C.

Suppose that m = 1. If a = 0, then f = 0™ on C and we conclude that ¢ is an affine function
on C.
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Suppose that a # 0. u(z,w) = |w(az + b) + (cz + d)®|?. Assume that s = 1. The condition
c = d = 0, implies that u(z,w) = |w(az + b)|?> and u is convex on C2. By a translation, we
assume that b = 0. Thus u(z,w) = |a|}|wz|?, (z,w) € C%. Take w = z + 1, for z € C. These
implies that u(z,z + 1) = |al?|2%2 + 2| = K(2). But K is not convex on C. Thus ¢ # 0 or
d # 0. Suppose that ¢ # 0. Here, u(z,w) = |w(az + b) + (cz + d)|?. Let A € C\{0}, such that
[A(az + b)? + (cz + d)] has 2 zeros zg, 21 € C, (20 # 21).

Put wi(z) = A(az +b), for z € C. Then u(z,wi(z)) = |A(az + b)? + (cz + d)|? = Ki(2),
z € C. Thus K; is convex on C. But K have two distinct zeros on C. This is a contradiction.

Suppose that m > 2. Assume that a # 0. The case where ¢ = d = 0 and s > 1 is impossible
because u(z, w) = |w(az +b)™|? which implies that u is not convex on C2. The case where ¢ # 0
and s > 1 is also impossible. In fact we conclude that if a # 0, then u is not convex on C2. If
a = 0 then f is constant on C. Since f # 0, it follows that g is an affine function on C.

The studies of the other cases are similar to case 1. O

Finally, in the sequel, we observe that we can prove the above lemma by a technical holo-
morphic differential equation on C. Now in this section, we give an answer of the following
question.

Question 2.2. Let n € N, n > 3. Does there exist an infinite number of holomorphic poly-
nomials p,q on C such that deg(p) = deg(q) = n and if we define u1(z,w) = |p(w — 2)|?,
v1(z,w) = |q(w —2) 2, ua(z,w) = |p'(w — 2)|?, va(z,w) = |¢'(w —2)|?, u = ug +v1, v = us + V2,
(z,w) € C%, then

w1 and vy are functions not psh on C?,

uy and vy are functions not psh on C2,

w is psh on C?, and

v is not psh on C??

Recall that we have by Abidi [2] the following result.

Theorem 2.3. Let u : B(a,R) — R be a continuous function, a € C", R > 0, n > 1. Define
G={(zw)eC"xC" | w—Z—al< R} and v(z,w) = uw(w — Z) for (z,w) € G. (G is an
open convex not bounded on C™ x C™). The following assertions are equivalent:

(I) w is conver on B(a, R);
(IT) v is psh on G.

This theorem has technical applications in complex analysis and the theory of functions.
Now several questions can be formulated from the above question. For example, at the end of
this section we give an answer of the following.

Question 2.4. Let n,k € N, n > 2, k > 1. Is it true that there exists an infinite number of
holomorphic polynomials p, ¢ on C with deg(p) = deg(q) = (n+ k) and if we define ¢ = u + v,
©1 = UL + V1, ey P = Up + Vg, where u(z,w) = [p(w — %)%, v(z,w) = |g(w — 2)|%, ui1(z,w) =
Ip'(w —2) %, v1(z,w) = | (w —2)]%, ..., up(z,w) = [p¥(w — 2)|2, vi(z,w) = |¢¥(w — 2)|?, for
(z,w) € C% We have

U, v, U1, V1, ..., Uk, U are functions not psh on C2,
¢ is psh on C?,
1 is not psh on C?,

[ is not psh on C2?
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Some Properties of Holomorphic Functions having Convex Absolute Values and Applications

This is a technical investigation between the theory of holomorphic, convex and plurisub-
harmonic functions.

In this section, we prove the following result. Let p be a holomorphic polynomial on C,
deg(p) > 2, |p| not convex on C. Then there exists an infinite number of holomorphic polynomials
qon C, deg(q) = 1 and u is psh (or strictly psh) on C2, where u(z,w) = |p(w —2)|? +|q(w —2)|?,
for (z,w) € C2. This result is not true for holomorphic functions in general.

On the other hand, let ¢ = (|p1|> + ... + |pn|?), where py, ..., py are analytic polynomials
on C and N > 1. Note that if N = 1, the assertion ¢ is convex on C implies that 4% = A(p)
is convex on C. We prove that this result is not true in general if N > 2.

Theorem 2.5. Let n € N, n > 3. Then there exists an infinite number of analytic polynomials
p,q on C, deg(p) = deg(q) = n such that |p'|* and |¢'|* are functions not convex on C and
u = (|p|* + |q|*) is convex on C, but v = (|p/|* + |¢|?) is not convex on C.

Proof. Assume that p; is an analytic polynomial on C, deg(p;) = n and [p}] is not convex on
C. Define p(w) = p1(w) + Aw, q(w) = p1(w) — Aw for all w € C, where A € R;\{0}, A is to be
constructed satisfying the following hypothesis: (|p|? + |¢|?) is convex on C but (|p/|? + |¢'|?) is
not convex on C. We have p(w) = ap,w™ + ... + ayw + ag, for w € C, where ag, a1, ...,a, € C,
an # 0. Hence,

P (w) = na,w™ ' + ..+ ay,pf(w) = n(n — Da,w™ 2 + ... + 2as,

and

(P (w))* = n2a2w? % + bay_3w™ 3 + ... + by,

with bg, ...,b2,—3 € C. Also pf(w)p1(w) = n(n — a2w?*=2 + cop_3w?" 3 + ... + ¢y, where
€Oy vy Con—3 € C. Then
e )] _ -1

= < 1.
lwl=+oo [P (w)? n

Therefore there exists B > 0 such that |w| > B implies that [p](w)p1(w)| <
[P (w) . _
Since now D(0, B) is compact on C and [p]pi1| is a continuous function on D(0, B), there

exists M > 0 such that |p{(w)pi(w)| < M, for each w € D(0, B).
Since, by Abidi [2], the cardinal of the set

{a € C / |p}| + al is convex on C}

is less than 1, we can choose A > 0 such that A2 > M and [p} — A| and |p]| + A| are not convex
functions on C. Then we have |p(w)p; (w)| < |pj(w)[? + A2, for each w € C. Thus

u(w) = (Ip1(w) + Awl? + [pr(w) — Aw[?) = 2(|py (w)[* + A?|w]?)

for each w € C and u is convex on C. Now define p(w) = p1(w) + Aw, ¢(w) = p1(w) — Aw, for
w € C. We have p and q are holomorphic polynomials on C, deg(p) = deg(q) =n > 3, [p/| and |¢/|
are functions not convex on C, but u = (|p|?+|q¢|?) is convex on C. Note that p/(w) = p}(w)+ A4,
¢/(w) = py(w) — A and [} (1) + AP + [p} (w) — AP = 2(|p} (1) + A2) = v(w), for w € C. Define
v1(w) = |p}(w)|?, for w € C. Then v and v; are functions of class C° on C. Thus v; is convex
on C if and only if v is convex on C.

Since v1 is not convex on C. Consequently, v is not convex on C. O

We have the following additional result.
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Theorem 2.6. Let n € N, n > 3. Then there exists an infinite number of holomorphic polyno-
mials p,q on C, deg(p) = deg(q) =n and

1p'|? and |¢'|? are functions not convex onC;
(Ip|? + 1q|?) is convex on C, and
(Ip'1? + |¢'|?) is convex on C.

Proof. Let p; be a holomorphic polynomial on C, deg(p1) = n, |p}] is convex on C. We will
construct p and ¢ on the form p(w) = p1(w) + Aw, q(w) = p1(w) — Aw, for all w € C, where
A € R \{0}, A is to be constructed satisfying the following hypotheses v = (|p|? + |¢|?) and
v = (|p'|> + |¢'|?) are convex functions on C, but |p/|> and |¢’|?> are not convex functions on C.

We have lim [Py (w)p1(w)] - 1

wj—too  |py(w)[? n
implies that |p!(w)p1 (w)] < |p) (1)

Now since D(0, B) is compact on C and the function |p{p;| is continuous on D(0, B), there
exists 7 > 0 such that [p](w)p1(w)] < n, for all w € D(0, B). Recall that {8 € C / |p| +
B| is convex on C} has a cardinal less than or equal to 1. Choose then A > 0, such that
A% > n, |p) — A]? and |p} + A|? are functions not convex on C. Put p(w) = p;(w) + Aw and
q(w) = p1(w) — Aw, for w € C. Note that p and ¢ are holomorphic polynomials on C.

Now we can verify that |p'|? and |¢|? are functions not convex on C but u and v are convex
functions on C. O]

< 1. Then there exists B > 0 such that |w| > B

Corollary 2.7. Let p be a holomorphic polynomial on C, deg(p) = n > 3. Then there exists an
infinite number of holomorphic polynomials p1, ¢1 on C, deg(p1) = deg(q1) = n such that

u = (|p1)? + |q1|?) is convex on C,
pw)| _ @)
lw—+oo [p1 (W)  w|—+oo|q1(w)]

Example 2.8. Let p;(w) = w® +w?, for w € C. There exists an infinite number of holomorphic
polynomials p, ¢ on C, deg(p) = deg(q) = 3, u = (|p|*+1q|?) is convex on C, but v = (|p'|?>+|¢|?)
is not convex on C, |p/|? and |¢’|? are functions not convex on C,

i P@ o la(w)]
lwl—+oo [p1(w)|  wj—-+oo [p1(w)]

Corollary 2.9. Let p be an analytic polynomial on C, deg(p) = n > 2. Then there exists an
infinite number of o € C such that for all 6 € C, the function us is convex on C, us(z) =
Ip(2)| + |z + 6%, for z € C.

Proof. Define p1(z) = p(2)+az, q1(z) = p(z) —az, (for z € C), where « € C is to be constructed
satisfying the condition v is convex on C, where
u(z) = (lp1(2)* + IQ1(5)|2) = 2(]p(2)[* + |az[*) for z € C.
We have lim P (2)p(2)] -z L < 1. Then there exists B > 0 such that for all z € C,
|z| =400 ]p’(z)\Q n
2] > B, we have [p//(2)p(2)| < |p/(2)[? and (5/(2) #0).

Now D(0, B) is compact of C and the function |p”p| is continuous on D(0, B), then there
exists M > 0 satisfying [p”(2)p(z)| < M, for all z € D(0,B). Let a € C, |a|> > M. Then
Ip"(2)p(2)| < |p'(2)]? + |af?. Thus v is convex on C, where v(z) = (|p(2)|* + |az|?), for z € C.
Therefore for all § € C, the function ug is convex on C. O
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Some Properties of Holomorphic Functions having Convex Absolute Values and Applications

Remark 2.10. For all analytic polynomials p on C, where deg(p) = n > 2 and |p| is not convex
on C, there exists an infinite number of a € C such that us is convex on C, for all § € C, where
us(2) = (P22 + [az + 3[2), for 2 € C.

Lemma 2.11. Let g : C — C be an analytic function. Assume that g(w) = aw + b or g(w) =
%e(“ﬂ’ﬂr‘s) + u for w € C, where a,b,6,u € C,a # 0, v € C\{0},|y] # 1. Let q be an analytic

polynomial on C, deg(q) = 1. Define u(z,w) = |(3‘39<u}72>|2 +|q(w —2)|2, for (z,w) € C%. Then u

is not psh on C2.

Proof. Define v(w) = |eeg(w> |2+ |g(w)|?, for w € C. We prove that v is not convex on C. Assume
that v is convex on C. v is a function of class C*° on C.

Case 1. Assume that g(w) = aw + b, for all w € C.

Then | 525 (w)] < i (w), for w € C. Thus, g (w) + (¢ (w))2(1 + o))" |2 <

|g’(w)|2|e~‘7(w)|2|eeg(w)\2 + |¢'(w)|?, for every w € C. ¢” = 0 on C. Let (w;);>1 C C, jEI-Poog(wj) =

+00, g(wj) > 0, for each j € N. Hence we have |g’(wj)|2€9(wﬂ')(eeg(wj))2 < |¢'(wj)]? and
¢ (wj) = a, ¢'(wj) = a € C, for all j € N. Therefore the sequence of positive real numbers

(eg(wj)(eeg<wj))2)j>1 is bounded above. Since .liin g(w;) = 400, we have a contradiction.
- J—+00

Consequently, v is not a convex function on C.

Case 2. Assume that g(w) = %e(wj*‘s) + p, for each w € C.
Using the triangle inequality and the above proof, we prove that v; is not convex on C, where
v (w) = |eeg(w>|2 + |q(w)[?, for w € C. O

For holomorphic functions, we have the following.

Theorem 2.12. There exists an analytic function g : C — C satisfying the hypothesis; u =
(19/* + |q|?) is not convez on C, for any holomorphic polynomial ¢ on C with degree less than 1.

Proof. Consider g(z) = e?", for z € C. Let ¢ be an analytic polynomial on C, with deg(q) < 1.

Then w is a function of class C* on C. Assume that u is convex on C. Then ‘52772‘(,2)] < ggz(z),
for each z € C. Thus \ ,
1222 4 162%]1e*)] < [162°]]e”| + |4'(2) %,

for each z € C. Hence, for all z = z € R, we have ¢(z) = 1222¢") < |¢/(2)|? = ¢, where ¢ € R...
Thus, the function ¢ is bounded above on R, which is a contradiction. Consequently, u is not
convex on C. O

Moreover, we have the technical investigation.

Theorem 2.13. There exists g : C — C, g is holomorphic and not affine on C such that for all
holomorphic polynomials q on C, we have u is not convex on C, where u(w) = (|92 4|q(w)[?)
forw e C.

Proof. Let g(w) = w?, for w € C. Then g is analytic and not affine on C. Now let ¢ be an
analytic polynomial on C. Define u(w) = [e9™)|2 + |g(w)|?, w € C. Then u is a function of class
C® on C. Assume that u is convex on C. We have then

O*u w? _ w?
|50z (W) = [(4w” + 2)[e""[* + " (w)g(w)| < [4w?][e"* + |q'(w)[*

for each w € C. For w = x € R, we have

(402 4 2)e*” — |¢"(x)g(@)] < 4222 + | (2)[*.
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Therefore 2¢2° < |¢"(2)q(x)] + |¢'(z)[2, for each z € R. Thus 2 < la” ( ) (@) 4 |q( ) , for every

" 2
z € R. Since lim w and lim |4« 2‘ =0,
r—+00 ez z—+oo g2
o Jd"(@)a(@)] | g (@)]?
2< mgr—ir-loo( 62902 + 62"”2 ) - 07
a contradiction. Consequently, u is not convex on C. ]

Theorem 2.14. Let n,k € N, n > 2,k > 1. Then there exists an infinite number of analytic
polynomials p,q on C with deg(p) = deg(q) = (n + k) such that if we define p = u + v, @1 =
U1, ... o = up+og, where u(z,w) = [p(w—2)|%, v(z, w) = |q(w—2)|?, ui(z,w) = |p'(w—72)|?,
vi(z,w) = | (w=2),..., u(z,w) = [p®(w —2) 2, vz, w) = |¢¥) (w - 2)2, for (z,w) € C?,
then we have the system of assertions

u and v are functions not psh on C2,
uy and vy are functions not psh on C2,

uy, and vy, are functions not psh on C2,
@ is psh on C2,
1 is not psh on C2

oy 15 not psh on C2.

Proof. Let p1 be an analytic polynomial on C, where deg(p1) = n+ k and [p}], ..., |p§k)| are not
convex functions on C. Then, we have

(N

— <1.
lw|—+oo [P} (w)]? n+k

Hence there exists B > 0 such that |w| > B implies that |p}(w)p1(w)| < |pj(w)|?>. Now B is
fixed, D(0, B) is a compact subset of C and the function |p/p;| is continuous on D(0, B), then
there exists M > 0 such that |p](w)p1(w)| < M, for all w € D(0, B). Recall now that the
cardinal of the set {a € C / |p| + ] is convex on C} is less than or equal to 1 by Abidi [2].
Because p} is not an affine polynomial on C, we can choose A > 0, A2 > M such that |p}] — A
and |p] + A| are not convex functions on C.

Hence we have [p/(w)p1(w)| < |p}(w)* + A2, for every w € C. We now define p(w) =
p1(w)+Aw, g(w) = p1(w)— Aw, for w € C. Then note that p and ¢ are analytic polynomials on C
and deg(p) = deg(q) = (n+k). p(0,w) = (|p1(w)+Aw[*+|p1 (w)—Aw[?) = 2(!p1(w)|2+|Aw!2) =
Y(w), for w € C. Then the function v is convex on C. By Abidi [2], ¢ is then psh on C2.

Here |p/|? = |p} + A|? is not convex on C and so |p|? is not convex on C. Then u and u; are
not psh functions on C2. Also since |¢'|? = \pl Al? is not convex on (C then v and v; are not
2 _ |, (k)2 B2
2 = |g®)] |
k)‘Z

on C and |p is not convex on C,
are functions not convex on C.
(k)|2 is not convex on C, |¢|?, ..., |¢™™|?

psh functions on C2. Now since [p(*)|? = \p
|p*)|2 is not convex on C. It follows that |p/|%, ..., |p

Therefore wy, ..., u; are functions not psh on C2. |q
are not, convex functions on C.

It follows that vy, ..., vy, are not psh functions on C2. Note that ¢1(0,w) = 11 (w) = |p'(w)[*+
ld'(w)]? = 2(]p) (w)|? + A?), for w € C. Since |p}|? is not convex on C, #; is not convex on C.
Therefore ¢ is not psh on C2. 5 (0,w) = 2(w) = [p" (w)|* + |¢" (w )|2 = 2|p¥(w)|?, for w € C.
1y is then not convex on C. Therefore ¢y is not psh on C2. Observe that ¢ (0, w) = ¥ (w) =
) (w)[2 + |¢® (w)[2 = 2[pi™) (w)|2, for w € C.

Thus 1, is not convex on C. Therefore ¢y, is not psh on C2. O
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Observe that if p, g are analytic polynomials on C and K is psh on C2, then K is psh on
C2. But F is psh on C2, does not implies that Fy is psh on C2. Where K (z,w) = |p(w — %)/,
Ki(2,w) = [o{ (w—2), F(z,w) = (Ip(w—2)P+lg(w—2)[2), Fi(z, w) = (| (w—2)>+1¢ (w—2)P),
(z,w) € C2.

We have the following.

Theorem 2.15. Let n € N, n > 3. There exists an infinite number of analytic polynomials p, q
on C such that if we define u(z,w) = |p(w—72)[?, v(z,w) = |[qg(w—2)|?, u;(z,w) = [pY) (w—7)[?,
vi(z,w) = ¢V (w —32)|?, j € {1,...,n — 2}, (2,w) € C. Define p(z,w) = (Ip(w —2)|* + |qg(w —
2)12), pi(z,w) = (P9 (w — 2)|? + |¢9) (w — 2)|?), for (z,w) € C? and j € {1,...,n — 2}, then
Uy ULy« .oy Up—2,V, VL, ..., Uy o are not psh functions on C? and ¢ is psh on C?, but @1, ..., Pn_2
are not psh functions on C2.

Proof. Let p1(w) = w™ —w™ !, for w € C. py is a analytic polynomial on C. Then |p1(w) + aw|
is not convex on C, for all & € C. Observe that |p1]?, ..., ]pgn_2)|2 are not convex functions on
C. Define p(w) = p1(w) + Aw, q(w) = p1(w) — Aw for w € C, where A > 0, A to be constructed
satisfying the following hypotheses proven below. Now

e )] 01

= < 1.
lwl=+oo [P} (w)[? n

Thus there exists B > 0 such that |w| > B so that |p}(w)p1(w)| < |p}(w)|?. If B is fixed, then
D(0, B) is a compact subset of C and the function [p{p;| is continuous on D(0, B). Therefore
there exists A; > 0 such that [p{(w)p1(w)| < A2, for all w € D(0,B). We conclude that
P (w)p1 (w)| < A2 + |p (w)|?, for every w € C. Since {a € C / |p}| + a|? is convex on C} have a
cardinal less than 1, there exists As > Aj, such that for all « € C, with |a] > As, the function
Ipy + |? is not convex on C. Now let A € R, A > Ay. We have (|p|? + |¢|?) is then convex on
C. (|p'|> + |¢'|?) = 2(|p}|*> + A?) is not convex on C. In fact the function (|p)|? + |¢1)|?) is not
convex on C, for all j € {1,...,n — 2}. Note that |[p")|2, |¢¥)|? are not convex functions on C,
for all j € {1,...,n —2}. O

Theorem 2.16. Let n,N € N, n > 3 and N > 2. There exists an infinite number of analytic

polynomials p,q on CV, deg(p) = deg(q) = n, such that |p|? and |q|> are not convex functions

on CN, (Ip|* + |q|?) is convex on CN and az‘?;_ﬂp\z + |q|?) is not convex on CV, for all j €
J J

{1,...,N}.

Proof. Let p1 and ¢ be 2 analytic polynomials on C, deg(p;) = deg(q1) = n, such that |p;|? and
|q1|? are not convex functions on C, (|p1]?+ |q1|?) is convex on C and (|p} |+ |¢}|?) is not convex
on C. Let a = (ay,...,ay) € (C\{0})". Define p and ¢ on CV by p(z) = p1(< z/a >) and
q(z) = qi(< z/a >), for all z = (z1,...,2n5) € CN. Then p and ¢ are holomorphic polynomials
on CV, deg(p) = deg(q) = n. Indeed, p and ¢ satisfy the condition of the theorem. O

Remark 2.17. In fact we have for all analytic polynomials p on C, there exists always A € C
such that u is psh (or strictly psh) on C2, where u(z,w) = |p(w — 2)|> + |A(w — 2)|?, for
(z,w) € C%. But this property is not true in general for analytic functions on C.

Example 2.18. Let g(z) = ¢(**), for z € C. Let A € C and define
v(z,w) = lg(w = 2)P + |A(w - 2)P,

(2,w) € C2. Then v is not psh on C2, because if |¢”(2)g(z)| < |¢'(2)|? + |AJ?, for all z € C, then
we have (2 + 422)e?” < 422e2” 4 | A[2, for any z € R.
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Therefore 2e2%° < |A|?, for any 2 € R. We have a contradiction. On the other hand, on
C™, n > 2, the above property is not true for analytic polynomials. This is one of the great
differences between the theory of functions of one complex variable and the same theory in
several variables. Exactly, there exists an analytic polynomial ¢ on C™ such that for all A € C,
the inequality

2 2 2
|]§_j WZ ajakr<|§ja Dag? + AP | |

for every z = (z1, ..., z,) € C", for each a = (avq, ..., app) € C™ is impossible if n > 2. The answer
is given by the following proposition.

Proposition 2.19. Let q(z1,22) = 2120, (21,22) € C2, where q is an analytic polynomial on
C2. There does not exist a constant A € C, such that u is convexr on C?, u(z1,22) = |z122>+ ||
A(z1, 29) ||?, for (21, 22) € C2.

Proof. Assume that there exists A € C such that u is convex on C2. Then |2g(z)aias| <
|z2a1 + z100)? + JAP? || « ||?, for every z = (21,22) € C?, for any a = (a1,as) € C2. Put
21 = a1, z2 = —ag € C. Then we have [2a2a3| < |A*(|a1]? + |az|?), for all (a1, az) € C2. Put
now ag = aj € C\{0}. Thus |a1|? < |A]?, for every a3 € C\{0}. It follows that we have a
contradiction. Finally we can study the convexity of the function || f ||, where f: C" — C¥ is
holomorphic, f = (f1,..., fn), n, N > 1. O

3 Holomorphic functions and the real convexity

Theorem 3.1. Let g : C" — C be analytic and |g| > 0 on C", n > 1. Suppose that |g| is convex
on C". Then g(z) = e for all z € C*, where F : C" — C is analytic and affine on C™.

Proof. The proof is by induction on n > 1. If n = 1, by Abidi [2], we have g(z) = e(@**Y) | for
all z € C, where a,b € C.

If n = 2. Since |g| > 0 on C2, then g(z) = e¥"*), for all z € C2, where F : C? — C, F analytic
on C2. For z; € C, the function g(., z2) = e/"(+*2) is analytic on C and |g(., 22)| is convex on C.
Therefore by [2, Theorem 20], F(z1,22) = c(22)z1 + d(z2), for each z; € C, with ¢,d : C — C
and where d(z2) = F(0, 2z2) and c(z2) = F(1,22) — d(22), for all zo € C. Therefore ¢ and d are
analytic functions on C and g(z1, zp) = e(¢(2)21+d(=2)) “for any (21, 29) € C2.

Now ¢(0,22) = e¥*2), ¢(0,.) is holomorphic on C, |¢(0,.)| is convex on C. By Abidi [2],
d is an affine function on C. On the other hand, g(1,z) = e(¢(22)+d(z2)) for all 2, € C. But
g(1,.) is holomorphic and |g(1,.)| is convex on C. Then the function (¢ + d) is a holomorphic
affine function on C. Since now ¢ = (¢ + d) — d on C, ¢ is a holomorphic affine function on C.
c(z2) = c122 + ¢2 and d(z2) = dy1z2 + da, for all zo € C, where ¢1,c2,d1,d2 € C. g(z1,22) =
el(crzatep)zi+dizatda) — 6(6121Z2+C2Z1+d12'2+d2)’ for all (21, 20) € C2.

We will prove that ¢; = 0. Put 29 = 21. Define p(z1) = g(21,21) = elerzi+(eatdi)zitds) for
z1 € C. Then ¢ is holomorphic and |¢| is convex on C. From [2], we get that ¢; = 0.

It follows that g(z1,zg) = elc2s1tdiz24d2) for all 2 = (21, 29) € C2. Now assume that for all
g1 : C" — C, gy is analytic, |g1| > 0 and |g1| is convex on C”, then g;(z) = ef1(*) where Fj is
holomorphic and affine on C", (n > 2).

Let now g : C"*! — C be a holomorphic function, |g| > 0 and |g| is convex on C™*!. Then
g(z) = e"?) where F : C"*! — C is a holomorphic function. Let Z; = (29, ..., z,41) € C™
For all z; € C, we have g(z1,Z1) = e*1%1) and |g(., Z1)| is convex on C. Then F(z1,Z;) =
c(Z1)z1 + d(Zy), for all z; € C, with d(Z1) = F(0,%;1) and ¢(Z1) + d(Z1) = F(1,Z;1). Hence
o(Z1) = F(1,Z1) — F(0, Zy).
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Therefore ¢ and d are holomorphic functions on C™.

Note that g(0,7Z;) = e“%), for Z; € C" Thus g(0,.) is holomorphic on C" and |g(0,.)|
is convex on C". Then d(Zy) = dazo + ... + dpt12nt1 + dnyo, for all Zy = (29,...,2,41) € C",
where dy, ..., dy 11, dyyo € C. Since ¢g(1,7;) = ele(Z)+d(21)) for all Z, = (22, ...y Zn+1) € C™ and
lg(1,.)] is convex on C", (c + d) is affine on C". Now since d is affine on C", ¢ is affine on C".
Write ¢(Z1) = ca2z2 + ... + Cng12n+1 + Cnt2, €2y ooy Cpt1, Cnga € C.

Therefore
9(2) = g(z1, 7)) = ellcazat.tenpiznt1tent2)zi+d(21))
6(622122+...+cn+1212n+1+Cn+2z1+d222+...+dn+1Zn+1+dn+2)
)
z = (Zl,Zl) e CxCn".
We will prove that co = ... = ¢, 41 = 0. Fix (zg, e z2+1) € C"!. We have

9(21, 22, Zg7 teey Z?L+1) = 6(62Z1Z2+)\1Z1+)\2Z2+)\3)7

for all (21, 29) € C?, where c2, A1, A2, A3 € C. Since |g(., ., 2, ...,zg+1)| is convex on C2, ¢co =0
by the hypothesis of induction. It follows that c¢3 = ... = ¢,4+1 = 0. Consequently, F' is affine on
C"*+1. The proof is now finished. O]

Corollary 3.2. Let g : C" — C be an analytic function, n > 1. Define Fj, = expoexpo...oexp
(k — times), where k € N, k > 2. Assume that |F(g)| = u is convex on C". Then g is constant
on C™.

Corollary 3.3. Let g : C*" — C, g analytic, n > 1. Recall that |ege(_9)| is convex on C".
But we have ]eegee(_g)] is convexr on C" if and only if g is constant on C". Denote by Fj =
expoexpo...oexp (k — times), where k € N, k > 2. Assume that |F(g)Fi(—g)| is convex on
C"™. Then g is constant on C™.

Proof. Case 1. n = 1.

Suppose that |€egee<*g)| = |e(eg+e(7g))| is convex on C. Then |9 + ¢(~9)| is an affine function
on C. By the Picard theorem, for all j € N\{0}, there exist A; > j, 3z; € C, with j < |2;| < A;
and g(z;) € iR. Thus [e9() 4 e79(3)| < [e93)| + |e79(%) | = 2. Since now e9() +e79%) = az 4 b,
for any z € C (a,b € C), [e9%) + ¢79)| = |az; +b| < 2, for all j > 1.

But lim |z;j| = +oo. It follows that 2 > lim |az;+b] > lim (|al|z;|—|b]) = +o0, if a # 0.
J—+0o0 J—+00 J—+o0

This is a contradiction. Consequently, a = 0 and €9 + e = b on C. The derivative relative to
z implies ¢/(2)e??) — ¢/(2)e=9) = 0, for all z € C. Then ¢'(2)(e*9*) — 1) = 0, for any z € C.
Since ¢’ and (e29 — 1) are analytic functions, then ¢’ = 0 or (€29 — 1) = 0 on C.

If ¢ = 0 on C, then g is constant on C. Now if €29 — 1 = 0 on C, then the derivative relative
to z implies that ¢’e?9 = 0 on C and therefore ¢’ = 0 in C. Consequently, g is constant on C.

Case 2. n > 2.

The case is obvious by the problem of fibration. O

Corollary 3.4. Let g : C* — C be a holomorphic function, n > 1. Let

u = |Fo(g)F2(—g) F3(9) F3(—9) Fa(g) Fu(—9)|,

where Fy, = expoexpo...oexp (k — times), for k € N, k > 2. Define v(z,w) = u(w — Z), for
(z,w) € C" x C™. Suppose that v is psh on C™ x C". Then g is constant on C".
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Corollary 3.5. Let g1,g92 : C" — C be two holomorphic functions, n > 1.

(I) Assume that |e9' + e92| is a convex function on C". We can not conclude that g1 and go are
constant in C". Moreover,

(II) Assume that |e®”" + €| is convex on C". Then g1 and go are constant in C".

Proof. (I). Let go = g1 + im and g¢; is a function nonconstant on C". Then |e9! + e92| = 0 is
convex on C".

l(II). In fact in general we prove that if fi, fo : C" — C are 2 analytic functions such that
le?” + ef2| is convex on C™, then f; and f, are constant on C”. O

Observation 3.6. We can use the above theorem for the resolution of several holomorphic
partial differential equations on C™, n > 1. For example find all the holomorphic functions
g : C = C such that u; > 0 and u; is convex on C, ui(z) = |ag'(z) + bg® (2)|, for z € C
(a,b € C\{0}). Find all the holomorphic functions k : C" — C such that us > 0 and ug is convex
on C", ua(z) = |k(2) + g—i(z)]‘l, for z = (#1,...,2,) € C™. Find all the holomorphic functions

k: C" — C such that ug > 0 and u3 is convex on C", where u3(z) = |‘g%’§(z) +..+ g%(z)ﬂ for
z2=(21,...,2n) € C™.

Theorem 3.7. Let g : C" — C be a holomorphic function, n > 1. Assume that |g| is convez on
C" and g(2°) = 0, where 2° € C". Then g(z) = (< z/\ > +u)™, for all z € C", where A € C",
u € C andm e N.

Proof. The proof is by induction on n > 1.

If n = 1. From Abidi [2], we have the proof.
Suppose that n = 2. We assume that 20 = 0 (if 2 # 0, we consider the function k defined in
C? by k(2) = g(z + 2Y), z € C?). If g(21, 22) = g1(21), for any (21, z2) € C?, the theorem is true
(g1 : C — C, g1 is holomorphic on C). Now suppose that g(z1, 2z2) depends on z; and 2. Then
99 09 # 0 on C?
0z1 Ozo :

If g(21,0) = 0 and ¢(0, 22) = 0, for each (21, 22) € C?, then we have

21 22 1 1 1 1
1900 2)] = lg(5(21,0) + 50, 22))] < 5lg(1,0)] + 5190, 22)] = 0

Then g(%,%) =0, for all (21, 22) € C2. Consequently, g = 0 on C2. This is a contradiction.

Now in fact we have g(.,0) # 0 on C if g(21,0) = 0, for every z; € C. We conclude by
the same above proof that g—zgl(zl,z*g) = 0, for any (21,22) € C2. This is impossible because

%% # 0 on C2. We have g(z1,0) = (a(0)z1 + b(0))*, for every z; € C, where a(0) € C,
b(0) € C and s € N. Since ¢g(0,0) =0, b(0) = 0 and s € N\{0}.

Suppose now that g(z1,§;) = eizitis) for each 2y € C, where Aj, i € C, for every

j € N\{0} and the sequence (&;);>1 C D(0,7), r > 0, ‘lil_il (&) =0.
j—+4oo
Let z; € C\{0}. By [2], we have

0?%g s—1, 0g 9

TZ%(zhO)g(zlvo) - P (8721(’2170)) )
and o2 5

g g
T/Z%(Zlaéj)g(zlaéj) = (aizl(zl)é-j))zv
for each j € N\{0}. Then we have lim (2 (z1,¢))2 = >=2(29 (1, 0))2
J ' e 9y VS T T gy

Hence a(0) = 0 and 0 = g(z1,0), for each z; € C. This is a contradiction.
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Thus there exists 7 > 0 such that g(z1,22) = (a(z2)z1 + b(22))*1*2), for every z; € C, for
any zo € D(0,r), where a(z2),b(z2) € C, s1(z2) € N and the function z; € C — (a(z2)z1 +
b(22))*(*2) is noconstant, for all zo € D(0,r). In fact if there exists a sequence (22);>1 C C,

with hrJh zp; = 0 and the function g(., 22;) = ¢; in C, where ¢; € C. For z; € C, we have
j‘)

lim g(z1,22;) = g(21,0). Then lim (¢;) = ¢ € C. Now since g(z1,22,;) = g(#], 22,;), for any
j—>+ J—+00

21 € C, then c is independent of z; € C. Thus ¢(0,0) = ¢ = 0 and then g(z1,0) = 0, for every
z1 € C, a contradiction. Then s;(z2) € N\{0}, for each z2 € D(0,r). Let 2o € D(0,r). We have

d%g i s1(25) =1 09g 12
Oz 2(2'1722)9(21722) = TZ&)(TQ(ZMZQ)) )

for each 2}, € D(0,7), z; € C. (21,2’2)9(21,222) = Sl(@)_l(gzgl (21,22)). Then

s1(z2)

im (1— — ) =1—
im(l-——)=1-——.
zh—zo 81(2&) 81(2’2)

Thus lim s1(2) = s1(22), for each 29 € D(0,r). This implies that s; : D(0,r) — N\{0}
22—>Z2

is a continuous function. It follows that s; is constant on D(0,r). Let si(z2) = s, for every

zo € D(0,7). Now g(z1,22) = (a(z2)z1 + b(22))%, for every z; € C, zo € D(0,7). Now choose

a = (ag,az) € C?, p > 0, such that D(ay, p) x D(ag,p) C D(0,7) x D(0,r) and

98(2) #0, forze D(ax, p) x D(az, p);
5-(2) 55 (2) # 0, for z € D(au, p) x D(az, p);

9(#1,0) # 0,4(0, z2) # 0, for (z1,22) € D(a1,p) x D(az, p).

On the other hand, ¢(0, z2) = (c¢(0)z2 + d(0))?, for any z2 € C, with ¢(0),d(0) € C, g € N\{0}.
If g(0,22) = 0, for all zp € C (¢(0) = d(0) = 0 and g # 0). This is impossible because we
have the inequality lg(% )| = I9((3,0) + (0. %)) = lg(4(:1,0) + §(0,z2))| < Hg(=1,0) +
319(0,22)| = 3|g(21,0)|, for all (21, 22) € C2 Then l9(5,2)| < 3|g(21,0)], for all 21,22 € C and
\g(zl,ZQ)\ < %|g(2z1, 0)|, for any (z1,22) € C2. Hence g(z1,22) = 7g(221,0), for each (z1,22) €
C?, where v € C. Thus g (21, zg)(f;g (21, 22) = 0, for every (z1,22) € C2. This is a contradiction.
Therefore ¢g(0,.) # 0 on C.
Now if g(¢j, 22) = e(3%21%)  for every 2 € C, Where 7],5 € C, for all j € N\{0} and the

sequence ((;)j>1 C D(0,7), w1th hm CJ =0. We have (0 22)g(0, z2) = qT(azg (0,22))? and

%(Cja@)g@j,@) = (%(Cj,Zz)) Then ag 2(0,22) =0, for each zo € C and ¢(0) = 0. Therefore
9(0,22) =0 = ¢(0,0), for each 23 € C. ThlS is a contradiction.

Consequently, g(z1,20) = (c(z1)ze + d(z1))23V, for every (z1,2) € D(0,p1) x D(0, p1),
g(z1,.) is nonconstant on D(0, p1), for all z; € D(0, p1), where 0 < p; < p and where ¢g1(z1) €
N\{0}, ¢,d : D(0,p1) — C. We prove that qi(z1) = ¢, for every z; € D(0,p1) (by the same
method developed as above).

If g(z) € [0,400[, for all z € G = D(aq,p1) x D(ag,p1), therefore Im(g) = 0 in the
convex domain G. Here, we can also use the function Re(g). Thus g is constant on G. This
is a contradiction. Therefore there exists (27, 29) € G such that g(2?,29) € C\[0,+oc[ and
C\[0, +00[ is an open of C. Since g : G — C is a continuous function, there exists 7 > 0 such that
G1 = D(20,n) x D(2%,1) C G and for all 2z € G1, g(z) € C\[0, +oo[. We have g(z) = (a(22)z1 +
b(22))®* = (c(21)22 + d(21))9, for all z = (21, 22) € G1. Thus g%(z) = (21, 22)(a(22)21 + b(22)),
for all z = (21, 22) € G1, where ¢ : G; — C, ¥* = 1 on G;. Since now g(z) # 0, for all z € Gy,

then (a(z2)z1 + b(z2)) # 0, for all z = (21, 22) € G1. It follows that (21, 22) = %, for
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(21,22) € Gy. Fix 23 € D(29,7). Observe that (21 + (21, 22)) is a holomorphic function on
D(2,n) and satisfy (¥(21,22))* = 1, for each 21 € D(z},n).

It follows that the function (., 23) is constant on D(zY,7). Define then ¢(z2) = (21, 22),
for every (z1,22) € Gi. This implies that ¢ : D(z8,17) — C is then a function. We have
g(z1,22) = (p(22)a(22)z1 + @(22)b(22))°, for each (z1,22) € G1. Define A = pa, B = ¢b in
D(29,n). We can calculate A and B on D(29,7). In fact fix 2] € D(20,7), 21 # 2. We have
then

=

g5 (20, 22) = A(22)2) + B(22),

for all 25 € D(29,7n). Consequently,

Ale2) = oy (07 (e 22) = 97 (=1 22)) Blaa) = 97 (f) 22) = Alza)af.

It follows that A and B are holomorphic functions on D(z9,7) and so g(z1,22) = (A(z2)z1 +

B(z9))®, for each (z1,22) € Gjp. Similarly, g%(zl,ZQ) = (c(z1)z2 + d(z1))¥1(21, 22), for any
(z1,22) € G1, where Y1 : G1 — C, (1) = 1 on Gy. Since g(z) # 0, for each z € G,
1

then (c(z1)z2 + d(z1)) # 0, for every z = (z1,22) € G1. Then 91(21,22) = %, for all
(Zl, ZQ) € (.

Fix z1 € D(2{,n). Thus (22 € D(28,7) + 11(21, 22)) is a holomorphic function on D(z3,7)
and satisfy the equality (11(21,22))? = 1, for all 2o € D(29,7). It follows that the function
¥1(21,.) is constant on D(z3,n), for all z; € D(2),n). Define now ¢1(21) = t1(z1,22), for
any 21 € D(29,n), for all 2o € D(29,n). ¢1 : D(2¥,7) — C is a function. Then we have
g(z1,22) = (p1(21)c(21)22 + p1(21)d(21))4, for each (z1,22) € G1. Define ¢ = ¢1¢, di = ¢1d
on the domain D(2?,7). We can calculate ¢; and dj as follows. Fix 24 € D(23,7), with 23 #

1 1
2. Then ga(z1,29) = c1(21)28 + di(21), g4 (21, 23) = c1(21)23 + di(z1), for all z; € D(29,7n).

c 1 (i 0y _ 4% 1 . 0y _ 0
1(21) = e (97 (21, 23) — 97 (21, 22)), da(2) = g9 (21, 23) — ea(21) 23

2(2) z.
Therefore ¢; and dj are holomorphic functions on D(29,7) and g(z1,22) = (c1(21)22 +
di(z1))4, for all (z1, z2) € Gy1. Consequently, g(z1,22) = (A(z2)z1+B(22))° = (c1(21)22+d1(21))4,

for each (z1,29) € Gj.

We want to prove that ¢ = s. Since %}r?(zl,@) = 0, for each (z1,22) € G1, ¢ < s.
1
Also m(zl,@) = 0, for every (z1,22) € Gy, thus s < ¢. Consequently, s = ¢. Therefore,

azg“
(A(22)z1 + B(22))® = (c1(z1)22 + d1(21))?, for all (21, 22) € G1.

Thus A(z2)z1 + B(22) = A(2)[c1(21)22 + di(z1)], for every z = (21, 22) € G1, where A(z) € C,
(M2))* = 1. Also A : G; — C, X is holomorphic on G; because (A(z2)z1 + B(22)) # 0,
(c1(z1)22 + di(z1)) # 0, for any (21, 22) € G1.

Since A* = 1 on G, then A is constant in the domain G1. The derivative of the expression
(A(z2)z1 + B(z2)) relative to z; implies that A(z2) = A\[¢}(21)22 + d}(z1)], for all (21, 22) € G1.
Hence ¢} and d} are constant functions on D(z{,n). c1(21) = vz1 + B, di(21) = az + 9, for
all z; € D(z9,n), where v, 3,a,6 € C. Now g(z1,20) = [yz120 + B2z2 + az + d)%, for every
(21,22) € G1. Define f(21,22) = [yz122 + B2a +az1 + )%, for (21, 22) € C2. Then f is analytic on
C? and f = g on the domain G1. Hence, f = g on C2. Now g(21,22) = (y2122 + Bz2 + az1 +0)?,
for each (z1,22) € C%, where s € N\{0}.

Suppose that 7 # 0. Choose p € C such that (o + 8 + yu)? — 4y(Bu + 6) # 0. Define
K(21) = g(21,21 + p), for z; € C. Then K(z1) = [v2? + (o + B + yu)z1 + Bp + 6]°. We have
| 1| is convex on C. But K is a holomorphic polynomial having 2 distinct zeros on C. This is a
contradiction. Therefore v = 0. Consequently, g(z1, z2) = (az1 + Bz + 6)%, for all (21, z2) € C2.

o8
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Suppose that the result is true for all g; : C* — C, g; analytic, |g;| is convex on C" and
g1(2°) = 0, where 2° € C", n > 2.

Now let g : C"*! — C be a holomorphic function, |g| is convex on C"*! g(2%) = 0, where
20 € C"*LIf there exists j € {1,...,n + 1}, such that g(z1, ..., 2n+1) is independent of z;, then
we use the hypothesis of mduction.

We now assume that 8Z1 ) aii aan # 0 on C"! and 2 = 0. Then ¢(0, Z;) = (a2(0)z2 +
a3(0)zs + ... + ant+1(0)zn41 + ang2(0))® for all 73 = (22,...,2p41) € C", where s € N,
a2(0),a3(0),...,an4+1(0), ant2(0) € C by the hypothesis of induction.

If s =0. Then ¢(0,Z7;) = 1, for each Z; = (22,...,2n+1) € C". Then ¢(0,0) = 1. This is a
contradiction. Therefore s € N\{0} and ay4+2(0) = 0.

If a2(0) = 0, then ¢(0, 22, 23, ..., 2n+1) is independent of zo. This is impossible because for
2 = (21, 22,23, ..., Znt1) € C" we have

1 1 1
|g(§(217227z37"-azn-i-l))‘ = ‘9(5(2170) + 5(05227237--"271,4-1)”
1 1
S §|g(2170)| + §|g(07227237~-72n+1)|

1 1
S 5‘9(2170)‘+§|g(0,0,23,...,2n+1)|.

Thus |g(21, 22, 23, ..., 2n41)| < [9(221,0)| + 5]9(0,0, 223, ..., 22541

Fix z1,23,...,2n+1 € C. Then the function (22 € C +— |g(z1, 22, 23, ..., Zn+1)|) is bounded
above on C and so this function is constant relative to zo € C. It follows that (2o € C —
9(21, 22,23, ...y Znt1)) is constant on C for all (21, 23, ..., 2p+1) € C" fixed. Thus

dg
. — (21,22, 23, «+e, Znt+1) = 0,

for each (21,22, 23, ..., znt1) € C*"1 a contradiction. Consequently,

a2(0) # 0,a3(0) # 0, ..., an+1(0) # 0.

Assume now that g(&;, Z1) = e(<41/7%>%%) for each Z; € C", j € N\{0}; where v; € C",
§; € C, and the sequence (&;)j>1 C C satlsfymg hm §] = 0. Let Z; € (C\{o})", Z; =

(22, s Zn+1)- Then (§]7Z27"-7Z’n+1) (5j;22,---72n+1) = (372(53',21)) . Hence,

0?%g s—1, 0g
Z Z
822(0 190, 21) = ——(5 -

(0, 21))2.

9y »_s5—1 99
s 1 (22 (6,207 = > (22
0 and so a2(0) = 0, a contradiction.

It follows that there R; > 0 such that g(z1, Z1) = (a2(z1)22 + a3(z1)2z3 + ... + ant1(21) 2nt1 +
any2(21))* ) for all (21,Z1) € D(0,R;) x C", where s1(z1) € N for all z; € D(0,Ry)),
a2,a3, ..., Ap+1, ant2 @ D(0,R1) — C and the function Z; € C" — g(z1,Z1) is nonconstant
relative to zg, ..., zn41, for all z; € D(0, Ry). Thus s1(z1) € N\{0}, for all z; € D(0, R;). Now
let z; € D(0,Ry). Choose Z; € C" such that %(zl,Zl) # 0. Then 8—29(21,Zl) (21,21) =

ML (B (2, 20))%. For 2 € D(0, Ry), we have g—Q(zi,Zl)g(zi,Zl) = S;(j(ﬂ)l(aZl (), Z1))2.
2 2

: 0%g 0%g os1(z)) =1 si(z1)—1
S li Z Z1) = ,Z ,Z1), h | =
ince 2113; z% (21, Z1)g(21, Z1) = P 2 (21, Z1)9(z1, Z1), we have zig1 () 51021
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and then lim s1(21) = s1(21). But s1 : D(0, Ry) — N\{0} is continuous. Thus the function s;

z] =21
is constant, s1(z1) = s, for any z; € D(0, R;). Consequently, g(z) = (a2(z1)z2 + as(z1)2z3 + ... +
an+1(21)2Zn41 + anya(21))%, for all (21, ..., zn41) € (D(0, Ry))™ L.

Using similar arguments, there exists Ry > 0 such that g(z) = (b1(22)2z1 + b3(z2)z3 + ... +
bui1(22)2zna1 + buaa(22))t, for any z = (21, 22, 23, ..., 2zns1) € (D(0, R2))" ™!, where t € N and
b1, b3, .., bug1, buys : D(0,Ry) — C. Let R = min(Ry, Ry) > 0. Since ajfﬂ (z) # 0, s = ¢
Suppose that g : (D(0, R))"*! — [0,+00[. Then the function Im(g) = 0 on (D(0, R))"*1.
It follows that g is constant on (D(0, R))"*!. Hence g is constant on C"! a contradiction.
Consequently, there exists ¢ € (D(0,R))"™! such that g(c) ¢ [0,+oo[. Note that C\[0, +oo]
is an open on C. Put ¢ = (c1,...,cpy1). Since g : (D(0, R))"*! — C is a continuous function,
there exists n > 0 such that P(c,n) C (D(0,R))"* and g(2) ¢ [0,+oc], for all z € P(c,n),
where P(c,n) = D(c1,m) X ... X D(¢pt1,m). Then g : P(c,n) — C\[0,+o00[, defined by g(z) =
(ag(zl)zQ1 +asz(z1)z3 + . + ang1(21) 2n+1 + ans2(21))?, for all z = (21, 22, 23, ..., 2n+1) € P(c, 7).
Hence g5 (2) = ¥(21, 29, 23, ...y 2n+1)(a2(21) 22 + as(21) 23 + ... + ant1(21) 2n+1 + ant2(21)), for all
z = (21,22, 23, ..., 2nt1) € P(c,n), where ¢ : P(c,n) — C is a function, (¢)* = 1 on P(c,n).
Since g(z) # 0, for each z = (21, 22, 23, ..., 2nt1) € P(c,m),

1
gs (217 22y 23y +eey Zn—l—l)

(az(z1)22 + az(21)23 + . + ant1(21)2ns1 + ansa(z1))

¢(z17 22y Z3y +ny Z?’H‘l) =

Fix z1 € D(c1,7n). Then 1(z1,.) is a holomorphic function in the complex variable (22, ..., 2n41) €
D(c2,m) X ... X D(cpy1,7m). Since (¢)° = 1 on P(c,n), ¥(z1,.) is constant in the open poly-
disc D(c2,7m) X ... X D(cpy1,m). Therefore (21, 22, ..., 2nt1) = (21), for all (z9,...,2n41) €
D(ca,m) X ... X D(¢ps1,m), for all z1 € D(e1,n), where ¢ : D(c1,m) — C. Now we have
g5 (21, 22, 23, s 2na1) = (p(21)az(21) 22+ (21)as(21) 25+ 40(21)an41 (21) 21 +o(21 ) ansa(21)),
for each (z1, 22,23, ..., 2n+1) € P(c,n). Similarly, we have g(z) = (b1(22)z1 + b3(22)23 + ... +
bn+1(22)2n+1 + bnya(22))?, for each z = (21, 22, 23, ..., Zn+1) € P(c,n). Then

@ =

g:(2) = 1(21, 22, 23, .y 2n+1) (b1(22) 21 + b3(22) 23 + .. + bpt1(22) 241 + bnt2(22)),

for each (z1, 22, 23, ..., 2n+1) = 2 € P(e,n), where 91 : P(c,n) — C is a function, (¢1)* = 1 on
P(c,n). Hence g(z) # 0, for each z € P(c,n).

Now fix zo € D(co,n). Put ©¥a(z1, 23, ..., 2nt1) = ¥1(21, 22, 23, «ovy Znt1), fOr (21,23, ..oy 2nt+1) €
D(ci,m) x D(c3,n) X ... x D(¢pt1,7). 12 is a holomorphic function in its domain. Since (¢1)®* =1
on P(c,n), 1 is constant in the open polydisc D(c1,n)x D(c3,n) X ... x D(¢p41,n). It follows that
U1(21, 22, 23, ooy Znp1) = 4,01(22),1 for each (z1, 22,23, ..., 2ny1) € P(c,n), where @1 : D(co,n) —
C, (p1)® = 1. Consequently, g5 (21,22, 23, .-, 2nt1) = (p1(22)b1(22)21 + p1(22)b3(22)23 +... +
©1(22)bnt1(22) 2n+1 + @1(22)bnt2(22)), for every (z1, 22, 23, ..., 2nt1) € P(e,m).

Define Ay = @as, ..., Ant1 = @ani1, Any2 = @ang2 on D(ci,n). Also By = ¢1b1, B3 =
©103, ..., Bny1 = @1bnt1 and Bpyo = p1bny2 on D(cz, 7). Now let 71 € D(ca,n)x...xD(cnt1,m),

1< <n Z] = (23, s 2] 1) Choose (&3, .y €L 1), ooy (€5, s €241) € D(c2,1m) X oo X D(Cnp1,n)
such that the matrix

(Z%—fé) (%‘5%) (Z}z+1—§711+1)

(25 — &%) (Zg—fz?) (ZZ+1—52+1)
60
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is invertible of type (n,n). Then we consider the 2 systems
1
Ag(z1)25 + As(21)23 + .. + Apg1(21) 2041 + Anga(21) = g5 (21, Z1),

(5) =

' 1
Ag(21)28 4+ A3(21)28 + .. + Apy1(21) 2] + Anga(21) = g5 (21, 27),
for each z; € D(c1,n) and

Ax(21)& + A3(21)& + .. + Anp1(21)60 1 + Anga(z1) =
1 1 1
93(217627'“7 n-i—l)?

(51) =

Alz(zl)é“? + A3(21)€5 + - + Ang1(21)€ 41 + Anya(z1) =
g§(217§1217"‘7ég+1)7

for each z; € D(cy, 7).
To calculate As, ..., An+1, we consider the difference between (S) and (S1) denoted by (S2).

( AIQ(Zl)(Z% - 5%1) + A3(z1)(23 — &) + . + Apa1(21) (211 — Ehy1) =
g5 (21, Z21) — g5 (21,63, -, p 1)

Aa(z1) (2 — &) + As(21) (2 — &) + oo+ Anpr(21) (110 — &) =
gs (Z17 Ziz) —gs (Zlv 53’ ey glLlJrl)
for every z1 € D(c1,7n). Thus, we calculate As(z1), A3(21), ..., Ant+1(21) in function of
(97 (21, 21) = 97 (21,641 o € 1)) o (97 (21, 27) = 97 (20, €8, §141)), for every 21 € D(e,m).
It follows that Ag, As, ..., Ap41 are holomorphic functions on D(c1,n). Now since A,12(21) =
—(Aa(21)2a + As(z1) 23 + ...+ Any1(21) 2 1) +g% (21, Z1), it follows that A,,;2 is holomorphic on
D(c1,m). Hence g(z1, 22, 23, ...y 2n+1) = (A2(21)2z2 + Ag(21)23 + ... + Anti1(21)2n41 + Anta(21))?,
for each (21, 22, 23, ..., 2n+1) € P(c, 7).

Now by effectuate the same development, we prove that By, Bs, ..., Bpt1, Bpt2 are holomor-
phic functions on D(c2,n) and g(21, 22, 23, -, 2n+1) = (B1(22)21+Bs(22)23+...4+ Bpt1(22) 2n+1+
By y2(22))%, for every (21, 29, 23, ..., zn+1) € P(c,n). Consequently,

9(21, 22,23, oy Zng1) = (A2(21)22 + A3(21)23 + ... + Ang1(21) 20yt + Anga(21))?

= (Bi(22)z1 + B3(22)23 + ... + Bn11(22)2n+1 + Bria(22))°,

for each (21, 22, 23, ..., Zn+1) € P(c,n). Then there exists A : P(c,n) — C such that (A(z))* =1
and (AQ(Zl)ZQ + A3(21)23 + ...+ An+1(21)zn+1 + An+2(21)) = )\(Z)(Bl(ZQ)Zl + Bg(Zg)Zg + ...+
Bpt1(22)2n4+1 + Bnta(22)), for any z = (21, 22, 23, ..., Zn41) € P(c,n). Since g(z) # 0, for all
z € P(c,n), then A(z) # 0, for each z € P(e,n). Therefore A is a holomorphic function on
P(c,n). Since \* =1 on P(c,n), A is constant on P(c,n) and A # 0. Thus

Ao (z1)zo + As(z1)23 + oo + Anr1(21) 2ng1 + Anga(z1) =

AM(Bi(z2)z1 + Bs(22)23 + ... + Bny1(22)2n41 + Bni2(22)),
61
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for each z = (21, 22,23, ..., Zn+1) € P(c,n). The derivative relative to z; (for j € {3,...,n + 1})
implies that Aj(z1) = ABj(22), for each 21 € D(c1,n), 22 € D(ca,7). Since A # 0, A; and
Bj are constant functions respectively on D(ci,n) and D(cg,n), for all j € {3,...,n+ 1}. The
derivative relative to z; implies that Aa(21) = AB](22)21 + AB;, 5(22), for all z; € D(c1,7) and
z9 € D(c2,m). Hence AL(z1) = AB|(z2), for each (z1,22) € D(c1,m) x D(c2,n). Since X # 0, Aj
and B are constant functions respectively on D(c1,7n) and D(c2,n). Thus the functions Az and
By are affine functions on their above domains. Now we derive the equality

AQ(Zl) = )\31(22)21 + )\B;H_Q(ZQ)

relative to the variable zp € D(cz,n). Then 0 = AB]_ ,(22), for all zp € D(cz,n). Thus the
function B4 is affine on D(ca, 7).
Finally consider the equality

Ao (z1)zo + As(z1)23 + oo + Anr1(21) 2ng1 + Anga(z1) =

A(Bi1(22)z1 + Bs(22)z3 + ... + Bnt1(22)2n41 + Bnia(22))

for all z = (21, 22, 23, ..., 2n+1) € P(c,n). The derivative relative to z; implies that A} (z1)z2 +
Al o(21) = AB1(22), for all 21 € D(c1,n), for all 23 € D(c2,n). Since Aj is constant on D(c1,n),
A 5(z1) = 0, for each z; € D(c1,n). Consequently, A, o is affine on D(c1,n). Now we have
As, ..., Ap+1 are constant functions on D(cq,7n). Thus Ay and A, 4o are affine functions on
D(c1,n). Then Az (z1) = Aozi+p2, Ant2(21) = Ag221+Hinge, Az(21) = p3, -, Anti1(21) = pint1,
for all z; € D(c1,n), where Ao, pi2, Ant2y fint2, 43y vy fint1 € C.

So g(z1, 22,23, -y 2ng1) = [(A2z1 + p2)z2 + 1323 + oo 4 finr12n41 + Ang221 + ping2)®, for each
(21,22, 23, ..oy 2nt1) € P(e,m). Define

f(z) = [(A2z1 + p2)z2 + pszs + o + nt12n+1 + Anp2z1 + tint2]’

for z = (21, 22,23, ..., Zny1) € C"*1. Then f is a holomorphic function on C*"*!. And so g = f
on P(c,n) = D(c1,1) X ... x D(cqy1,n). Moreover, g = f on C**1,

Now we prove that Ay = 0. Assume that Ay # 0. Then K(z1,22) = g¢(z1,29,0,...,0) =
(Naz129 + Apyoz1 + f229 + pinio)®, for all (21, 22) € C2, K is a holomorphic function on C? and
K satisfy |K| is convex on C2. This is a contradiction. Consequently, Ay = 0. The proof is now
finished. O

Applications. We can use theorem 3.7 and theorem 3.1 for the resolution of several holomor-
phic partial differential equations.

Example 3.8. (A) Find all the holomorphic functions g : C* — C, (n > 2) such that wu is

convex on C", where u(z) = |a%(2) + ba%gl(z) +cg(2)|, 2= (z1,...,2n) € C", a,b € C\{0} and
1

ceC.

(B) Find all the analytic functions g : C* — C, (n > 2) such that v is convex on C",
2]

v(z) = elzl%(zHZ?ﬁ(z)—’_g(z)l, for z = (21, ..., 2n) € C™.

(C) Let ¢ : C™ — C be a holomorphic function, n > 1 and § > 0.

We say that || is 0— convex on C™ if |p(tz + (1 — t)&)| < t{e(2)| + (1 — t)|¢(§)] + 0, for all
z,§ € C", for all t € [0,1]. Now we can use the above contribution for the study of the family

E ={lg| / g : C" — C be holomorphic and |g| is 6 — convex on C"}

where 6 > 0 and n > 1.
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Various authors have studied the relation between the pluripolarity of the graph of a contin-
uous function and the analyticity property, we can see [22], [7], [8] and [9]. On the other hand
we can study the problem

g : C"\F — C be holomorphic and
lg| is convex on C™\ F’

where F is a closed subset of C", n > 1 and H?>"~}(F) = 0, H>"~! is the (2n — 1) dimensional
Hausdorff measure [5]. The paper described by Cegrell [5] deals to this subject (we can see also
El Mir [10)).

Corollary 3.9. Let g : C" — C be an analytic function, n > 1, a,b € C, (a # b). We have the
technical assertions

(A) Assume that |g + a| and |g + b| are convex functions on C™. Then g is affine on C".
(B) Assume that |g*> + a| and |g% + b| are convex functions on C". Then g is constant on C".

(C) Assume that there ezist ay,...,an € C", where N € N\{0} such that the function (|g +
a1|> + ...+ |g+anl|?) is convex on C". Then |g + U522 is conver on C.

Note that if g1,g92 : C* — C are two holomorphic nonconstant functions, with |g1], |g2],
lg1 — 921, |g1 + g2| are convex functions on C™ (n > 1), we can state some properties concerning
g1 and go.

Corollary 3.10. Let (A1, As), (B1, Ba) € C? such that {(A1, A2), (B1, B2)} is a free family on
C2. Given gy, go : C* — C be 2 analytic functions, n > 1. Define

u(z,w) = [A1w — g1(2)[* + [Azw — g2 ()%,

v(z,w) = |Byw — g1(2)|* + | Bow — go(2)?
for (z,w) € C" x C. The following assertions are equivalent:

(A) w and v are convex functions on C" x C;

(B) g1 and g2 are affine functions on C™.
Proof. (A) implies (B). Since u is convex on C" x C, by [3] we have

{ 91(z) = A1(< z/a1 > +a2) —i—@go(z)
92(2) = A2(< z/a1 > +az) — A1p(2)

for all z € C", where a1 € C", ag € C, ¢ : C" — C, ¢ is analytic and |¢| is convex on C". Also
v is convex on C" x C, then

{ g91(z) = B1(< z/by > +b2) —i—Ew(z)

92<2) = BQ(< Z/bl > +b2) — Bl’lﬁ(z)

for all z € C", with by € C", by € C, ¢ : C" — C, ¢ is analytic and || is convex on C".
We would like to prove that ¢ and 1 are affine functions on C". We have

{ Aig(z) — Biﬁ(z) =<z/A>+p
—A19(2) + B1y(z) =< z/A1 > +m11

for all z € C", with A\, \; € C" and y, p; € C. Since the determinant det((As, —A;), (—Ba, B1)) #
0, then we calculate ¢(z) and (z) in function of (< z/A > +u) and (< z/A\ > +pu1), for all
fixed z € C". Therefore ¢ and v are affine functions on C". Consequently, g; and go are affine

functions on C".
(B) implies (A). This case is obvious. O
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4 Some applications and algebraic methods

Definition 4.1. Let v : D — R be a function of class C?, where D is a domain of C",

n > 1. Let a € D. Then u is called strictly psh at a if Z 8 (a)ajag > 0, for every

2j 8zk

a = (ag,...,a,) € C"\{0}, and u is called strictly psh on D 1f u is strictly psh at all points
z€D.

Lemma 4.2. Let D be a domain of C", n,N > 1. Consider (2N) holomorphic functions
fises NS 91, s gy 2 D — C. Define w= (|f1]*> + ...+ |fn]?).

(A) Assume that u is strictly psh on D. Then n < N.

(B) Assume that N < n. Then w is not strictly psh at any point of D.

(C) (|f1—g11?+...+|fn—gn|?) is strictly psh on D if and only if (| f1|>+|g1>+...+|fn|?+|gn|?)
is strictly psh on D. (We have the same equivalence for the case strictly sh). Indeed, if
(|f1 —g1l* + ... + |~ — gN|?) is strictly psh on D, then 2N > n.

Proof. Note that u is a function of class C*° on D. The hermitian Levi form of w is

n 2,
L(u)(z)(a)zzaaj 2o = Izafl a;l* + +|23N Jay |
1

for all z = (z1,...,2,) € D, for each a = (a, ..., a,) € C™.
(A). Fix z € D. We have the condition L(u)(z)(er) = 0 and o € C" implies that o = 0.
Hence,

i (2) .+ gl (z) =0

P (2) + o+ an G () =0

implies that oy = ... = o, = 0. Then if ozl(gi,c1 (2), .y %J;Jf (2)) + ...+ ozn(af1 (2)5 ey %];JZ (2)) =
(0,...,0) € C and (ay,...,a,) € C*, then a; = ... = a,, = 0. Thus the subset of n vectors

{(22 (2), .y %];JIV (2)), .y (gﬁi (2), s %QZ (2))} is a free family on CVV. Since C" is a complex vector
space of dimension N, then n < N.

(B). Fix z = (21, ..., zn) € D and assume that the hermitian Levi form of u satisfy L(u)(2)(«) >
0, for all & € C™\{0}. Therefore the condition L(u)(z)(ar) = 0 implies that o = 0. But

_ ‘Zafl o)+ +|ZafN ) |?, for a = (ay, ..., an) € C". Now L(u)(2)(a) =

[N
0z

7=1

0 implies that Zg(z)aj =0,. ——(2)a; = 0. Thus
— J

o) 0
aq 32( )+t an fl( ) =0
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and so al(g—g(z), . %J;J;’ (z))+...+an(%(z), o %];’Z (2)) =0 € CV implies that a; = ... = a, =
0. Then the subset of n vectors {(g—g(z), e %J;flv (2)), . (%(2), vy %(z))} is a free family of

the vector space CV, CV is a complex vector space of dimension N and N < n. This is a
contradiction. Consequently, for all z € D, there exists o = (aq, ..., @) € C"\{0} such that
L(u)(z)(«) = 0. Then w is not strictly psh at all points of D.

(C). We have (|f1 —g1l> + ... + | fx — gn|?) is strictly psh on D if and only if v = (|f1|> +
lg1|2 + ... + |fn]? + |gn|?) is strictly psh on D, because (|fi — gi|> + ... + |fv — g5 |?) = (h +0)
on D, where h: D — R is a prh function. By (A), we have 2N > n. O

Proposition 4.3. Let g1,...,gn : D — C be N analytic functions, n,N > 1 and D is a domain
of C™. The following conditions are equivalent

(A) u= (e’ + .+ elon®) is strictly psh on D and n > N;

(B) Forall z € D, the subset {(%(z)’ e %‘i’lv (2)), .-, (g%(z), e %ZL’ (2))} is a generating fam-
ily on CN.

Let m > 2. Now recall that for all harmonic functions h : G — R, we have h is not convex
on all open balls subset of G, where G is an open of R™, if A is not affine on G.

Theorem 4.4. (A) Let g : C — C be an analytic function. Then there exists an open disc
D(z0,7), (20 € C,7 > 0) such that |g|* is convexr on D(zg,7).

(B) For any h : C — R be a harmonic function, there exists an open disc D(a,R), a € C
and R > 0 such that u is psh on the convex not bounded domain G = {(z,w) € C?/(w — %) €
D(a,R)}, but uy is not psh on all not empty open ball subset of G if h is not affine on C, where
u(z,w) = "2 and uy(z,w) = h(w — %), for (z,w) € C2.

This theorem have many applications in the case of the characterization of holomorphic
functions by plurisubharmonic functions (which is a fundamental subject in pluripotential the-

ory).

Proof. (A). Assume that |g|? is not convex on any not empty open disc subset of C. Therefore
there exists (; € C, such that [¢"(¢1)g(¢1)| > |¢'(¢1)|?. Now since |¢g”g] > |¢'|> on C, then
g"(2)g(z) = v(d'(2))?, for each z € C, where v € C, |y| > 1. By [2, Theorem 21], we have
v € {11/ s € N\{0}}. Therefore v = 1. The condition |¢”(¢1)g(¢1)| > |¢/(¢1)[* implies that
|7] > 1, a contradiction. Consequently, there exists an open disc D(zp,r) where zp € C and r >
0, such that |g|? is convex on D(zg, 7).

(B). Let k : C — C, k is analytic and Re(k) = h. Then e* is analytic on C and e = |e¥|.
Thus there exists an open disc D(zg,7) (20 € C,7 > 0), such that |e¥| is convex on D(z,).
It follows that w is psh on G. Assume that u; is psh on an open ball B((z1,w1),R1) C G,
(21,w1) € C%2, Ry > 0. Define a = wy — z1. Then a € D(zg,7). Now let (22, ws) € C? such that
wy — Zz = a. Thus uy is psh on B((22,ws2), R1). Consequently, u; is psh on G; = {(z,w) €
C?/|jw—%Z—al < R} = {(z,w) € C? ) (w—%) € D(a,Ry)}. It follows that h is convex on
D(a, R1). But h is not an affine function on C, we get a contradiction. O]

Remark 4.5. Let D = D(0,1) and g(2) = 2% + 4, for 2 € D(0,1). g is holomorphic on D. But
lg|? is not convex on each not empty open disc subset of D. It follows that in all non- empty
bounded convex domains D7 C C, there exists an holomorphic function g1 : D1 — C, |g1]? is
not convex in all non-empty open discs of D;. In fact let R > 0 such that D; C D(0, R) and we
can consider in this case g1(z) = g(%) for z € D(0, R).
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Theorem 4.6. Let Ay, By,...,An,By € C, n,s,N € N\{0}. Put v = (v1 + ... + vn), ¥ =

(1 + ... + ¥N), where fi,91,...., fn,gn : C* = C are 2N analytic functions and uj(z,w) =
o° 0°g;

[Ajw = ()P + [Bjw — g;(2)%, vj(z,0) = [Ajw — GH ()P + |Bjw — GEE)P, vy(zw) =

\Ajw—a f’( )|>+|B; w—asgj( )2, (z,w) € C"xC, j € {1, ..., N}. The following three conditions

are equwalent.

(A) uq,...,un are conver functions on C" x C and v is strictly psh on C™ x C;

(B) Forn < N and for all j € {1,..., N}, we have the holomorphic representation
{ fi(z) = Aj(< z/a; > +b;) + Bjp;(2)
9j(2) = Bj(< z/aj > +bj) — Ajp;(2)

for all z € C", where a; € C", bj € C, ¢; : C* — C is a holomorphic function, |p;| is
convex on C™, such that the set of n vectors

wz 8S+1s0N . (as+1(p1 . 8S+1¢N(z (as+1¢1(z> 8S+1¢N(z))}
02T 0T 0202 T 040z T 0210z 02702

{(

is a free family of the complex vector space CV, for all z € C™;
(C) w1, ...,un are convex functions on C™ x C and v is strictly psh on C" x C.

Note that we have another generalization of the above theorem for each holomorphic partial
differential equation having constant coefficients on C", n > 1.

Question 4.7. Let Ay, Ao, A3, Ay, B1, B2, B3, By € C\{0} and f1, g1, f2, 92, f3, 93, f1,94 : C" —
C be 8 holomorphic functions, n > 1. Define u;(z, w) = |Ajw—f;(2)>+|Bjw—g;(2) %, vj(z,w) =
|Ajw— f;(2)>+|Bjw—g;(2)|* for (2,w) € C"xC and j € {1,2,3,4}. Let u = (uy +uz+us+u4),
v=(v1 +va+v3+uvg) and p = u + v.

(A) Find exactly all the holomorphic functions fi, g1, f2, 92, f3, 93, f1,94 : C" — C such that

u1, ug, u3 and uy are convex functions on C™ x C,
u is not strictly psh on all open balls of C™* x C,
 is strictly psh on C™ x C.

What can we say of n?
(B) Find all the holomorphic functions f1, g1, f2, g2, f3, g3, f4, g4 : C* — C such that

uy is convex on C" x C and not strictly psh on B(aq, R1
ug is convex on C" x C and not strictly psh on B(ag, R

ug is convex on C" x C and not strictly psh on B(as, R

uy is convex on C" x C and not strictly psh on B(ay, Ry
uwis (n 4+ 1) — strictly sh on C" x C but not strictly psh on all open balls
of C" x C, and

 is strictly psh on C™ x C.

)
2)
3)
)

ai,az,as,as € C", by, by, b3, by € C, Ry, R, R3, Ry, 71,72,73,74 € R3\{0}.

Lemma 4.8. Let Ay,..., Ay €C, f1,..., fn : C" = C be N analytic functions, n, N > 1. Define
u;(z,w) = |Ajw — fj(2)|?, vi(z,w) = |Ajw — f;(2)|*, u = (u1 + ... +un), v = (v1 + ... +vN) and
v =(u+v), for (z,w) € C" x C and j € {1,..., N}. The following conditions are equivalent:
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(A) ¢ is not strictly psh on all not empty open balls of C" x C;
(B) v is not strictly psh on any nonempty Euclidean open ball of C™ x C.

Proof. We have ¢ and v are functions of class C'° on C" x C. The Levi Hermitian form of

pis L(p)(z Z|A]/B Zaf] |2 + Z ‘Ajﬂ\Q + |Zaf] ozk| , for (z,w) =
N

(215 ey 2nyw), (, B) = (a1,...,ap,B) € C" x C. Similarly, L(v)(z,w)(a,f) Z \A]ﬂ\Q +
7j=1

|Zaf] . Note that L(¢)(z,w)(a, f) and L(v)(z,w)(a, B) are functions independent of

w Observe that we have the inequalities

0 < L(v) (2, w)(e, B) < L() (2, w)(a, B) < 3L(v)(z,w)(ex, B)

for all (z,w) € C" x C, for each (o, 3) € C" x C.

(A) implies (B). Let 2 € C" and R > 0. There exist 2° € B(z, R), (a, 8) € C" x C, such that
L(p)(z,w)(a, B) =0, for all w € C. Then L(v)(z,w)(c, 8) = 0. Thus, for each (z,w) € C" x C,
for every R > 0, there exist (2°,w) € C* x C, (a, 8) € C" x C, such that L(v)(z,w)(a, 3) = 0.
Hence, v is not strictly psh in all Euclidean open balls of C™ x C.

(B) implies (A). This is obvious by the above proof. O

As an application, we have the following.

Theorem 4.9. Let A1, By, Ao, By, A3, B3, A4, By € (C\{O} Let f1,91, f2,92, f3, 93, f1,94 : C*" —
C be § analytic functions. Define

{uj( w) = |Ajw - fJ(2)|2+|Bw gJ(Z)I,
vi(z,w) = [Ajw — f;(2)* + [ Bjw — (=)

for (z,w) € C*" x C and j € {1,2,3,4}. u = (u1 + uz + uz + uyg), v = (v1 + vy + v3 + v4),
¢ = (u+v). The following conditions are equivalent:

(A) wup,ug,us and uyg are convex functions on C" x C, u is not strictly psh in all open balls of
C™ x C and  is strictly psh on C" x C;

(B) 1 <n <8, u is not strictly psh at all points of C" x C and for all j € {1,2,3,4}, we have
the holomorphic representation

{fj(z): (< 2/ > +uj) + Bjp;(2)
9;(2) = Bj(< z/Aj > +p5) — Ajpj(2)

for all z € C", where \j € C", pu;j € C, p; : C* — C is a holomorphic function, |p;| is
convex on C", X\j = (Aj1, ..., A\jn), with the following statements.

(i) Forn=8. We have {(A1, A2, A3, Aa, (52(2), .o S22 (2)), (B2 (2), ... 52(2)),

Y 0zg
SE3(2), ., 522 (2)), (522 (2), ..., 522 s a basis of the complex vector space or a
= Gee G G2 (= b th lex vect C8, for all
z € C8.
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Forn ="7. We have {(A\11, A21, A31, M1, gfll (2), g—ff(z), g%f(z), g—ff(z)), .

(A17, A2z, As7, Aar, gf; (2), g—‘g(z) 993 (2, 924(2))} is a free family on C3, for all z € C7
and {()‘Ha >‘217 >‘317 >‘41’ ?}7511(2)7 (?97(512(2)’ ?}753(2)3 M(Z))
(N7, A7, Aar, Aar, G2 (2), S22 (2), 922 (2), 924

on C8, for all z € C".

ey

zZ1 ’°
2)),(1,1,1,1,0,0,0,0)} is not a free family

For n = 6. We have {(A11, A21, A31, )\41, o L(2), %(z), g—if’(z), g—ﬁ(z)), ey
(/\16,)\26,)\36,)\46, oo (z)a, %—‘Z(zé gf:( )a,%fg (zé)} is a free family on C8, for all z € CO
and {(A11, Aa1, Aa1, M, 5ot (2), g2 (2), 522(2), 552 (2)), s

1

21
(N16, A6, Az, Mss 52 (2), 522(2), 522(2), $2(2)), (1,1,1,1,0,0,0,0)} is not a free family
on C8, for all z € CS.

~—

) Ozg ) dze
_ Y Y Y Y Op1 02 dp3 Opa

Forn=5. We have K(z) = {(M1, A21, Az1, Aar, 551 (2), 5E2(2), 52 (2), gEr(2))s -

(15, )\725,)\735)\745,%( ), %(z) ( (2))} is a free family on C8, for all z € CP

and {()‘11’)‘217)\317)\417 321( ) ) Ges Z)v%(z))v“-a

(155 A25, Az, Mg, B2 (2), S22 ( ( > (2

on C8, for all z € C.

Q|
és\g

Forn =4. We have K(z)

(>\14,>\24,)\34,)\44, (=), %
and K (z )U{(l,l,l,l,O ,0

{01, X2, A, Aars 922 (2), G22(2), 922 (2), GE4(2)), -
)’%ﬁ( ), %fj( )} is a free family on C8, for all z € C*

(2
,0)} is not a free family on C8, for all z € C*.
n € {2,3}. We have the same conclusion described as above.

n = 1. p1,p2, 93,04 are constant functions on C and (A1 # 0, or Ao # 0, or A3 # 0, or
A4 #0).

Proof. (A) implies (B). Define

4 4

w) =Y Jw— < z/X > =P+ |ei(2))%
j=1 j=1
4 4

w) =Y Jw—<z/\ > =P+ (2
j=1 j=1

4 4
Ps(zw) = 20+ | <2/ > HpiP+ > lei(2)?

j=1 j=1

for (z,w) € C"xC. Here ¢; : C" — C, ; is analytic on C" and |¢;| is convex on C", (1 < j < 4)
and we have the holomorphic representation

{ fi(2) = Aj(< 2/ > +p5) + Bjpj(2)
9;i(2) = Bj(< z/Aj > +p5) — Ajpj(2)

for all z € C*, with A\; € C", p; € C, A\j = (A\j1,...,Ajn), 1 < j < 4, by Abidi [3, Theorem 1].
Note that uj, vj, u, v, @, 11,12, 13 are functions of class C* on C" x C (for 1 < j < 4). We have
@ is strictly psh on C” x C if and only if v is strictly psh on C" x C. But v is strictly psh on
C™ x C if and only if 1 is strictly psh on C” x C. By lemma 4.2, 15 is strictly psh on C" x C if
and only if 13 is strictly psh on C" x C. Moreover, also by lemma 4.2, we have n < 8. Observe
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that u is not strictly psh in all open balls of C" x C if and only if /1 is not strictly psh in all
non- empty open balls of C" x C.

State 1. n = 8.
Note that )3 is strictly psh on C® x C if and only if 14 is strictly psh on C®, where ¥4(z, w) =
4

Z| < z/Nj >+ + Z\goj(z)IQ, for z € C8. 1)y is a function of class C* on C®. The Levi

Hermitian form of 4 is

8
L) (2 Z]<a/)\ > 2+ Zai ﬁﬂzaw Joy| 2+

8
Zai ]IQHZ&P“ 05 > 0

for any z = (zla R2, %35 %4y #5526 2T, 28) S CB? a = (ala a2, 3, 04, a5, A6, A7, aS) € CS\{O} There-
fore the condition L(14)(z)(a) = 0 if and only if v = 0. But L(t4)(2)(a) = 0 if and only if

(< 0(/)\1 >=0,

<a/dy >=0,

< Oé/)\g >=0,

< O[/>\4 >=0,

< a/(%E(2), ., 52 (2)) >=0,

< a/(%2(2), ..., 52(2)) >=0,

<a/(%2(2), ... 52(2)) >=0, and
| < a/(F2(2), ..., 524(2)) >=0,

which imply that a = 0. Thus, (A1, Az, Ay Ay (228(2), .y 221(2)), (Z22(2), ..., 222(2)),

S - 0z1 Y Ozg '\ Oz Y Ozg
(g—‘gf(z), ey ?)%;(z)), (%—ff(z), ey ‘Z,—‘ﬁ;‘(z))) is a basis of the complex vector space C®, for all z € C8.
4
Note that C® is considered a complex vector space of dimension 8. Now 1 (z,w) = Z|w— <

=1

2N > =il + Z\goj (2)|?, for (z,w) € C* x C = C°. By Lemma 4.2, 9); is not strictly psh at

7j=1
all points of C® x C.
State 2. n =7.

The Levi Hermitian form of 3 is

L(ys)(z,w)(a, B) =4I + | < /A > P+ <o/l > P+ | <a/ds> [P+ ] <a/\> P+

0 0 0
121 ]|2+rZ 72 J|2+|Z 73 J\2+|Z 7Lyl
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2= (21,...,27) €C", a = (aq,...,a7) € C", B € C. Fix now z = (21,...,27) € C" and w € C. We

have L(13)(z,w)(a, B) = 0, implies that 8 = 0 and

<af/d >=0,<a/e >=0,< a/I3>=0,< a/A\ >=0,
< a/(F2(2), ., P2(2)) >=0,< @/ (922(2), ..., 922(2)) >
<a/(%8(2), ... 22(2)) >= 0,< o/ (32 (2), ..., 225(2)) >

az7) € C7, B € C. Moreover, L(13)(z, w)(« 0 implies that a = 0 € C”

B) =

for all a = (o, ...,
and 8 = 0. Indeed,

,

a1 M1 + a2hiz + .. +arhiz =0
@121 + @2Ao2 + ... + azdor = 0
@131 + @2A32 + ... + azAzr = 0
a1 A1 + aoda2 + .o+ 047)\77 =0

Jdp1 ( ) 8<p1

M9z 322( - torga(z) =0
a1 522 (2) + ap 322 (z) ot ard2(z) =0
alg;jf( )+a2zaf;(z) ...+a7§%(z) =0
\ Oqaff( ) af;‘(z) ...—|—a76—fj(z) =0
and a = (a1, @9, ...,a7) € CT implies that o = 0. This condition is in fact equivalent with
— v v—— Op1, , Opa, . Opz, . Op4
A1, A21, A31, A
a1 (A1, A2, As1, Ad, 9o (2), o1 (2), 21 (2), o1 (2)) +
~— v+ 9p1,, Opa, . Op3, | Ops 8
A7, Aa7, A3z, A =0eC
+a7 (A7, Aoz, A3z, Aaz, - (2), 37 (2), 02 (2), 92 (2)) €
implies that a; = ... = a7y = 0. Thus,
~— v+ 9p1,, Opa, . Op3, | Ops
A1, A91, A3, A ...
{(A11, A2, Az, Aat, o (2), 9, P a2, B g (2));5 e
v v+ 9p1,, Opa, . Op3, . Ops
A7, Ao7, As7, A
(A17, A2z, Ag7, Aar, 9, (2), 27 (2), 9 (2), 9, (2)}

is a free family of 7 vectors of C®, C® is a complex vector space of dimension 8. It follows that
€ C8\{0} such that

2O,

there exists a = (aq, ..., ag)

Opa , \ Op3, . Opy
821 (2)7 82:1 (Z>? azl (Z)), )
0p1 0p2 O3 O0py

S (2), S, ), G )sa)

is a basis of the complex vector space C®. The Levi Hermitian form of v is

Zw <a/\; >\2+Z|Za@’“ o ?

k=1 j=1

for o = (g, ...,a7) € C" and 8 € C. We will prove that 1); is not strictly psh at all points of C” x
C. In fact we prove that there exists («, ) € (C"\{0})x (C\{0}) such that L(21)(z,w)(c, 8) = 0.
Moreover, L(¢1)(z,w)(a, 8) = 0 if and only if

<a/)\1>—6:O<a/)\2>—B:O<a/)\3>—B:0,
3(,01 8802
Zaz] Z(‘)zj

7

993 (1 )a; = 5904
™

\

(M1, A21, Ast, Aa,

(A17, A27s As7, Aar,

L(¢1)(2

< Oc/)\4 > —f =
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where a = (v, ...,a7) € CT and 8 € C. Then

a1 + a2 + .. Fazhir — =0
A9t + agdog + ...+ azhor — B =0
()41)\31 + 042)\32 =+ ... —1—0(7)\737— ﬁ =0
a1 A1+ a2dg2 + ... Fagdgr — B =0

Oél?;ff( ) + %ﬁ;( )+ +a7%(2) =0
a1 gzl 2(2) + 322 2(2) + +a7gff$(2) =0
o 8ff (2) + 8‘2’; (z2)+ ...+ a7g—f$(z) =0
[ ™ 821 1(2) + a2 822 L2)+ ...+ onﬁ(z) =0.
Thus 5 9 9 5
~— v v v 9¥1 2 ¥3 P4
A1, A21, A31, A A17, A
a1 (A1, A21, A3, Aat, B (2), B (2), 821( )s Bor (2)) + ... + az(A17, Aar,
— — Oy Opa, . Op3, | Opy 8
A37, A —£(1,1,1,1,0,0,0,0) = 0 € C°.
37y 47, 627 (Z)) 827 2’827 Z)’327 (Z)) /8() y 4y 4, U, Uy Uy ) S
Now if
dip1 2 s Oy
K A1, A21, A31, Aap
(2) = (M1, A21, Ag1, A, 92 (2), 921 (2), 2 (2), 2 (2)); s
dp1 3802 Opz , | Opy
A7, A7, A37, A7 1,1,1,1
( 175 A275 N37 4778 ()7827 (Z)7 827 (Z), 827 (Z)),(, ) 4y 70707070))
is a basis of the complex vector space C8, then a; = ... = a7 = § = 0. Then there exists

R > 0 such that for all £ € B(z,R) C C7, K(£) is a basis of C® by using the determinant
det(K (z)) # 0. Since K () is a basis of C8, the function 1y is strictly psh on B(z, R) x C. Now
since 1)1 is not strictly psh in all open balls of C7 x C, we have a contradiction. Consequently,
K (2) is not a basis of C®. Then there exists (a1, ..., a7, 3) € C7 x C\{0} such that

o1, Opa, \ Ops, . Opa — —
A1, A21
( 11, N\21, >‘31) >‘41) a 2 ( )7 821 (Z)a 821 (Z)a azl (Z)) + + 047()\17, )\277

dip1 2 s Oy _ _ 8
)\37,)\47, a ( ), 627 (Z), 827 (Z), 82’7 (Z)) ,8(1, 1, 1, 1,0,0,0,0) =0¢eC°.

If now 3 = 0, then o = 0 € C7, because

2 O3 Oy
5o (2 g (2 g2

0
{(M\11, Aa1, As1, Aats S01( ),

M7, Ao
o1 (A17, Aoz,

Opr, \ Opa « Op3 Dpy
A37, Ada7

375 AAT, 92 (2), 02 (2), 02 (2), 02 (2))}
is a free family of 7 vectors of the complex vector space C®, a contradiction. Thus 8 # 0.
Since 8 # 0, o # 0. Consequently, there exists (a, 3) € (C7\0}) x (C\{0}) c C8\{0} such that
L(¢1)(z,w)(a, B) = 0, for all (z,w) € C” x C. 1)1 is not strictly psh at all points of C” x C.
Note that the proof of the other cases are obvious by the above proof. O

Using the notation of theorem 4.9, we can study several problems, for example the following
questions.
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Question 4.10. Find all the holomorphic functions f1, g1, f2, g2, f3, 93, f4, g4 such that u; +us+
ug is not strictly psh in all open balls of C" x C. v1 +v9 and v3+wv4 are not strictly psh in all open
balls of C" x C, but ¢ is strictly psh on C" xC (uy, ua, u3 and uy are convex functions on C" xC).

Question 4.11. Characterize exactly all the holomorphic functions f;,g;, 1 < j < 4 such that
u, U1+ v +v3, v1 +v2 + vy, v1 +v3+v4 and vo + v3 + v4 are functions not strictly psh in all open
balls of C™ x C, but v is strictly psh on C" x C, uy, us, us and uy are convex functions on C" x C.
Now find all the holomorphic functions f;,g; (1 < j < 4), such that (u + v1 + va + v3) is not
strictly psh on all open balls of C™ x C, but ¢ is strictly psh on C" x C and ¢ is not strictly
convex on all not empty open balls of C"* x C, u1, us, us, uq are convex functions on C" x C.

We can generalize the above two questions for 2/V functions f;,g;,1 < j < N and we obtain
several classifications of many classes of holomorphic functions.

5 Concluding remarks

Theorem 5.1. Let g : C" — C be an analytic function. Given a,c € C*, b,d € C and define
u(z) = |g9(2)+ < z/a > +b]?, v(2) = |g(z)+ < z/c > +d|*, = € C". Assume that u and v are
convex functions on C" and there exists 2° € C" such that (< 2°/a > +b) # (< 2°/c > +d).
Then g is an analytic polynomial on C™ with deg(g) < 2.

Proof. Case 1. n = 1.

u(z) = |g(2) +az+b% v(z) = |g(2) + ¢z +d|?, for z € C and we have (a,b) # (c,d). Observe
that f; and fo are holomorphic functions on C, fi(z) = g(2) + az + b, fa(2) = g(z) + ¢z + d,
z € C. Since | f1]? is convex on C, by [2, Théoreme 19 |, the function |f{|? is convex on C. Thus
l¢' + @l is convex on C. Also |¢’ + ¢| is convex on C. Assume that a = ¢. Then b # d. Define
g1(2) = g(2) + @z, for z € C. In this case, we have |g1 + b|? and |g1 + ¢|? are convex functions on
C. By theorems 3.1 and 3.7, we have g is affine on C. Consequently, g is affine on C. Asume
that a # c. Since |¢ 4+ @| and |¢’ + €| are convex functions on C, ¢’ is affine on C. Therefore g
is a holomorphic polynomial on C with deg(g) < 2.

Case 2. n > 2. This is obvious by the problem of fibration. O

Corollary 5.2. Here we use the notations of theorem 5.1. Assume that b # d and a = c. Then
g 1s affine on C".

We can use theorem 5.1 for the study of the following problem. Let n > 1. Find all the
holomorphic functions g : C* — C such that |g + ¢1|? and |g + ¢2|? are convex functions on
C", where @1, @2 : C" — C are two holomorphic functions such that |¢1]? and |p2|? are convex
functions on C".

Remark 5.3. Let a1,a3 € C™, m > 1. Let f1, fo : C"™ — C be two analytic functions, n > 1.
Define
{ u(z,w) = | <wlar > —f1(2)]? +| <w/ag > —f2(2) %,
v(z,w) = | <w/ay > —fi(2)2 + | <w/az > —f2(2)|?

for (z,w) € C™" x C™. (A) We can study the following two problems
u is convex on C" x C™,
v is strictly psh on C"* x C™

and
u is convex on C"™ x C™,

v is strictly psh but not strictly convex on C" x C™.
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(B) Assume that {a1, a2} is a free family on C™ and let f3: C™ — C be a analytic function.

Define
{ p(z,w) = u(z,w) + | f3(2)[%,
(2, w) = v(z,w) + | f3(2) 7

for (z,w) € C™ x C™. We prove that ¢ is convex on C™ x C™ if and only if f1, fo are affine
functions on C", | f3| is convex on C™ and we can study the question where

 is convex but not strictly psh on C™ x C™,
1) is strictly psh on C” x C™.
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