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Abstract

We study some properties concerning the convexity, plurisubharmonicity and other prop-
erties of certain special classes constructed from holomorphic functions. We prove that we
have a key role between real and complex convexity in the theory of the representation of
functions. On the other hand, let g : Cn → C be a holomorphic nonconstant function. We
prove that |g|2 is convex on Cn if and only if g has a classical holomorphic representation.
Several applications of this criterion are obtained in the theory consisting of convex and
strictly plurisubharmonic functions, convex and strictly plurisubharmonic but not strictly
convex functions and related topics.

1 Introduction

From Abidi [2], we can prove the following.

Lemma 1.1. Let u : Cn → [−∞,+∞[ be a function, n ≥ 1. Put v(z, w) = u(w − z), for
(z, w) ∈ Cn × Cn. The following conditions are equivalent

(a) u(Cn) ⊂ R and u is convex on Cn;

(b) v is plurisubharmonic (psh) on Cn × Cn.

Observe that in the case where u : Cn → R, and k ∈ N, we have the equivalence between
the following two technical conditions.

(c) u is convex and of class Ck on Cn, and

(d) v is plurisubharmonic and of class Ck on Cn × Cn.

Lemma 1.1 has many applications for the development of the theory of real and complex con-
vexity and others complex analysis problems.

Several questions concerning the classes; convex and strictly plurisubharmonic functions,
convex strictly plurisubharmonic but not strictly convex on all Euclidean not empty open balls,
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convex and not strictly psh on all open balls, convex strictly psh but not strictly convex, convex
not strictly psh but not strictly convex at all points and many more related topics can be studied
in [2].

Let g1, g2 : Cn → C be two holomorphic functions, n ≥ 1 and (A1, A2) ∈ C2\{0}. Define
u(z, w) = |A1w− g1(z)|2+ |A2w− g2(z)|2, for (z, w) ∈ Cn×C. By [3], we prove that u is convex
on Cn × C if and only if we have the holomorphic representation{

g1(z) = A1(< z/a > +b) +A2(< z/c > +d)s

g2(z) = A2(< z/a > +b)−A1(< z/c > +d)s

for all z ∈ Cn with a, c ∈ Cn, b, d ∈ C, s ∈ N, or{
g1(z) = A1(< z/a1 > +b1) +A2e

(<z/c1>+d1)

g2(z) = A2(< z/a1 > +b1)−A1e
(<z/c1>+d1)

for all z ∈ Cn, where a1, c1 ∈ Cn, b1, d1 ∈ C.
The following classes; convex and strictly psh functions, convex strictly psh and not strictly

convex functions, convex strictly psh and not strictly convex in all not empty Euclidean open
balls of Cn × C and many more, play a classical role in several problems of complex analysis
and the theory of functions.

We consider the application of the holomorphic differential equation
k′′(k + c) = γ(k′)2 (where k : C → C is a holomorphic nonconstant function and
(γ, c) ∈ C2) over a classical class of functions defined on Cn, n ≥ 1. The good condition
γ ∈ { s−1

s , 1/s ∈ N\{0}} is of great importance in all of this paper.

Using the above cited holomorphic differential equation, we prove that we have a classi-
cal relation between holomorphic partial differential equations and strictly plurisubharmonic
functions on Cn. We observe that we have a new proof of my result proved in [2] which is the
following.

Let α, β ∈ C, α ̸= β and g : Cn → C be a holomorphic function. Using holomorphic
differential equations, we prove that |g + α| and |g + β| are convex functions on Cn if and only
if g is an affine function on Cn.

Moreover, we prove that in all bounded convex domains of Cn, n ≥ 1, this criterion is not
true for several examples. At the end we prove several observations which are fundamental for
proving technical questions between complex analysis and the theory of convex functions.

As usual, N := {0, 1, 2, ...}, R and C are the sets of all natural, real and complex numbers,
respectively. Let U be a domain of Rd, d ≥ 2. We denote sh(U) the subharmonic functions on
U and md the Lebesgue measure on Rd. Let f : U → C be a function. |f | is the modulus
of f, Re(f) and Im(f) are the real and imaginary parts of f respectively. For N ≥ 1 and

h = (h1, . . . , hN ), where h1, . . . , hN : U → C, ∥ h ∥= (|h1|2 + . . .+ |hN |2)
1
2 .

Let g : D → C be a holomorphic function, D be a domain of C.We denote by g(0) = g, g(1) =
g′ which is the holomorphic derivative of g on D, g(2) = g′′, g(3) = g′′′. In general g(m) = ∂mg

∂zm is
the holomorphic derivative of g of order m, for all m ∈ N\{0}.
Let z ∈ Cn, z = (z1, ..., zn), For n ≥ 2 and j ∈ {1, ..., n}, we write (z = (zj , Zj) = (z1, . . . , zj−1,
zj , zj+1, . . . , zn)) where Zj = (z1, . . . , zj−1, zj+1, . . . , zn) ∈ Cn−1. For K : Cn → C, K(z, .) is the
function defined for zj ∈ C by K(., Zj)(zj) = K(zj , Zj) = K(z). Let ξ = (ξ1, ..., ξn) ∈ Cn. We
denote < z/ξ >= z1ξ1 + . . . + znξn and B(ξ, r) = {ζ ∈ Cn/ ∥ ζ − ξ ∥< r} for r > 0, where√
< ξ/ξ > =∥ ξ ∥ is the Euclidean norm of ξ. We also consider the following notations:

C0(U) = {φ : U → C/φ is continuous on U}, Ck(U) = {φ : U → C/φ is of class Ck on U},
and C∞

c (U) = {φ : U → C/φ ∈ C∞(U) and has a compact support on U}, where k ∈ N∪{∞}.
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Some Properties of Holomorphic Functions having Convex Absolute Values and Applications

Let φ : U → C be a function of class C2, ∆(φ) is the Laplacian of φ. Let D be a domain
of Cn, (n ≥ 1). psh(D) and prh(D) are respectively the class of plurisubharmonic and plurihar-
monic functions on D. For all a ∈ C, |a|, Re(a) and Im(a) are the modulus, real and imaginary
parts of a respectively. AlsoD(a, r) = {z ∈ C / |z−a| < r} and ∂D(a, r) = {z ∈ C / |z−a| = r},
for r > 0. For a holomorphic polynomial p on C, deg(p) is the degree of p.

For the study of properties and extension problems of holomorphic objects, we cite the
references [1, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23]. Moreover, several
properties of holomorphic functions and their graphs are obtained in [8, 9]. The class of n-
harmonic (or n-subharmonic) functions was introduced by Rudin in [21]. Good references for
the study of convex functions in convex domains are [13, 16, 23].

2 Some fundamental analysis properties

In the sequel, using Abidi [2], we can now prove the following.

Lemma 2.1. Let f, g : C → C be two holomorphic functions. Put

u1(z, w) = |wf(z) + g(z)|

(z, w) ∈ C2, f ̸= 0. Suppose that u1 is convex on C2. Then f is constant and g is an affine
function on C.

Proof. Let u = u21. Then u is a function of class C∞ and convex on C2. Hence |∂2u
∂z2

(z, w)| ≤
∂2u
∂z∂z (z, w), for all (z, w) ∈ C2. Note that

u(z, w) = |w|2|f(z)|2 + |g(z)|2 + g(z)wf(z) + g(z)wf(z). Then{
φ(z, w) = |f ′′(z)f(z)|w|2 + g′′(z)g(z) + g′′(z)wf(z) + g(z)wf ′′(z)| ≤
|w|2|f ′(z)|2 + |g′(z)|2 + g′(z)wf ′(z) + g′(z)wf ′(z) = ψ(z, w),

for all (z, w) ∈ C2. Observe that if w = x1 ∈ R\{0}, we have

lim
x1→+∞

φ(z, x1)

x21
≤ lim

x1→+∞

ψ(z, x1)

x21
.

It follows that |f ′′(z)f(z)| ≤ |f ′(z)|2, for all z ∈ C. This implies that f ′′(z)f(z) = γ(f ′(z))2, for
each z ∈ C, where γ ∈ C. Then |f |2 is convex on C.

Now if w0 = 0, then u(., w0) is convex on C. It follows that |g|2 is convex on C. By Abidi
[2], we have for all z ∈ C,

f(z) = (az + b)m, or f(z) = e(a1z+b1)

and

g(z) = (cz + d)s, or g(z) = e(c1z+d1)

where a, b, a1, b1, c, d, c1, d1 ∈ C, m, s ∈ N.
Case 1. f(z) = (az + b)m and g(z) = (cz + d)s, for all z ∈ C.

Note that u(z, w) = |w(az + b)m + (cz + d)s|2, (z, w) ∈ C2.

Assume that m = 0. It follows that f = 1. Now since u(z, w) = |w + g(z)|2 and u is convex
on C2, then g is an affine function on C.

Suppose that m = 1. If a = 0, then f = bm on C and we conclude that g is an affine function
on C.
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Suppose that a ̸= 0. u(z, w) = |w(az + b) + (cz + d)s|2. Assume that s = 1. The condition
c = d = 0, implies that u(z, w) = |w(az + b)|2 and u is convex on C2. By a translation, we
assume that b = 0. Thus u(z, w) = |a|2|wz|2, (z, w) ∈ C2. Take w = z + 1, for z ∈ C. These
implies that u(z, z + 1) = |a|2|z2 + z|2 = K(z). But K is not convex on C. Thus c ̸= 0 or
d ̸= 0. Suppose that c ̸= 0. Here, u(z, w) = |w(az + b) + (cz + d)|2. Let A ∈ C\{0}, such that
[A(az + b)2 + (cz + d)] has 2 zeros z0, z1 ∈ C, (z0 ̸= z1).

Put w1(z) = A(az + b), for z ∈ C. Then u(z, w1(z)) = |A(az + b)2 + (cz + d)|2 = K1(z),
z ∈ C. Thus K1 is convex on C. But K1 have two distinct zeros on C. This is a contradiction.

Suppose that m ≥ 2. Assume that a ̸= 0. The case where c = d = 0 and s ≥ 1 is impossible
because u(z, w) = |w(az+b)m|2 which implies that u is not convex on C2. The case where c ̸= 0
and s ≥ 1 is also impossible. In fact we conclude that if a ̸= 0, then u is not convex on C2. If
a = 0 then f is constant on C. Since f ̸= 0, it follows that g is an affine function on C.

The studies of the other cases are similar to case 1.

Finally, in the sequel, we observe that we can prove the above lemma by a technical holo-
morphic differential equation on C. Now in this section, we give an answer of the following
question.

Question 2.2. Let n ∈ N, n ≥ 3. Does there exist an infinite number of holomorphic poly-
nomials p, q on C such that deg(p) = deg(q) = n and if we define u1(z, w) = |p(w − z)|2,
v1(z, w) = |q(w− z)|2, u2(z, w) = |p′(w− z)|2, v2(z, w) = |q′(w− z)|2, u = u1 + v1, v = u2 + v2,
(z, w) ∈ C2, then 

u1 and v1 are functions not psh on C2,
u2 and v2 are functions not psh on C2,
u is psh on C2, and
v is not psh on C2?

Recall that we have by Abidi [2] the following result.

Theorem 2.3. Let u : B(a,R) → R be a continuous function, a ∈ Cn, R > 0, n ≥ 1. Define
G = {(z, w) ∈ Cn × Cn/ ∥ w − z − a ∥< R} and v(z, w) = u(w − z) for (z, w) ∈ G. (G is an
open convex not bounded on Cn × Cn). The following assertions are equivalent:

(I) u is convex on B(a,R);

(II) v is psh on G.

This theorem has technical applications in complex analysis and the theory of functions.
Now several questions can be formulated from the above question. For example, at the end of
this section we give an answer of the following.

Question 2.4. Let n, k ∈ N, n ≥ 2, k ≥ 1. Is it true that there exists an infinite number of
holomorphic polynomials p, q on C with deg(p) = deg(q) = (n+ k) and if we define φ = u+ v,
φ1 = u1 + v1, ..., φk = uk + vk, where u(z, w) = |p(w − z)|2, v(z, w) = |q(w − z)|2, u1(z, w) =
|p′(w − z)|2, v1(z, w) = |q′(w − z)|2, ..., uk(z, w) = |p(k)(w − z)|2, vk(z, w) = |q(k)(w − z)|2, for
(z, w) ∈ C2. We have

u, v, u1, v1, ..., uk, vk are functions not psh on C2,
φ is psh on C2,
φ1 is not psh on C2,
.
.
.
φk is not psh on C2?
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This is a technical investigation between the theory of holomorphic, convex and plurisub-
harmonic functions.

In this section, we prove the following result. Let p be a holomorphic polynomial on C,
deg(p) ≥ 2, |p| not convex on C. Then there exists an infinite number of holomorphic polynomials
q on C, deg(q) = 1 and u is psh (or strictly psh) on C2, where u(z, w) = |p(w−z)|2+ |q(w−z)|2,
for (z, w) ∈ C2. This result is not true for holomorphic functions in general.

On the other hand, let φ = (|p1|2 + . . .+ |pN |2), where p1, . . . , pN are analytic polynomials

on C and N ≥ 1. Note that if N = 1, the assertion φ is convex on C implies that 4 ∂2φ
∂z∂z = ∆(φ)

is convex on C. We prove that this result is not true in general if N ≥ 2.

Theorem 2.5. Let n ∈ N, n ≥ 3. Then there exists an infinite number of analytic polynomials
p, q on C, deg(p) = deg(q) = n such that |p′|2 and |q′|2 are functions not convex on C and
u = (|p|2 + |q|2) is convex on C, but v = (|p′|2 + |q′|2) is not convex on C.

Proof. Assume that p1 is an analytic polynomial on C, deg(p1) = n and |p′1| is not convex on
C. Define p(w) = p1(w) +Aw, q(w) = p1(w)−Aw for all w ∈ C, where A ∈ R+\{0}, A is to be
constructed satisfying the following hypothesis: (|p|2 + |q|2) is convex on C but (|p′|2 + |q′|2) is
not convex on C. We have p1(w) = anw

n + ... + a1w + a0, for w ∈ C, where a0, a1, ..., an ∈ C,
an ̸= 0. Hence,

p′1(w) = nanw
n−1 + ...+ a1, p

′′
1(w) = n(n− 1)anw

n−2 + ...+ 2a2,

and

(p′1(w))
2 = n2a2nw

2n−2 + b2n−3w
2n−3 + ...+ b0,

with b0, ..., b2n−3 ∈ C. Also p′′1(w)p1(w) = n(n − 1)a2nw
2n−2 + c2n−3w

2n−3 + ... + c0, where
c0, ..., c2n−3 ∈ C. Then

lim
|w|→+∞

|p′′1(w)p1(w)|
|p′1(w)|2

=
n− 1

n
< 1.

Therefore there exists B > 0 such that |w| > B implies that |p′′1(w)p1(w)| <
|p′1(w)|2.

Since now D(0, B) is compact on C and |p′′1p1| is a continuous function on D(0, B), there
exists M > 0 such that |p′′1(w)p1(w)| < M, for each w ∈ D(0, B).

Since, by Abidi [2], the cardinal of the set

{α ∈ C / |p′1 + α| is convex on C}

is less than 1, we can choose A > 0 such that A2 ≥M and |p′1 −A| and |p′1 +A| are not convex
functions on C. Then we have |p′′1(w)p1(w)| < |p′1(w)|2 +A2, for each w ∈ C. Thus

u(w) = (|p1(w) +Aw|2 + |p1(w)−Aw|2) = 2(|p1(w)|2 +A2|w|2)

for each w ∈ C and u is convex on C. Now define p(w) = p1(w) +Aw, q(w) = p1(w)−Aw, for
w ∈ C.We have p and q are holomorphic polynomials on C, deg(p) = deg(q) = n ≥ 3, |p′| and |q′|
are functions not convex on C, but u = (|p|2+ |q|2) is convex on C. Note that p′(w) = p′1(w)+A,
q′(w) = p′1(w)−A and |p′1(w)+A|2+ |p′1(w)−A|2 = 2(|p′1(w)|2+A2) = v(w), for w ∈ C. Define
v1(w) = |p′1(w)|2, for w ∈ C. Then v and v1 are functions of class C∞ on C. Thus v1 is convex
on C if and only if v is convex on C.

Since v1 is not convex on C. Consequently, v is not convex on C.

We have the following additional result.
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Theorem 2.6. Let n ∈ N, n ≥ 3. Then there exists an infinite number of holomorphic polyno-
mials p, q on C, deg(p) = deg(q) = n and

|p′|2 and |q′|2 are functions not convex onC;
(|p|2 + |q|2) is convex on C, and
(|p′|2 + |q′|2) is convex on C.

Proof. Let p1 be a holomorphic polynomial on C, deg(p1) = n, |p′1| is convex on C. We will
construct p and q on the form p(w) = p1(w) + Aw, q(w) = p1(w) − Aw, for all w ∈ C, where
A ∈ R+\{0}, A is to be constructed satisfying the following hypotheses u = (|p|2 + |q|2) and
v = (|p′|2 + |q′|2) are convex functions on C, but |p′|2 and |q′|2 are not convex functions on C.

We have lim
|w|→+∞

|p′′1(w)p1(w)|
|p′1(w)|2

=
n− 1

n
< 1. Then there exists B > 0 such that |w| > B

implies that |p′′1(w)p1(w)| < |p′1(w)|2.
Now since D(0, B) is compact on C and the function |p′′1p1| is continuous on D(0, B), there

exists η > 0 such that |p′′1(w)p1(w)| < η, for all w ∈ D(0, B). Recall that {β ∈ C / |p′1 +
β| is convex on C} has a cardinal less than or equal to 1. Choose then A > 0, such that
A2 ≥ η, |p′1 − A|2 and |p′1 + A|2 are functions not convex on C. Put p(w) = p1(w) + Aw and
q(w) = p1(w)−Aw, for w ∈ C. Note that p and q are holomorphic polynomials on C.

Now we can verify that |p′|2 and |q′|2 are functions not convex on C but u and v are convex
functions on C.

Corollary 2.7. Let p be a holomorphic polynomial on C, deg(p) = n ≥ 3. Then there exists an
infinite number of holomorphic polynomials p1, q1 on C, deg(p1) = deg(q1) = n such that u = (|p1|2 + |q1|2) is convex on C,

lim
|w|→+∞

|p(w)|
|p1(w)|

= lim
|w|→+∞

|p(w)|
|q1(w)|

= 1.

Example 2.8. Let p1(w) = w3+w2, for w ∈ C. There exists an infinite number of holomorphic
polynomials p, q on C, deg(p) = deg(q) = 3, u = (|p|2+|q|2) is convex on C, but v = (|p′|2+|q′|2)
is not convex on C, |p′|2 and |q′|2 are functions not convex on C,

lim
|w|→+∞

|p(w)|
|p1(w)|

= lim
|w|→+∞

|q(w)|
|p1(w)|

= 1.

Corollary 2.9. Let p be an analytic polynomial on C, deg(p) = n ≥ 2. Then there exists an
infinite number of α ∈ C such that for all δ ∈ C, the function uδ is convex on C, uδ(z) =
|p(z)|2 + |αz + δ|2, for z ∈ C.

Proof. Define p1(z) = p(z)+αz, q1(z) = p(z)−αz, (for z ∈ C), where α ∈ C is to be constructed
satisfying the condition u is convex on C, where
u(z) = (|p1(z)|2 + |q1(z)|2) = 2(|p(z)|2 + |αz|2) for z ∈ C.

We have lim
|z|→+∞

|p′′(z)p(z)|
|p′(z)|2

=
n− 1

n
< 1. Then there exists B > 0 such that for all z ∈ C,

|z| > B, we have |p′′(z)p(z)| < |p′(z)|2 and (p′(z) ̸= 0).

Now D(0, B) is compact of C and the function |p′′p| is continuous on D(0, B), then there
exists M > 0 satisfying |p′′(z)p(z)| < M, for all z ∈ D(0, B). Let α ∈ C, |α|2 ≥ M. Then
|p′′(z)p(z)| < |p′(z)|2 + |α|2. Thus v is convex on C, where v(z) = (|p(z)|2 + |αz|2), for z ∈ C.
Therefore for all δ ∈ C, the function uδ is convex on C.
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Remark 2.10. For all analytic polynomials p on C, where deg(p) = n ≥ 2 and |p| is not convex
on C, there exists an infinite number of α ∈ C such that uδ is convex on C, for all δ ∈ C, where
uδ(z) = (|p(z)|2 + |αz + δ|2), for z ∈ C.

Lemma 2.11. Let g : C → C be an analytic function. Assume that g(w) = aw + b or g(w) =
1
γ e

(γw+δ) + µ for w ∈ C, where a, b, δ, µ ∈ C, a ̸= 0, γ ∈ C\{0}, |γ| ̸= 1. Let q be an analytic

polynomial on C, deg(q) = 1. Define u(z, w) = |eeg(w−z) |2 + |q(w − z)|2, for (z, w) ∈ C2. Then u
is not psh on C2.

Proof. Define v(w) = |eeg(w) |2+ |q(w)|2, for w ∈ C.We prove that v is not convex on C. Assume
that v is convex on C. v is a function of class C∞ on C.

Case 1. Assume that g(w) = aw + b, for all w ∈ C.
Then | ∂2v

∂w2 (w)| ≤ ∂2v
∂w∂w (w), for w ∈ C. Thus, |g′′(w) + (g′(w))2(1 + eg(w))||eg(w)||eeg(w) |2 ≤

|g′(w)|2|eg(w)|2|eeg(w) |2+ |q′(w)|2, for every w ∈ C. g′′ = 0 on C. Let (wj)j≥1 ⊂ C, lim
j→+∞

g(wj) =

+∞, g(wj) > 0, for each j ∈ N. Hence we have |g′(wj)|2eg(wj)(ee
g(wj)

)2 ≤ |q′(wj)|2 and
g′(wj) = a, q′(wj) = α ∈ C, for all j ∈ N. Therefore the sequence of positive real numbers

(eg(wj)(ee
g(wj)

)2)j≥1 is bounded above. Since lim
j→+∞

g(wj) = +∞, we have a contradiction.

Consequently, v is not a convex function on C.
Case 2. Assume that g(w) = 1

γ e
(γw+δ) + µ, for each w ∈ C.

Using the triangle inequality and the above proof, we prove that v1 is not convex on C, where
v1(w) = |eeg(w) |2 + |q(w)|2, for w ∈ C.

For holomorphic functions, we have the following.

Theorem 2.12. There exists an analytic function g : C → C satisfying the hypothesis; u =
(|g|2+ |q|2) is not convex on C, for any holomorphic polynomial q on C with degree less than 1.

Proof. Consider g(z) = ez
4
, for z ∈ C. Let q be an analytic polynomial on C, with deg(q) ≤ 1.

Then u is a function of class C∞ on C. Assume that u is convex on C. Then |∂2u
∂z2

(z)| ≤ ∂2u
∂z∂z (z),

for each z ∈ C. Thus
|12z2 + 16z6||e(z4)| ≤ |16z6||ez4 |+ |q′(z)|2,

for each z ∈ C. Hence, for all z = x ∈ R, we have φ(x) = 12x2e(x
4) ≤ |q′(x)|2 = c, where c ∈ R+.

Thus, the function φ is bounded above on R, which is a contradiction. Consequently, u is not
convex on C.

Moreover, we have the technical investigation.

Theorem 2.13. There exists g : C → C, g is holomorphic and not affine on C such that for all
holomorphic polynomials q on C, we have u is not convex on C, where u(w) = (|eg(w)|2+|q(w)|2)
for w ∈ C.

Proof. Let g(w) = w2, for w ∈ C. Then g is analytic and not affine on C. Now let q be an
analytic polynomial on C. Define u(w) = |eg(w)|2+ |q(w)|2, w ∈ C. Then u is a function of class
C∞ on C. Assume that u is convex on C. We have then

| ∂
2u

∂w2
(w)| = |(4w2 + 2)|ew2 |2 + q′′(w)q(w)| ≤ |4w2||ew2 |2 + |q′(w)|2

for each w ∈ C. For w = x ∈ R, we have

(4x2 + 2)e2x
2 − |q′′(x)q(x)| ≤ 4x2e2x

2
+ |q′(x)|2.
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Therefore 2e2x
2 ≤ |q′′(x)q(x)|+ |q′(x)|2, for each x ∈ R. Thus 2 ≤ |q′′(x)q(x)

e2x2
+ |q′(x)|2

e2x2
, for every

x ∈ R. Since lim
x→+∞

|q′′(x)q(x)|
e2x2 = 0 and lim

x→+∞

|q′(x)|2

e2x2 = 0,

2 ≤ lim
x→+∞

(
|q′′(x)q(x)|

e2x2 +
|q′(x)|2

e2x2 ) = 0,

a contradiction. Consequently, u is not convex on C.

Theorem 2.14. Let n, k ∈ N, n ≥ 2, k ≥ 1. Then there exists an infinite number of analytic
polynomials p, q on C with deg(p) = deg(q) = (n + k) such that if we define φ = u + v, φ1 =
u1+v1, . . . φk = uk+vk, where u(z, w) = |p(w−z)|2, v(z, w) = |q(w−z)|2, u1(z, w) = |p′(w−z)|2,
v1(z, w) = |q′(w − z)|2, . . . , uk(z, w) = |p(k)(w − z)|2, vk(z, w) = |q(k)(w − z)|2, for (z, w) ∈ C2,
then we have the system of assertions

u and v are functions not psh on C2,
u1 and v1 are functions not psh on C2,
...
uk and vk are functions not psh on C2,
φ is psh on C2,
φ1 is not psh on C2,
...
φk is not psh on C2.

Proof. Let p1 be an analytic polynomial on C, where deg(p1) = n+ k and |p′1|, ..., |p
(k)
1 | are not

convex functions on C. Then, we have

lim
|w|→+∞

|p′′1(w)p1(w)|
|p′1(w)|2

=
n+ k − 1

n+ k
< 1.

Hence there exists B > 0 such that |w| > B implies that |p′′1(w)p1(w)| < |p′1(w)|2. Now B is
fixed, D(0, B) is a compact subset of C and the function |p′′1p1| is continuous on D(0, B), then
there exists M > 0 such that |p′′1(w)p1(w)| < M, for all w ∈ D(0, B). Recall now that the
cardinal of the set {α ∈ C / |p′1 + α| is convex on C} is less than or equal to 1 by Abidi [2].
Because p′1 is not an affine polynomial on C, we can choose A > 0, A2 ≥M such that |p′1 −A|
and |p′1 +A| are not convex functions on C.

Hence we have |p′′1(w)p1(w)| < |p′1(w)|2 + A2, for every w ∈ C. We now define p(w) =
p1(w)+Aw, q(w) = p1(w)−Aw, for w ∈ C. Then note that p and q are analytic polynomials on C
and deg(p) = deg(q) = (n+k). φ(0, w) = (|p1(w)+Aw|2+|p1(w)−Aw|2) = 2(|p1(w)|2+|Aw|2) =
ψ(w), for w ∈ C. Then the function ψ is convex on C. By Abidi [2], φ is then psh on C2.

Here |p′|2 = |p′1 +A|2 is not convex on C and so |p|2 is not convex on C. Then u and u1 are
not psh functions on C2. Also since |q′|2 = |p′1 −A|2 is not convex on C, then v and v1 are not

psh functions on C2. Now since |p(k)|2 = |p(k)1 |2 = |q(k)|2 on C and |p(k)1 |2 is not convex on C,
|p(k)|2 is not convex on C. It follows that |p′|2, ..., |p(k)|2 are functions not convex on C.

Therefore u1, ..., uk are functions not psh on C2. |q(k)|2 is not convex on C, |q′|2, ..., |q(k)|2
are not convex functions on C.

It follows that v1, ..., vk are not psh functions on C2. Note that φ1(0, w) = ψ1(w) = |p′(w)|2+
|q′(w)|2 = 2(|p′1(w)|2 + A2), for w ∈ C. Since |p′1|2 is not convex on C, ψ1 is not convex on C.
Therefore φ1 is not psh on C2. φ2(0, w) = ψ2(w) = |p′′(w)|2 + |q′′(w)|2 = 2|p′′1(w)|2, for w ∈ C.
ψ2 is then not convex on C. Therefore φ2 is not psh on C2. Observe that φk(0, w) = ψk(w) =

|p(k)(w)|2 + |q(k)(w)|2 = 2|p(k)1 (w)|2, for w ∈ C.
Thus ψk is not convex on C. Therefore φk is not psh on C2.
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Observe that if p, q are analytic polynomials on C and K is psh on C2, then K1 is psh on
C2. But F is psh on C2, does not implies that F1 is psh on C2. Where K(z, w) = |p(w − z)|2,
K1(z, w) = |p′(w−z)|2, F (z, w) = (|p(w−z)|2+|q(w−z)|2), F1(z, w) = (|p′(w−z)|2+|q′(w−z)|2),
(z, w) ∈ C2.

We have the following.

Theorem 2.15. Let n ∈ N, n ≥ 3. There exists an infinite number of analytic polynomials p, q
on C such that if we define u(z, w) = |p(w−z)|2, v(z, w) = |q(w−z)|2, uj(z, w) = |p(j)(w−z)|2,
vj(z, w) = |q(j)(w − z)|2, j ∈ {1, ..., n− 2}, (z, w) ∈ C2. Define φ(z, w) = (|p(w − z)|2 + |q(w −
z)|2), φj(z, w) = (|p(j)(w − z)|2 + |q(j)(w − z)|2), for (z, w) ∈ C2 and j ∈ {1, . . . , n − 2}, then
u, u1, . . . , un−2, v, v1, . . . , vn−2 are not psh functions on C2 and φ is psh on C2, but φ1, . . . , φn−2

are not psh functions on C2.

Proof. Let p1(w) = wn−wn−1, for w ∈ C. p1 is a analytic polynomial on C. Then |p1(w)+αw|
is not convex on C, for all α ∈ C. Observe that |p1|2, . . . , |p(n−2)

1 |2 are not convex functions on
C. Define p(w) = p1(w)+Aw, q(w) = p1(w)−Aw for w ∈ C, where A > 0, A to be constructed
satisfying the following hypotheses proven below. Now

lim
|w|→+∞

|p′′1(w)p1(w)|
|p′1(w)|2

=
n− 1

n
< 1.

Thus there exists B > 0 such that |w| > B so that |p′′1(w)p1(w)| < |p′1(w)|2. If B is fixed, then
D(0, B) is a compact subset of C and the function |p′′1p1| is continuous on D(0, B). Therefore
there exists A1 > 0 such that |p′′1(w)p1(w)| < A2

1, for all w ∈ D(0, B). We conclude that
|p′′1(w)p1(w)| < A2

1 + |p′1(w)|2, for every w ∈ C. Since {α ∈ C / |p′1 + α|2 is convex on C} have a
cardinal less than 1, there exists A2 ≥ A1, such that for all α ∈ C, with |α| ≥ A2, the function
|p′1 + α|2 is not convex on C. Now let A ∈ R+, A ≥ A2. We have (|p|2 + |q|2) is then convex on
C. (|p′|2 + |q′|2) = 2(|p′1|2 +A2) is not convex on C. In fact the function (|p(j)|2 + |q(j)|2) is not
convex on C, for all j ∈ {1, . . . , n− 2}. Note that |p(j)|2, |q(j)|2 are not convex functions on C,
for all j ∈ {1, . . . , n− 2}.

Theorem 2.16. Let n,N ∈ N, n ≥ 3 and N ≥ 2. There exists an infinite number of analytic
polynomials p, q on CN , deg(p) = deg(q) = n, such that |p|2 and |q|2 are not convex functions

on CN , (|p|2 + |q|2) is convex on CN and ∂2

∂zj∂zj
(|p|2 + |q|2) is not convex on CN , for all j ∈

{1, . . . , N}.

Proof. Let p1 and q1 be 2 analytic polynomials on C, deg(p1) = deg(q1) = n, such that |p1|2 and
|q1|2 are not convex functions on C, (|p1|2+ |q1|2) is convex on C and (|p′1|2+ |q′1|2) is not convex
on C. Let a = (a1, . . . , aN ) ∈ (C\{0})N . Define p and q on CN by p(z) = p1(< z/a >) and
q(z) = q1(< z/a >), for all z = (z1, . . . , zN ) ∈ CN . Then p and q are holomorphic polynomials
on CN , deg(p) = deg(q) = n. Indeed, p and q satisfy the condition of the theorem.

Remark 2.17. In fact we have for all analytic polynomials p on C, there exists always A ∈ C
such that u is psh (or strictly psh) on C2, where u(z, w) = |p(w − z)|2 + |A(w − z)|2, for
(z, w) ∈ C2. But this property is not true in general for analytic functions on C.

Example 2.18. Let g(z) = e(z
2), for z ∈ C. Let A ∈ C and define

v(z, w) = |g(w − z)|2 + |A(w − z)|2,

(z, w) ∈ C2. Then v is not psh on C2, because if |g′′(z)g(z)| ≤ |g′(z)|2 + |A|2, for all z ∈ C, then
we have (2 + 4x2)e2x

2 ≤ 4x2e2x
2
+ |A|2, for any x ∈ R.
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Therefore 2e2x
2 ≤ |A|2, for any x ∈ R. We have a contradiction. On the other hand, on

Cn, n ≥ 2, the above property is not true for analytic polynomials. This is one of the great
differences between the theory of functions of one complex variable and the same theory in
several variables. Exactly, there exists an analytic polynomial q on Cn such that for all A ∈ C,
the inequality

|
n∑

j,k=1

∂2q

∂zj∂zk
(z)q(z)αjαk| ≤ |

n∑
j=1

∂q

∂zj
(z)αj |2 + |A|2 ∥ α ∥2

for every z = (z1, ..., zn) ∈ Cn, for each α = (α1, ..., αn) ∈ Cn is impossible if n ≥ 2. The answer
is given by the following proposition.

Proposition 2.19. Let q(z1, z2) = z1z2, (z1, z2) ∈ C2, where q is an analytic polynomial on
C2. There does not exist a constant A ∈ C, such that u is convex on C2, u(z1, z2) = |z1z2|2+ ∥
A(z1, z2) ∥2, for (z1, z2) ∈ C2.

Proof. Assume that there exists A ∈ C such that u is convex on C2. Then |2q(z)α1α2| ≤
|z2α1 + z1α2|2 + |A|2 ∥ α ∥2, for every z = (z1, z2) ∈ C2, for any α = (α1, α2) ∈ C2. Put
z1 = α1, z2 = −α2 ∈ C. Then we have |2α2

1α
2
2| ≤ |A|2(|α1|2 + |α2|2), for all (α1, α2) ∈ C2. Put

now α2 = α1 ∈ C\{0}. Thus |α1|2 ≤ |A|2, for every α1 ∈ C\{0}. It follows that we have a
contradiction. Finally we can study the convexity of the function ∥ f ∥, where f : Cn → CN is
holomorphic, f = (f1, ..., fN ), n,N ≥ 1.

3 Holomorphic functions and the real convexity

Theorem 3.1. Let g : Cn → C be analytic and |g| > 0 on Cn, n ≥ 1. Suppose that |g| is convex
on Cn. Then g(z) = eF (z), for all z ∈ Cn, where F : Cn → C is analytic and affine on Cn.

Proof. The proof is by induction on n ≥ 1. If n = 1, by Abidi [2], we have g(z) = e(az+b), for
all z ∈ C, where a, b ∈ C.

If n = 2. Since |g| > 0 on C2, then g(z) = eF (z), for all z ∈ C2, where F : C2 → C, F analytic
on C2. For z2 ∈ C, the function g(., z2) = eF (.,z2) is analytic on C and |g(., z2)| is convex on C.
Therefore by [2, Theorem 20], F (z1, z2) = c(z2)z1 + d(z2), for each z1 ∈ C, with c, d : C → C
and where d(z2) = F (0, z2) and c(z2) = F (1, z2) − d(z2), for all z2 ∈ C. Therefore c and d are
analytic functions on C and g(z1, z2) = e(c(z2)z1+d(z2)), for any (z1, z2) ∈ C2.

Now g(0, z2) = ed(z2), g(0, .) is holomorphic on C, |g(0, .)| is convex on C. By Abidi [2],
d is an affine function on C. On the other hand, g(1, z2) = e(c(z2)+d(z2)), for all z2 ∈ C. But
g(1, .) is holomorphic and |g(1, .)| is convex on C. Then the function (c + d) is a holomorphic
affine function on C. Since now c = (c + d) − d on C, c is a holomorphic affine function on C.
c(z2) = c1z2 + c2 and d(z2) = d1z2 + d2, for all z2 ∈ C, where c1, c2, d1, d2 ∈ C. g(z1, z2) =
e((c1z2+c2)z1+d1z2+d2) = e(c1z1z2+c2z1+d1z2+d2), for all (z1, z2) ∈ C2.

We will prove that c1 = 0. Put z2 = z1. Define φ(z1) = g(z1, z1) = e(c1z
2
1+(c2+d1)z1+d2), for

z1 ∈ C. Then φ is holomorphic and |φ| is convex on C. From [2], we get that c1 = 0.

It follows that g(z1, z2) = e(c2z1+d1z2+d2), for all z = (z1, z2) ∈ C2. Now assume that for all
g1 : Cn → C, g1 is analytic, |g1| > 0 and |g1| is convex on Cn, then g1(z) = eF1(z), where F1 is
holomorphic and affine on Cn, (n ≥ 2).

Let now g : Cn+1 → C be a holomorphic function, |g| > 0 and |g| is convex on Cn+1. Then
g(z) = eF (z), where F : Cn+1 → C is a holomorphic function. Let Z1 = (z2, ..., zn+1) ∈ Cn.
For all z1 ∈ C, we have g(z1, Z1) = eF (z1,Z1) and |g(., Z1)| is convex on C. Then F (z1, Z1) =
c(Z1)z1 + d(Z1), for all z1 ∈ C, with d(Z1) = F (0, Z1) and c(Z1) + d(Z1) = F (1, Z1). Hence
c(Z1) = F (1, Z1)− F (0, Z1).
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Therefore c and d are holomorphic functions on Cn.

Note that g(0, Z1) = ed(Z1), for Z1 ∈ Cn. Thus g(0, .) is holomorphic on Cn and |g(0, .)|
is convex on Cn. Then d(Z1) = d2z2 + ... + dn+1zn+1 + dn+2, for all Z1 = (z2, ..., zn+1) ∈ Cn,
where d2, ..., dn+1, dn+2 ∈ C. Since g(1, Z1) = e(c(Z1)+d(Z1)), for all Z1 = (z2, ..., zn+1) ∈ Cn and
|g(1, .)| is convex on Cn, (c + d) is affine on Cn. Now since d is affine on Cn, c is affine on Cn.
Write c(Z1) = c2z2 + ...+ cn+1zn+1 + cn+2, c2, ..., cn+1, cn+2 ∈ C.

Therefore

g(z) = g(z1, Z1) = e((c2z2+...+cn+1zn+1+cn+2)z1+d(Z1))

= e(c2z1z2+...+cn+1z1zn+1+cn+2z1+d2z2+...+dn+1zn+1+dn+2),

z = (z1, Z1) ∈ C× Cn.

We will prove that c2 = ... = cn+1 = 0. Fix (z03 , ..., z
0
n+1) ∈ Cn−1. We have

g(z1, z2, z
0
3 , ..., z

0
n+1) = e(c2z1z2+λ1z1+λ2z2+λ3),

for all (z1, z2) ∈ C2, where c2, λ1, λ2, λ3 ∈ C. Since |g(., ., z03 , ..., z0n+1)| is convex on C2, c2 = 0
by the hypothesis of induction. It follows that c3 = ... = cn+1 = 0. Consequently, F is affine on
Cn+1. The proof is now finished.

Corollary 3.2. Let g : Cn → C be an analytic function, n ≥ 1. Define Fk = exp o exp o . . . o exp
(k − times), where k ∈ N, k ≥ 2. Assume that |Fk(g)| = u is convex on Cn. Then g is constant
on Cn.

Corollary 3.3. Let g : Cn → C, g analytic, n ≥ 1. Recall that |ege(−g)| is convex on Cn.

But we have |eegee(−g) | is convex on Cn if and only if g is constant on Cn. Denote by Fk =
exp o exp o . . . o exp (k − times), where k ∈ N, k ≥ 2. Assume that |Fk(g)Fk(−g)| is convex on
Cn. Then g is constant on Cn.

Proof. Case 1. n = 1.

Suppose that |eegee(−g) | = |e(eg+e(−g))| is convex on C. Then |eg + e(−g)| is an affine function
on C. By the Picard theorem, for all j ∈ N\{0}, there exist Aj > j, ∃zj ∈ C, with j < |zj | < Aj

and g(zj) ∈ iR. Thus |eg(zj)+ e−g(zj)| ≤ |eg(zj)|+ |e−g(zj)| = 2. Since now eg(z)+ e−g(z) = az+ b,
for any z ∈ C (a, b ∈ C), |eg(zj) + e−g(zj)| = |azj + b| ≤ 2, for all j ≥ 1.

But lim
j→+∞

|zj | = +∞. It follows that 2 ≥ lim
j→+∞

|azj+b| ≥ lim
j→+∞

(|a||zj |−|b|) = +∞, if a ̸= 0.

This is a contradiction. Consequently, a = 0 and eg + e−g = b on C. The derivative relative to
z implies g′(z)eg(z) − g′(z)e−g(z) = 0, for all z ∈ C. Then g′(z)(e2g(z) − 1) = 0, for any z ∈ C.
Since g′ and (e2g − 1) are analytic functions, then g′ = 0 or (e2g − 1) = 0 on C.

If g′ = 0 on C, then g is constant on C. Now if e2g − 1 = 0 on C, then the derivative relative
to z implies that g′e2g = 0 on C and therefore g′ = 0 in C. Consequently, g is constant on C.

Case 2. n ≥ 2.

The case is obvious by the problem of fibration.

Corollary 3.4. Let g : Cn → C be a holomorphic function, n ≥ 1. Let

u = |F2(g)F2(−g)F3(g)F3(−g)F4(g)F4(−g)|,

where Fk = exp o exp o . . . o exp (k − times), for k ∈ N, k ≥ 2. Define v(z, w) = u(w − z), for
(z, w) ∈ Cn × Cn. Suppose that v is psh on Cn × Cn. Then g is constant on Cn.
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Corollary 3.5. Let g1, g2 : Cn → C be two holomorphic functions, n ≥ 1.
(I) Assume that |eg1 + eg2 | is a convex function on Cn. We can not conclude that g1 and g2 are
constant in Cn. Moreover,
(II) Assume that |eeg1 + ee

g2 | is convex on Cn. Then g1 and g2 are constant in Cn.

Proof. (I). Let g2 = g1 + iπ and g1 is a function nonconstant on Cn. Then |eg1 + eg2 | = 0 is
convex on Cn.

(II). In fact in general we prove that if f1, f2 : Cn → C are 2 analytic functions such that

|eef1 + ef2 | is convex on Cn, then f1 and f2 are constant on Cn.

Observation 3.6. We can use the above theorem for the resolution of several holomorphic
partial differential equations on Cn, n ≥ 1. For example find all the holomorphic functions
g : C → C such that u1 > 0 and u1 is convex on C, u1(z) = |ag′(z) + bg(3)(z)|3, for z ∈ C
(a, b ∈ C\{0}). Find all the holomorphic functions k : Cn → C such that u2 > 0 and u2 is convex
on Cn, u2(z) = |k(z) + ∂k

∂z1
(z)|4, for z = (z1, ..., zn) ∈ Cn. Find all the holomorphic functions

k : Cn → C such that u3 > 0 and u3 is convex on Cn, where u3(z) = |∂2k
∂z21

(z) + ...+ ∂2k
∂z2n

(z)|6, for
z = (z1, ..., zn) ∈ Cn.

Theorem 3.7. Let g : Cn → C be a holomorphic function, n ≥ 1. Assume that |g| is convex on
Cn and g(z0) = 0, where z0 ∈ Cn. Then g(z) = (< z/λ > +µ)m, for all z ∈ Cn, where λ ∈ Cn,
µ ∈ C and m ∈ N.

Proof. The proof is by induction on n ≥ 1.
If n = 1. From Abidi [2], we have the proof.

Suppose that n = 2. We assume that z0 = 0 (if z0 ̸= 0, we consider the function k defined in
C2 by k(z) = g(z + z0), z ∈ C2). If g(z1, z2) = g1(z1), for any (z1, z2) ∈ C2, the theorem is true
(g1 : C → C, g1 is holomorphic on C). Now suppose that g(z1, z2) depends on z1 and z2. Then
∂g
∂z1

∂g
∂z2

̸= 0 on C2.

If g(z1, 0) = 0 and g(0, z2) = 0, for each (z1, z2) ∈ C2, then we have

|g(z1
2
,
z2
2
)| = |g(1

2
(z1, 0) +

1

2
(0, z2))| ≤

1

2
|g(z1, 0)|+

1

2
|g(0, z2)| = 0.

Then g( z12 ,
z2
2 ) = 0, for all (z1, z2) ∈ C2. Consequently, g = 0 on C2. This is a contradiction.

Now in fact we have g(., 0) ̸= 0 on C if g(z1, 0) = 0, for every z1 ∈ C. We conclude by
the same above proof that ∂g

∂z1
(z1, z2) = 0, for any (z1, z2) ∈ C2. This is impossible because

∂g
∂z1

∂g
∂z2

̸= 0 on C2. We have g(z1, 0) = (a(0)z1 + b(0))s, for every z1 ∈ C, where a(0) ∈ C,
b(0) ∈ C and s ∈ N. Since g(0, 0) = 0, b(0) = 0 and s ∈ N\{0}.

Suppose now that g(z1, ξj) = e(λjz1+µj), for each z1 ∈ C, where λj , µj ∈ C, for every
j ∈ N\{0} and the sequence (ξj)j≥1 ⊂ D(0, r), r > 0, lim

j→+∞
(ξj) = 0.

Let z1 ∈ C\{0}. By [2], we have

∂2g

∂z21
(z1, 0)g(z1, 0) =

s− 1

s
(
∂g

∂z1
(z1, 0))

2,

and
∂2g

∂z21
(z1, ξj)g(z1, ξj) = (

∂g

∂z1
(z1, ξj))

2,

for each j ∈ N\{0}. Then we have lim
j→+∞

(
∂g

∂z1
(z1, ξj))

2 =
s− 1

s
(
∂g

∂z1
(z1, 0))

2.

Hence a(0) = 0 and 0 = g(z1, 0), for each z1 ∈ C. This is a contradiction.
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Thus there exists r > 0 such that g(z1, z2) = (a(z2)z1 + b(z2))
s1(z2), for every z1 ∈ C, for

any z2 ∈ D(0, r), where a(z2), b(z2) ∈ C, s1(z2) ∈ N and the function z1 ∈ C 7→ (a(z2)z1 +
b(z2))

s1(z2) is noconstant, for all z2 ∈ D(0, r). In fact if there exists a sequence (z2,j)j≥1 ⊂ C,
with lim

j→+∞
z2,j = 0 and the function g(., z2,j) = cj in C, where cj ∈ C. For z1 ∈ C, we have

lim
j→+∞

g(z1, z2,j) = g(z1, 0). Then lim
j→+∞

(cj) = c ∈ C. Now since g(z1, z2,j) = g(z′1, z2,j), for any

z′1 ∈ C, then c is independent of z1 ∈ C. Thus g(0, 0) = c = 0 and then g(z1, 0) = 0, for every
z1 ∈ C, a contradiction. Then s1(z2) ∈ N\{0}, for each z2 ∈ D(0, r). Let z2 ∈ D(0, r). We have

∂2g

∂z21
(z1, z

′
2)g(z1, z

′
2) =

s1(z
′
2)− 1

s1(z′2)
(
∂g

∂z1
(z1, z

′
2))

2,

for each z′2 ∈ D(0, r), z1 ∈ C. ∂2g
∂z21

(z1, z2)g(z1, z2) =
s1(z2)−1
s1(z2)

( ∂g
∂z1

(z1, z2))
2. Then

lim
z′2→z2

(1− 1

s1(z′2)
) = 1− 1

s1(z2)
.

Thus lim
z′2→z2

s1(z
′
2) = s1(z2), for each z2 ∈ D(0, r). This implies that s1 : D(0, r) → N\{0}

is a continuous function. It follows that s1 is constant on D(0, r). Let s1(z2) = s, for every
z2 ∈ D(0, r). Now g(z1, z2) = (a(z2)z1 + b(z2))

s, for every z1 ∈ C, z2 ∈ D(0, r). Now choose
α = (α1, α2) ∈ C2, ρ > 0, such that D(α1, ρ)×D(α2, ρ) ⊂ D(0, r)×D(0, r) and

g(z) ̸= 0, for z ∈ D(α1, ρ)×D(α2, ρ);
∂g
∂z1

(z) ∂g
∂z2

(z) ̸= 0, for z ∈ D(α1, ρ)×D(α2, ρ);

g(z1, 0) ̸= 0, g(0, z2) ̸= 0, for (z1, z2) ∈ D(α1, ρ)×D(α2, ρ).

On the other hand, g(0, z2) = (c(0)z2 + d(0))q, for any z2 ∈ C, with c(0), d(0) ∈ C, q ∈ N\{0}.
If g(0, z2) = 0, for all z2 ∈ C (c(0) = d(0) = 0 and q ̸= 0). This is impossible because we

have the inequality |g( z12 ,
z2
2 )| = |g(( z12 , 0) + (0, z22 ))| = |g(12(z1, 0) +

1
2(0, z2))| ≤

1
2 |g(z1, 0)|+

1
2 |g(0, z2)| =

1
2 |g(z1, 0)|, for all (z1, z2) ∈ C2. Then |g( z12 ,

z2
2 )| ≤

1
2 |g(z1, 0)|, for all z1, z2 ∈ C and

|g(z1, z2)| ≤ 1
2 |g(2z1, 0)|, for any (z1, z2) ∈ C2. Hence g(z1, z2) = γg(2z1, 0), for each (z1, z2) ∈

C2, where γ ∈ C. Thus ∂g
∂z1

(z1, z2)
∂g
∂z2

(z1, z2) = 0, for every (z1, z2) ∈ C2. This is a contradiction.
Therefore g(0, .) ̸= 0 on C.

Now if g(ζj , z2) = e(γjz2+δj), for every z2 ∈ C, where γj , δj ∈ C, for all j ∈ N\{0} and the

sequence (ζj)j≥1 ⊂ D(0, r), with lim
j→+∞

ζj = 0. We have ∂2g
∂z22

(0, z2)g(0, z2) =
q−1
q ( ∂g

∂z2
(0, z2))

2 and

∂2g
∂z22

(ζj , z2)g(ζj , z2) = ( ∂g
∂z2

(ζj , z2))
2. Then ∂g

∂z2
(0, z2) = 0, for each z2 ∈ C and c(0) = 0. Therefore

g(0, z2) = 0 = g(0, 0), for each z2 ∈ C. This is a contradiction.
Consequently, g(z1, z2) = (c(z1)z2 + d(z1))

q1(z1), for every (z1, z2) ∈ D(0, ρ1) × D(0, ρ1),
g(z1, .) is nonconstant on D(0, ρ1), for all z1 ∈ D(0, ρ1), where 0 < ρ1 ≤ ρ and where q1(z1) ∈
N\{0}, c, d : D(0, ρ1) → C. We prove that q1(z1) = q, for every z1 ∈ D(0, ρ1) (by the same
method developed as above).

If g(z) ∈ [0,+∞[, for all z ∈ G = D(α1, ρ1) × D(α2, ρ1), therefore Im(g) = 0 in the
convex domain G. Here, we can also use the function Re(g). Thus g is constant on G. This
is a contradiction. Therefore there exists (z01 , z

0
2) ∈ G such that g(z01 , z

0
2) ∈ C\[0,+∞[ and

C\[0,+∞[ is an open of C. Since g : G→ C is a continuous function, there exists η > 0 such that
G1 = D(z01 , η)×D(z20 , η) ⊂ G and for all z ∈ G1, g(z) ∈ C\[0,+∞[. We have g(z) = (a(z2)z1 +

b(z2))
s = (c(z1)z2 + d(z1))

q, for all z = (z1, z2) ∈ G1. Thus g
1
s (z) = ψ(z1, z2)(a(z2)z1 + b(z2)),

for all z = (z1, z2) ∈ G1, where ψ : G1 → C, ψs = 1 on G1. Since now g(z) ̸= 0, for all z ∈ G1,

then (a(z2)z1 + b(z2)) ̸= 0, for all z = (z1, z2) ∈ G1. It follows that ψ(z1, z2) =
g
1
s (z1,z2)

a(z2)z1+b(z2)
, for
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(z1, z2) ∈ G1. Fix z2 ∈ D(z02 , η). Observe that (z1 7→ ψ(z1, z2)) is a holomorphic function on
D(z01 , η) and satisfy (ψ(z1, z2))

s = 1, for each z1 ∈ D(z01 , η).
It follows that the function ψ(., z2) is constant on D(z01 , η). Define then φ(z2) = ψ(z1, z2),

for every (z1, z2) ∈ G1. This implies that φ : D(z02 , η) → C is then a function. We have
g(z1, z2) = (φ(z2)a(z2)z1 + φ(z2)b(z2))

s, for each (z1, z2) ∈ G1. Define A = φa, B = φb in
D(z02 , η). We can calculate A and B on D(z02 , η). In fact fix z11 ∈ D(z01 , η), z

1
1 ̸= z01 . We have

then
g

1
s (z01 , z2) = A(z2)z

0
1 +B(z2),

g
1
s (z11 , z2) = A(z2)z

1
1 +B(z2),

for all z2 ∈ D(z02 , η). Consequently,

A(z2) =
1

(z01 − z11)
(g

1
s (z01 , z2)− g

1
s (z11 , z2)),B(z2) = g

1
s (z01 , z2)−A(z2)z

0
1 .

It follows that A and B are holomorphic functions on D(z02 , η) and so g(z1, z2) = (A(z2)z1 +

B(z2))
s, for each (z1, z2) ∈ G1. Similarly, g

1
q (z1, z2) = (c(z1)z2 + d(z1))ψ1(z1, z2), for any

(z1, z2) ∈ G1, where ψ1 : G1 → C, (ψ1)
q = 1 on G1. Since g(z) ̸= 0, for each z ∈ G1,

then (c(z1)z2 + d(z1)) ̸= 0, for every z = (z1, z2) ∈ G1. Then ψ1(z1, z2) =
g
1
q (z1,z2)

c(z1)z2+d(z1)
, for all

(z1, z2) ∈ G1.
Fix z1 ∈ D(z01 , η). Thus (z2 ∈ D(z02 , η) 7→ ψ1(z1, z2)) is a holomorphic function on D(z02 , η)

and satisfy the equality (ψ1(z1, z2))
q = 1, for all z2 ∈ D(z02 , η). It follows that the function

ψ1(z1, .) is constant on D(z02 , η), for all z1 ∈ D(z01 , η). Define now φ1(z1) = ψ1(z1, z2), for
any z1 ∈ D(z01 , η), for all z2 ∈ D(z02 , η). φ1 : D(z01 , η) → C is a function. Then we have
g(z1, z2) = (φ1(z1)c(z1)z2 + φ1(z1)d(z1))

q, for each (z1, z2) ∈ G1. Define c1 = φ1c, d1 = φ1d
on the domain D(z01 , η). We can calculate c1 and d1 as follows. Fix z12 ∈ D(z02 , η), with z

1
2 ̸=

z02 . Then g
1
q (z1, z

0
2) = c1(z1)z

0
2 + d1(z1), g

1
q (z1, z

1
2) = c1(z1)z

1
2 + d1(z1), for all z1 ∈ D(z01 , η).

c1(z1) =
1

(z02−z12)
(g

1
q (z1, z

0
2)− g

1
q (z1, z

1
2)), d1(z1) = g

1
q (z1, z

0
2)− c1(z1)z

0
2 .

Therefore c1 and d1 are holomorphic functions on D(z01 , η) and g(z1, z2) = (c1(z1)z2 +
d1(z1))

q, for all (z1, z2) ∈ G1. Consequently, g(z1, z2) = (A(z2)z1+B(z2))
s = (c1(z1)z2+d1(z1))

q,
for each (z1, z2) ∈ G1.

We want to prove that q = s. Since ∂s+1g

∂zs+1
1

(z1, z2) = 0, for each (z1, z2) ∈ G1, q ≤ s.

Also ∂q+1g

∂zq+1
2

(z1, z2) = 0, for every (z1, z2) ∈ G1, thus s ≤ q. Consequently, s = q. Therefore,

(A(z2)z1 +B(z2))
s = (c1(z1)z2 + d1(z1))

s, for all (z1, z2) ∈ G1.
Thus A(z2)z1+B(z2) = λ(z)[c1(z1)z2+d1(z1)], for every z = (z1, z2) ∈ G1, where λ(z) ∈ C,

(λ(z))s = 1. Also λ : G1 → C, λ is holomorphic on G1 because (A(z2)z1 + B(z2)) ̸= 0,
(c1(z1)z2 + d1(z1)) ̸= 0, for any (z1, z2) ∈ G1.

Since λs = 1 on G1, then λ is constant in the domain G1. The derivative of the expression
(A(z2)z1 + B(z2)) relative to z1 implies that A(z2) = λ[c′1(z1)z2 + d′1(z1)], for all (z1, z2) ∈ G1.
Hence c′1 and d′1 are constant functions on D(z01 , η). c1(z1) = γz1 + β, d1(z1) = αz1 + δ, for
all z1 ∈ D(z01 , η), where γ, β, α, δ ∈ C. Now g(z1, z2) = [γz1z2 + βz2 + αz1 + δ]s, for every
(z1, z2) ∈ G1. Define f(z1, z2) = [γz1z2+βz2+αz1+ δ]

s, for (z1, z2) ∈ C2. Then f is analytic on
C2 and f = g on the domain G1. Hence, f = g on C2. Now g(z1, z2) = (γz1z2+βz2+αz1+ δ)s,
for each (z1, z2) ∈ C2, where s ∈ N\{0}.

Suppose that γ ̸= 0. Choose µ ∈ C such that (α + β + γµ)2 − 4γ(βµ + δ) ̸= 0. Define
K(z1) = g(z1, z1 + µ), for z1 ∈ C. Then K(z1) = [γz21 + (α + β + γµ)z1 + βµ + δ]s. We have
|K1| is convex on C. But K1 is a holomorphic polynomial having 2 distinct zeros on C. This is a
contradiction. Therefore γ = 0. Consequently, g(z1, z2) = (αz1 + βz2 + δ)s, for all (z1, z2) ∈ C2.
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Suppose that the result is true for all g1 : Cn → C, g1 analytic, |g1| is convex on Cn and
g1(z

0) = 0, where z0 ∈ Cn, n ≥ 2.
Now let g : Cn+1 → C be a holomorphic function, |g| is convex on Cn+1, g(z0) = 0, where

z0 ∈ Cn+1. If there exists j ∈ {1, ..., n+ 1}, such that g(z1, ..., zn+1) is independent of zj , then
we use the hypothesis of induction.

We now assume that ∂g
∂z1

. . . ∂g
∂zn

∂g
∂zn+1

̸= 0 on Cn+1 and z0 = 0. Then g(0, Z1) = (a2(0)z2 +

a3(0)z3 + . . . + an+1(0)zn+1 + an+2(0))
s for all Z1 = (z2, . . . , zn+1) ∈ Cn, where s ∈ N,

a2(0), a3(0), . . . , an+1(0), an+2(0) ∈ C by the hypothesis of induction.
If s = 0. Then g(0, Z1) = 1, for each Z1 = (z2, . . . , zn+1) ∈ Cn. Then g(0, 0) = 1. This is a

contradiction. Therefore s ∈ N\{0} and an+2(0) = 0.
If a2(0) = 0, then g(0, z2, z3, ..., zn+1) is independent of z2. This is impossible because for

z = (z1, z2, z3, ..., zn+1) ∈ Cn+1, we have

|g(1
2
(z1, z2, z3, ..., zn+1))| = |g(1

2
(z1, 0) +

1

2
(0, z2, z3, ..., zn+1))|

≤ 1

2
|g(z1, 0)|+

1

2
|g(0, z2, z3, ..., zn+1)|

≤ 1

2
|g(z1, 0)|+

1

2
|g(0, 0, z3, ..., zn+1)|.

Thus |g(z1, z2, z3, ..., zn+1)| ≤ 1
2 |g(2z1, 0)|+

1
2 |g(0, 0, 2z3, ..., 2zn+1)|.

Fix z1, z3, ..., zn+1 ∈ C. Then the function (z2 ∈ C 7→ |g(z1, z2, z3, ..., zn+1)|) is bounded
above on C and so this function is constant relative to z2 ∈ C. It follows that (z2 ∈ C 7→
g(z1, z2, z3, ..., zn+1)) is constant on C for all (z1, z3, ..., zn+1) ∈ Cn fixed. Thus

∂g

∂z2
(z1, z2, z3, ..., zn+1) = 0,

for each (z1, z2, z3, ..., zn+1) ∈ Cn+1, a contradiction. Consequently,

a2(0) ̸= 0, a3(0) ̸= 0, ..., an+1(0) ̸= 0.

Assume now that g(ξj , Z1) = e(<Z1/γj>+δj), for each Z1 ∈ Cn, j ∈ N\{0}; where γj ∈ Cn,
δj ∈ C, and the sequence (ξj)j≥1 ⊂ C satisfying lim

j→+∞
ξj = 0. Let Z1 ∈ (C\{0})n, Z1 =

(z2, ..., zn+1). Then
∂2g
∂z22

(ξj , z2, ..., zn+1)g(ξj , z2, ..., zn+1) = ( ∂g
∂z2

(ξj , Z1))
2. Hence,

∂2g

∂z22
(0, Z1)g(0, Z1) =

s− 1

s
(
∂g

∂z2
(0, Z1))

2.

Thus lim
j→+∞

(
∂g

∂z2
(ξj , Z1))

2 =
s− 1

s
(
∂g

∂z2
(0, Z1))

2 = (
∂g

∂z2
(0, Z1))

2. This implies that, ∂g
∂z2

(0, Z1) =

0 and so a2(0) = 0, a contradiction.
It follows that there R1 > 0 such that g(z1, Z1) = (a2(z1)z2+a3(z1)z3+ ...+an+1(z1)zn+1+

an+2(z1))
s1(z1), for all (z1, Z1) ∈ D(0, R1) × Cn, where s1(z1) ∈ N for all z1 ∈ D(0, R1)),

a2, a3, ..., an+1, an+2 : D(0, R1) → C and the function Z1 ∈ Cn 7→ g(z1, Z1) is nonconstant
relative to z2, ..., zn+1, for all z1 ∈ D(0, R1). Thus s1(z1) ∈ N\{0}, for all z1 ∈ D(0, R1). Now

let z1 ∈ D(0, R1). Choose Z1 ∈ Cn such that ∂g
∂z1

(z1, Z1) ̸= 0. Then ∂2g
∂z21

(z1, Z1)g(z1, Z1) =

s1(z1)−1
s1(z1)

( ∂g
∂z1

(z1, Z1))
2. For z′1 ∈ D(0, R1), we have ∂2g

∂z21
(z′1, Z1)g(z

′
1, Z1) =

s1(z′1)−1
s1(z′1)

( ∂g
∂z1

(z′1, Z1))
2.

Since lim
z′1→z1

∂2g

∂z21
(z′1, Z1)g(z

′
1, Z1) =

∂2g

∂z21
(z1, Z1)g(z1, Z1), we have lim

z′1→z1

s1(z
′
1)− 1

s1(z′1)
=
s1(z1)− 1

s1(z1)
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and then lim
z′1→z1

s1(z
′
1) = s1(z1). But s1 : D(0, R1) → N\{0} is continuous. Thus the function s1

is constant, s1(z1) = s, for any z1 ∈ D(0, R1). Consequently, g(z) = (a2(z1)z2 + a3(z1)z3 + ...+
an+1(z1)zn+1 + an+2(z1))

s, for all (z1, ..., zn+1) ∈ (D(0, R1))
n+1.

Using similar arguments, there exists R2 > 0 such that g(z) = (b1(z2)z1 + b3(z2)z3 + ... +
bn+1(z2)zn+1 + bn+2(z2))

t, for any z = (z1, z2, z3, . . . , zn+1) ∈ (D(0, R2))
n+1, where t ∈ N and

b1, b3, ..., bn+1, bn+2 : D(0, R2) → C. Let R = min(R1, R2) > 0. Since ∂g
∂zn+1

(z) ̸= 0, s = t.

Suppose that g : (D(0, R))n+1 → [0,+∞[. Then the function Im(g) = 0 on (D(0, R))n+1.
It follows that g is constant on (D(0, R))n+1. Hence g is constant on Cn+1, a contradiction.
Consequently, there exists c ∈ (D(0, R))n+1 such that g(c) /∈ [0,+∞[. Note that C\[0,+∞[
is an open on C. Put c = (c1, ..., cn+1). Since g : (D(0, R))n+1 → C is a continuous function,
there exists η > 0 such that P (c, η) ⊂ (D(0, R))n+1 and g(z) /∈ [0,+∞[, for all z ∈ P (c, η),
where P (c, η) = D(c1, η) × ... × D(cn+1, η). Then g : P (c, η) → C\[0,+∞[, defined by g(z) =
(a2(z1)z2 + a3(z1)z3 + ...+ an+1(z1)zn+1 + an+2(z1))

s, for all z = (z1, z2, z3, ..., zn+1) ∈ P (c, η).

Hence g
1
s (z) = ψ(z1, z2, z3, ..., zn+1)(a2(z1)z2 + a3(z1)z3 + ...+ an+1(z1)zn+1 + an+2(z1)), for all

z = (z1, z2, z3, ..., zn+1) ∈ P (c, η), where ψ : P (c, η) → C is a function, (ψ)s = 1 on P (c, η).
Since g(z) ̸= 0, for each z = (z1, z2, z3, ..., zn+1) ∈ P (c, η),

ψ(z1, z2, z3, ..., zn+1) =
g

1
s (z1, z2, z3, ..., zn+1)

(a2(z1)z2 + a3(z1)z3 + ...+ an+1(z1)zn+1 + an+2(z1))
.

Fix z1 ∈ D(c1, η). Then ψ(z1, .) is a holomorphic function in the complex variable (z2, ..., zn+1) ∈
D(c2, η) × ... × D(cn+1, η). Since (ψ)s = 1 on P (c, η), ψ(z1, .) is constant in the open poly-
disc D(c2, η) × ... × D(cn+1, η). Therefore ψ(z1, z2, ..., zn+1) = φ(z1), for all (z2, ..., zn+1) ∈
D(c2, η) × ... × D(cn+1, η), for all z1 ∈ D(c1, η), where φ : D(c1, η) → C. Now we have

g
1
s (z1, z2, z3, ..., zn+1) = (φ(z1)a2(z1)z2+φ(z1)a3(z1)z3+...+φ(z1)an+1(z1)zn+1+φ(z1)an+2(z1)),

for each (z1, z2, z3, ..., zn+1) ∈ P (c, η). Similarly, we have g(z) = (b1(z2)z1 + b3(z2)z3 + ... +
bn+1(z2)zn+1 + bn+2(z2))

s, for each z = (z1, z2, z3, ..., zn+1) ∈ P (c, η). Then

g
1
s (z) = ψ1(z1, z2, z3, ..., zn+1)(b1(z2)z1 + b3(z2)z3 + ...+ bn+1(z2)zn+1 + bn+2(z2)),

for each (z1, z2, z3, ..., zn+1) = z ∈ P (c, η), where ψ1 : P (c, η) → C is a function, (ψ1)
s = 1 on

P (c, η). Hence g(z) ̸= 0, for each z ∈ P (c, η).

Now fix z2 ∈ D(c2, η). Put ψ2(z1, z3, ..., zn+1) = ψ1(z1, z2, z3, ..., zn+1), for (z1, z3, ..., zn+1) ∈
D(c1, η)×D(c3, η)× ...×D(cn+1, η). ψ2 is a holomorphic function in its domain. Since (ψ1)

s = 1
on P (c, η), ψ2 is constant in the open polydiscD(c1, η)×D(c3, η)×...×D(cn+1, η). It follows that
ψ1(z1, z2, z3, ..., zn+1) = φ1(z2), for each (z1, z2, z3, ..., zn+1) ∈ P (c, η), where φ1 : D(c2, η) →
C, (φ1)

s = 1. Consequently, g
1
s (z1, z2, z3, ..., zn+1) = (φ1(z2)b1(z2)z1 + φ1(z2)b3(z2)z3 + . . . +

φ1(z2)bn+1(z2)zn+1 + φ1(z2)bn+2(z2)), for every (z1, z2, z3, ..., zn+1) ∈ P (c, η).

Define A2 = φa2, ..., An+1 = φan+1, An+2 = φan+2 on D(c1, η). Also B1 = φ1b1, B3 =
φ1b3, ..., Bn+1 = φ1bn+1 and Bn+2 = φ1bn+2 onD(c2, η). Now let Zj

1 ∈ D(c2, η)×...×D(cn+1, η),

1 ≤ j ≤ n, Zj
1 = (zj2, ..., z

j
n+1). Choose (ξ

1
2 , ..., ξ

1
n+1), ..., (ξ

n
2 , ..., ξ

n
n+1) ∈ D(c2, η)× ...×D(cn+1, η)

such that the matrix 
(z12 − ξ12) (z13 − ξ13) ... (z1n+1 − ξ1n+1)

. . ... .

. . ... .

. . ... .
(zn2 − ξn2 ) (zn3 − ξn3 ) ... (znn+1 − ξnn+1)


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is invertible of type (n, n). Then we consider the 2 systems

(S) =


A2(z1)z

1
2 +A3(z1)z

1
3 + ...+An+1(z1)z

1
n+1 +An+2(z1) = g

1
s (z1, Z

1
1 ),

.

.

.

A2(z1)z
n
2 +A3(z1)z

n
3 + ...+An+1(z1)z

n
n+1 +An+2(z1) = g

1
s (z1, Z

n
1 ),

for each z1 ∈ D(c1, η) and

(S1) =



A2(z1)ξ
1
2 +A3(z1)ξ

1
3 + ...+An+1(z1)ξ

1
n+1 +An+2(z1) =

g
1
s (z1, ξ

1
2 , ..., ξ

1
n+1),

.

.

.
A2(z1)ξ

n
2 +A3(z1)ξ

n
3 + ...+An+1(z1)ξ

n
n+1 +An+2(z1) =

g
1
s (z1, ξ

n
2 , ..., ξ

n
n+1),

for each z1 ∈ D(c1, η).
To calculate A2, ..., An+1, we consider the difference between (S) and (S1) denoted by (S2).

(S2) =



A2(z1)(z
1
2 − ξ12) +A3(z1)(z

1
3 − ξ13) + ...+An+1(z1)(z

1
n+1 − ξ1n+1) =

g
1
s (z1, Z

1
1 )− g

1
s (z1, ξ

1
2 , ..., ξ

1
n+1)

.

.

.
A2(z1)(z

n
2 − ξn2 ) +A3(z1)(z

n
3 − ξn3 ) + ...+An+1(z1)(z

n
n+1 − ξnn+1) =

g
1
s (z1, Z

n
1 )− g

1
s (z1, ξ

n
2 , ..., ξ

n
n+1)

for every z1 ∈ D(c1, η). Thus, we calculate A2(z1), A3(z1), ..., An+1(z1) in function of

(g
1
s (z1, Z

1
1 ) − g

1
s (z1, ξ

1
2 , ..., ξ

1
n+1)), ..., (g

1
s (z1, Z

n
1 ) − g

1
s (z1, ξ

n
2 , ..., ξ

n
n+1)), for every z1 ∈ D(c1, η).

It follows that A2, A3, ..., An+1 are holomorphic functions on D(c1, η). Now since An+2(z1) =

−(A2(z1)z
1
2+A3(z1)z

1
3+ ...+An+1(z1)z

1
n+1)+g

1
s (z1, Z

1
1 ), it follows that An+2 is holomorphic on

D(c1, η). Hence g(z1, z2, z3, ..., zn+1) = (A2(z1)z2 +A3(z1)z3 + ...+An+1(z1)zn+1 +An+2(z1))
s,

for each (z1, z2, z3, ..., zn+1) ∈ P (c, η).
Now by effectuate the same development, we prove that B1, B3, ..., Bn+1, Bn+2 are holomor-

phic functions on D(c2, η) and g(z1, z2, z3, ..., zn+1) = (B1(z2)z1+B3(z2)z3+...+Bn+1(z2)zn+1+
Bn+2(z2))

s, for every (z1, z2, z3, ..., zn+1) ∈ P (c, η). Consequently,

g(z1, z2, z3, ..., zn+1) = (A2(z1)z2 +A3(z1)z3 + ...+An+1(z1)zn+1 +An+2(z1))
s

= (B1(z2)z1 +B3(z2)z3 + ...+Bn+1(z2)zn+1 +Bn+2(z2))
s,

for each (z1, z2, z3, ..., zn+1) ∈ P (c, η). Then there exists λ : P (c, η) → C such that (λ(z))s = 1
and (A2(z1)z2 + A3(z1)z3 + ...+ An+1(z1)zn+1 + An+2(z1)) = λ(z)(B1(z2)z1 + B3(z2)z3 + ...+
Bn+1(z2)zn+1 + Bn+2(z2)), for any z = (z1, z2, z3, ..., zn+1) ∈ P (c, η). Since g(z) ̸= 0, for all
z ∈ P (c, η), then λ(z) ̸= 0, for each z ∈ P (c, η). Therefore λ is a holomorphic function on
P (c, η). Since λs = 1 on P (c, η), λ is constant on P (c, η) and λ ̸= 0. Thus

A2(z1)z2 +A3(z1)z3 + ...+An+1(z1)zn+1 +An+2(z1) =

λ(B1(z2)z1 +B3(z2)z3 + ...+Bn+1(z2)zn+1 +Bn+2(z2)),
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for each z = (z1, z2, z3, ..., zn+1) ∈ P (c, η). The derivative relative to zj (for j ∈ {3, ..., n + 1})
implies that Aj(z1) = λBj(z2), for each z1 ∈ D(c1, η), z2 ∈ D(c2, η). Since λ ̸= 0, Aj and
Bj are constant functions respectively on D(c1, η) and D(c2, η), for all j ∈ {3, ..., n + 1}. The
derivative relative to z2 implies that A2(z1) = λB′

1(z2)z1 + λB′
n+2(z2), for all z1 ∈ D(c1, η) and

z2 ∈ D(c2, η). Hence A
′
2(z1) = λB′

1(z2), for each (z1, z2) ∈ D(c1, η)×D(c2, η). Since λ ̸= 0, A′
2

and B′
1 are constant functions respectively on D(c1, η) and D(c2, η). Thus the functions A2 and

B1 are affine functions on their above domains. Now we derive the equality

A2(z1) = λB′
1(z2)z1 + λB′

n+2(z2)

relative to the variable z2 ∈ D(c2, η). Then 0 = λB′′
n+2(z2), for all z2 ∈ D(c2, η). Thus the

function Bn+2 is affine on D(c2, η).

Finally consider the equality

A2(z1)z2 +A3(z1)z3 + ...+An+1(z1)zn+1 +An+2(z1) =

λ(B1(z2)z1 +B3(z2)z3 + ...+Bn+1(z2)zn+1 +Bn+2(z2))

for all z = (z1, z2, z3, ..., zn+1) ∈ P (c, η). The derivative relative to z1 implies that A′
2(z1)z2 +

A′
n+2(z1) = λB1(z2), for all z1 ∈ D(c1, η), for all z2 ∈ D(c2, η). Since A

′
2 is constant on D(c1, η),

A′′
n+2(z1) = 0, for each z1 ∈ D(c1, η). Consequently, An+2 is affine on D(c1, η). Now we have

A3, ..., An+1 are constant functions on D(c1, η). Thus A2 and An+2 are affine functions on
D(c1, η). Then A2(z1) = λ2z1+µ2, An+2(z1) = λn+2z1+µn+2, A3(z1) = µ3, ..., An+1(z1) = µn+1,
for all z1 ∈ D(c1, η), where λ2, µ2, λn+2, µn+2, µ3, ..., µn+1 ∈ C.
So g(z1, z2, z3, ..., zn+1) = [(λ2z1 + µ2)z2 + µ3z3 + ... + µn+1zn+1 + λn+2z1 + µn+2]

s, for each
(z1, z2, z3, ..., zn+1) ∈ P (c, η). Define

f(z) = [(λ2z1 + µ2)z2 + µ3z3 + ...+ µn+1zn+1 + λn+2z1 + µn+2]
s

for z = (z1, z2, z3, ..., zn+1) ∈ Cn+1. Then f is a holomorphic function on Cn+1. And so g = f
on P (c, η) = D(c1, η)× ...×D(cn+1, η). Moreover, g = f on Cn+1.

Now we prove that λ2 = 0. Assume that λ2 ̸= 0. Then K(z1, z2) = g(z1, z2, 0, ..., 0) =
(λ2z1z2 + λn+2z1 + µ2z2 + µn+2)

s, for all (z1, z2) ∈ C2, K is a holomorphic function on C2 and
K satisfy |K| is convex on C2. This is a contradiction. Consequently, λ2 = 0. The proof is now
finished.

Applications. We can use theorem 3.7 and theorem 3.1 for the resolution of several holomor-
phic partial differential equations.

Example 3.8. (A) Find all the holomorphic functions g : Cn → C, (n ≥ 2) such that u is

convex on Cn, where u(z) = |a∂2g
∂z21

(z) + b ∂g
∂z1

(z) + cg(z)|, z = (z1, ..., zn) ∈ Cn, a, b ∈ C\{0} and

c ∈ C.
(B) Find all the analytic functions g : Cn → C, (n ≥ 2) such that v is convex on Cn,

v(z) = e
|z1 ∂g

∂z2
(z)+z2

∂g
∂z1

(z)+g(z)|
, for z = (z1, ..., zn) ∈ Cn.

(C) Let φ : Cn → C be a holomorphic function, n ≥ 1 and δ > 0.

We say that |φ| is δ− convex on Cn if |φ(tz + (1− t)ξ)| ≤ t|φ(z)|+ (1− t)|φ(ξ)|+ δ, for all
z, ξ ∈ Cn, for all t ∈ [0, 1]. Now we can use the above contribution for the study of the family

E = {|g| / g : Cn → C be holomorphic and |g| is δ − convex on Cn}

where δ > 0 and n ≥ 1.
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Various authors have studied the relation between the pluripolarity of the graph of a contin-
uous function and the analyticity property, we can see [22], [7], [8] and [9]. On the other hand
we can study the problem {

g : Cn\F → C be holomorphic and
|g| is convex on Cn\F

where F is a closed subset of Cn, n ≥ 1 and H2n−1(F ) = 0, H2n−1 is the (2n− 1) dimensional
Hausdorff measure [5]. The paper described by Cegrell [5] deals to this subject (we can see also
El Mir [10]).

Corollary 3.9. Let g : Cn → C be an analytic function, n ≥ 1, a, b ∈ C, (a ̸= b). We have the
technical assertions

(A) Assume that |g + a| and |g + b| are convex functions on Cn. Then g is affine on Cn.

(B) Assume that |g2 + a| and |g2 + b| are convex functions on Cn. Then g is constant on Cn.

(C) Assume that there exist a1, ..., aN ∈ Cn, where N ∈ N\{0} such that the function (|g +
a1|2 + . . .+ |g + aN |2) is convex on Cn. Then |g + a1+...+aN

N | is convex on Cn.

Note that if g1, g2 : Cn → C are two holomorphic nonconstant functions, with |g1|, |g2|,
|g1 − g2|, |g1 + g2| are convex functions on Cn (n ≥ 1), we can state some properties concerning
g1 and g2.

Corollary 3.10. Let (A1, A2), (B1, B2) ∈ C2 such that {(A1, A2), (B1, B2)} is a free family on
C2. Given g1, g2 : Cn → C be 2 analytic functions, n ≥ 1. Define

u(z, w) = |A1w − g1(z)|2 + |A2w − g2(z)|2,

v(z, w) = |B1w − g1(z)|2 + |B2w − g2(z)|2

for (z, w) ∈ Cn × C. The following assertions are equivalent:

(A) u and v are convex functions on Cn × C;

(B) g1 and g2 are affine functions on Cn.

Proof. (A) implies (B). Since u is convex on Cn × C, by [3] we have{
g1(z) = A1(< z/a1 > +a2) +A2φ(z)

g2(z) = A2(< z/a1 > +a2)−A1φ(z)

for all z ∈ Cn, where a1 ∈ Cn, a2 ∈ C, φ : Cn → C, φ is analytic and |φ| is convex on Cn. Also
v is convex on Cn × C, then{

g1(z) = B1(< z/b1 > +b2) +B2ψ(z)

g2(z) = B2(< z/b1 > +b2)−B1ψ(z)

for all z ∈ Cn, with b1 ∈ Cn, b2 ∈ C, ψ : Cn → C, ψ is analytic and |ψ| is convex on Cn.
We would like to prove that φ and ψ are affine functions on Cn. We have{

A2φ(z)−B2ψ(z) =< z/λ > +µ

−A1φ(z) +B1ψ(z) =< z/λ1 > +µ1

for all z ∈ Cn, with λ, λ1 ∈ Cn and µ, µ1 ∈ C. Since the determinant det((A2,−A1), (−B2, B1)) ̸=
0, then we calculate φ(z) and ψ(z) in function of (< z/λ > +µ) and (< z/λ1 > +µ1), for all
fixed z ∈ Cn. Therefore φ and ψ are affine functions on Cn. Consequently, g1 and g2 are affine
functions on Cn.

(B) implies (A). This case is obvious.
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4 Some applications and algebraic methods

Definition 4.1. Let u : D → R be a function of class C2, where D is a domain of Cn,

n ≥ 1. Let a ∈ D. Then u is called strictly psh at a if

n∑
j,k=1

∂2u

∂zj∂zk
(a)αjαk > 0, for every

α = (α1, ..., αn) ∈ Cn\{0}, and u is called strictly psh on D if u is strictly psh at all points
z ∈ D.

Lemma 4.2. Let D be a domain of Cn, n,N ≥ 1. Consider (2N) holomorphic functions
f1, ..., fN , g1, ..., gN : D → C. Define u = (|f1|2 + . . .+ |fN |2).

(A) Assume that u is strictly psh on D. Then n ≤ N.

(B) Assume that N < n. Then u is not strictly psh at any point of D.

(C) (|f1−g1|2+...+|fN−gN |2) is strictly psh on D if and only if (|f1|2+|g1|2+...+|fN |2+|gN |2)
is strictly psh on D. (We have the same equivalence for the case strictly sh). Indeed, if
(|f1 − g1|2 + ...+ |fN − gN |2) is strictly psh on D, then 2N ≥ n.

Proof. Note that u is a function of class C∞ on D. The hermitian Levi form of u is

L(u)(z)(α) =

n∑
j,k=1

∂2u

∂zj∂zk
(z)αjαk = |

n∑
j=1

∂f1
∂zj

(z)αj |2 + ...+ |
n∑

j=1

∂fN
∂zj

(z)αj |2

for all z = (z1, ..., zn) ∈ D, for each α = (α1, ..., αn) ∈ Cn.

(A). Fix z ∈ D. We have the condition L(u)(z)(α) = 0 and α ∈ Cn implies that α = 0.
Hence, 

α1
∂f1
∂z1

(z) + ...+ αn
∂f1
∂zn

(z) = 0

.

.

.

α1
∂fN
∂z1

(z) + ...+ αn
∂fN
∂zn

(z) = 0

implies that α1 = ... = αn = 0. Then if α1(
∂f1
∂z1

(z), ..., ∂fN∂z1
(z)) + . . . + αn(

∂f1
∂zn

(z), ..., ∂fN∂zn
(z)) =

(0, ..., 0) ∈ CN and (α1, ..., αn) ∈ Cn, then α1 = ... = αn = 0. Thus the subset of n vectors
{(∂f1∂z1

(z), ..., ∂fN∂z1
(z)), ..., ( ∂f1∂zn

(z), ..., ∂fN∂zn
(z))} is a free family on CN . Since Cn is a complex vector

space of dimension N, then n ≤ N.

(B). Fix z = (z1, ..., zn) ∈ D and assume that the hermitian Levi form of u satisfy L(u)(z)(α) >
0, for all α ∈ Cn\{0}. Therefore the condition L(u)(z)(α) = 0 implies that α = 0. But

L(u)(z)(α) = |
n∑

j=1

∂f1
∂zj

(z)αj |2+...+|
n∑

j=1

∂fN
∂zj

(z)αj |2, for α = (α1, ..., αn) ∈ Cn. Now L(u)(z)(α) =

0 implies that
n∑

j=1

∂f1
∂zj

(z)αj = 0, ...,
n∑

j=1

∂fN
∂zj

(z)αj = 0. Thus



α1
∂f1
∂z1

(z) + ...+ αn
∂f1
∂zn

(z) = 0

.

.

.

α1
∂fN
∂z1

(z) + ...+ αn
∂fN
∂zn

(z) = 0
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and so α1(
∂f1
∂z1

(z), ..., ∂fN∂z1
(z))+...+αn(

∂f1
∂zn

(z), ..., ∂fN∂zn
(z)) = 0 ∈ CN implies that α1 = ... = αn =

0. Then the subset of n vectors {(∂f1∂z1
(z), ..., ∂fN∂z1

(z)), ..., ( ∂f1∂zn
(z), ..., ∂fN∂zn

(z))} is a free family of

the vector space CN , CN is a complex vector space of dimension N and N < n. This is a
contradiction. Consequently, for all z ∈ D, there exists α = (α1, ..., αn) ∈ Cn\{0} such that
L(u)(z)(α) = 0. Then u is not strictly psh at all points of D.

(C). We have (|f1 − g1|2 + ... + |fN − gN |2) is strictly psh on D if and only if v = (|f1|2 +
|g1|2 + ...+ |fN |2 + |gN |2) is strictly psh on D, because (|f1 − g1|2 + ...+ |fN − gN |2) = (h+ v)
on D, where h : D → R is a prh function. By (A), we have 2N ≥ n.

Proposition 4.3. Let g1, ..., gN : D → C be N analytic functions, n,N ≥ 1 and D is a domain
of Cn. The following conditions are equivalent

(A) u = (e|g1|
2
+ ...+ e|gN |2) is strictly psh on D and n ≥ N ;

(B) For all z ∈ D, the subset {(∂g1∂z1
(z), ..., ∂gN∂z1

(z)), ..., ( ∂g1∂zn
(z), ..., ∂gN∂zn

(z))} is a generating fam-

ily on CN .

Let m ≥ 2. Now recall that for all harmonic functions h : G → R, we have h is not convex
on all open balls subset of G, where G is an open of Rm, if h is not affine on G.

Theorem 4.4. (A) Let g : C → C be an analytic function. Then there exists an open disc
D(z0, r), (z0 ∈ C, r > 0) such that |g|2 is convex on D(z0, r).

(B) For any h : C → R be a harmonic function, there exists an open disc D(a,R), a ∈ C
and R > 0 such that u is psh on the convex not bounded domain G = {(z, w) ∈ C2/(w − z) ∈
D(a,R)}, but u1 is not psh on all not empty open ball subset of G if h is not affine on C, where
u(z, w) = eh(w−z) and u1(z, w) = h(w − z), for (z, w) ∈ C2.

This theorem have many applications in the case of the characterization of holomorphic
functions by plurisubharmonic functions (which is a fundamental subject in pluripotential the-
ory).

Proof. (A). Assume that |g|2 is not convex on any not empty open disc subset of C. Therefore
there exists ζ1 ∈ C, such that |g′′(ζ1)g(ζ1)| > |g′(ζ1)|2. Now since |g′′g| ≥ |g′|2 on C, then
g′′(z)g(z) = γ(g′(z))2, for each z ∈ C, where γ ∈ C, |γ| ≥ 1. By [2, Theorem 21], we have
γ ∈ { s−1

s , 1 / s ∈ N\{0}}. Therefore γ = 1. The condition |g′′(ζ1)g(ζ1)| > |g′(ζ1)|2 implies that
|γ| > 1, a contradiction. Consequently, there exists an open disc D(z0, r) where z0 ∈ C and r >
0, such that |g|2 is convex on D(z0, r).

(B). Let k : C → C, k is analytic and Re(k) = h. Then ek is analytic on C and eh = |ek|.
Thus there exists an open disc D(z0, r) (z0 ∈ C, r > 0), such that |ek| is convex on D(z0, r).
It follows that u is psh on G. Assume that u1 is psh on an open ball B((z1, w1), R1) ⊂ G,
(z1, w1) ∈ C2, R1 > 0. Define a = w1 − z1. Then a ∈ D(z0, r). Now let (z2, w2) ∈ C2 such that
w2 − z2 = a. Thus u1 is psh on B((z2, w2), R1). Consequently, u1 is psh on G1 = {(z, w) ∈
C2 / |w − z − a| < R1} = {(z, w) ∈ C2 / (w − z) ∈ D(a,R1)}. It follows that h is convex on
D(a,R1). But h is not an affine function on C, we get a contradiction.

Remark 4.5. Let D = D(0, 1) and g(z) = z2 + 4, for z ∈ D(0, 1). g is holomorphic on D. But
|g|2 is not convex on each not empty open disc subset of D. It follows that in all non- empty
bounded convex domains D1 ⊂ C, there exists an holomorphic function g1 : D1 → C, |g1|2 is
not convex in all non-empty open discs of D1. In fact let R > 0 such that D1 ⊂ D(0, R) and we
can consider in this case g1(z) = g( z

R) for z ∈ D(0, R).
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Theorem 4.6. Let A1, B1, ..., AN , BN ∈ C, n, s,N ∈ N\{0}. Put v = (v1 + ... + vN ), ψ =
(ψ1 + ... + ψN ), where f1, g1, ..., fN , gN : Cn → C are 2N analytic functions and uj(z, w) =

|Ajw − fj(z)|2 + |Bjw − gj(z)|2, vj(z, w) = |Ajw − ∂sfj
∂zs1

(z)|2 + |Bjw − ∂sgj
∂zs1

(z)|2, ψj(z, w) =

|Ajw− ∂sfj
∂zs1

(z)|2+|Bjw− ∂sgj
∂zs1

(z)|2, (z, w) ∈ Cn×C, j ∈ {1, ..., N}. The following three conditions
are equivalent:

(A) u1, ..., uN are convex functions on Cn × C and v is strictly psh on Cn × C;

(B) For n ≤ N and for all j ∈ {1, ..., N}, we have the holomorphic representation{
fj(z) = Aj(< z/aj > +bj) +Bjφj(z)

gj(z) = Bj(< z/aj > +bj)−Ajφj(z)

for all z ∈ Cn, where aj ∈ Cn, bj ∈ C, φj : Cn → C is a holomorphic function, |φj | is
convex on Cn, such that the set of n vectors

{(∂
s+1φ1

∂zs+1
1

(z), ...,
∂s+1φN

∂zs+1
1

(z)), (
∂s+1φ1

∂zs1∂z2
(z), ...,

∂s+1φN

∂zs1∂z2
(z)), ..., (

∂s+1φ1

∂zs1∂zn
(z), ...,

∂s+1φN

∂zs1∂zn
(z))}

is a free family of the complex vector space CN , for all z ∈ Cn;

(C) u1, ..., uN are convex functions on Cn × C and ψ is strictly psh on Cn × C.

Note that we have another generalization of the above theorem for each holomorphic partial
differential equation having constant coefficients on Cn, n ≥ 1.

Question 4.7. Let A1, A2, A3, A4, B1, B2, B3, B4 ∈ C\{0} and f1, g1, f2, g2, f3, g3, f4, g4 : Cn →
C be 8 holomorphic functions, n ≥ 1. Define uj(z, w) = |Ajw−fj(z)|2+|Bjw−gj(z)|2, vj(z, w) =
|Ajw−fj(z)|2+|Bjw−gj(z)|2 for (z, w) ∈ Cn×C and j ∈ {1, 2, 3, 4}. Let u = (u1+u2+u3+u4),
v = (v1 + v2 + v3 + v4) and φ = u+ v.

(A) Find exactly all the holomorphic functions f1, g1, f2, g2, f3, g3, f4, g4 : Cn → C such that
u1, u2, u3 and u4 are convex functions on Cn × C,
u is not strictly psh on all open balls of Cn × C,
φ is strictly psh on Cn × C.

What can we say of n?

(B) Find all the holomorphic functions f1, g1, f2, g2, f3, g3, f4, g4 : Cn → C such that

u1 is convex on Cn × C and not strictly psh on B(a1, R1)×D(b1, r1),
u2 is convex on Cn × C and not strictly psh on B(a2, R2)×D(b2, r2),
u3 is convex on Cn × C and not strictly psh on B(a3, R3)×D(b3, r3),
u4 is convex on Cn × C and not strictly psh on B(a4, R4)×D(b4, r4),
u is (n+ 1)− strictly sh on Cn × C but not strictly psh on all open balls
of Cn × C, and
φ is strictly psh on Cn × C.

a1, a2, a3, a4 ∈ Cn, b1, b2, b3, b4 ∈ C, R1, R2, R3, R4, r1, r2, r3, r4 ∈ R+\{0}.

Lemma 4.8. Let A1, ..., AN ∈ C, f1, ..., fN : Cn → C be N analytic functions, n,N ≥ 1. Define
uj(z, w) = |Ajw− fj(z)|2, vj(z, w) = |Ajw− fj(z)|2, u = (u1+ ...+uN ), v = (v1+ ...+ vN ) and
φ = (u+ v), for (z, w) ∈ Cn × C and j ∈ {1, ..., N}. The following conditions are equivalent:
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(A) φ is not strictly psh on all not empty open balls of Cn × C;

(B) v is not strictly psh on any nonempty Euclidean open ball of Cn × C.

Proof. We have φ and v are functions of class C∞ on Cn × C. The Levi Hermitian form of

φ is L(φ)(z, w)(α, β) =

N∑
j=1

|Ajβ −
n∑

k=1

∂fj
∂zk

(z)αk|2 +
N∑
j=1

(|Ajβ|2 + |
n∑

k=1

∂fj
∂zk

(z)αk|2), for (z, w) =

(z1, ..., zn, w), (α, β) = (α1, ..., αn, β) ∈ Cn × C. Similarly, L(v)(z, w)(α, β) =
N∑
j=1

(|Ajβ|2 +

|
n∑

k=1

∂fj
∂zk

(z)αk|2). Note that L(φ)(z, w)(α, β) and L(v)(z, w)(α, β) are functions independent of

w. Observe that we have the inequalities

0 ≤ L(v)(z, w)(α, β) ≤ L(φ)(z, w)(α, β) ≤ 3L(v)(z, w)(α, β)

for all (z, w) ∈ Cn × C, for each (α, β) ∈ Cn × C.
(A) implies (B). Let z ∈ Cn and R > 0. There exist z0 ∈ B(z,R), (α, β) ∈ Cn×C, such that

L(φ)(z, w)(α, β) = 0, for all w ∈ C. Then L(v)(z, w)(α, β) = 0. Thus, for each (z, w) ∈ Cn ×C,
for every R > 0, there exist (z0, w) ∈ Cn × C, (α, β) ∈ Cn × C, such that L(v)(z, w)(α, β) = 0.
Hence, v is not strictly psh in all Euclidean open balls of Cn × C.

(B) implies (A). This is obvious by the above proof.

As an application, we have the following.

Theorem 4.9. Let A1, B1, A2, B2, A3, B3, A4, B4 ∈ C\{0}. Let f1, g1, f2, g2, f3, g3, f4, g4 : Cn →
C be 8 analytic functions. Define{

uj(z, w) = |Ajw − fj(z)|2 + |Bjw − gj(z)|2,
vj(z, w) = |Ajw − fj(z)|2 + |Bjw − gj(z)|2

for (z, w) ∈ Cn × C and j ∈ {1, 2, 3, 4}. u = (u1 + u2 + u3 + u4), v = (v1 + v2 + v3 + v4),
φ = (u+ v). The following conditions are equivalent:

(A) u1, u2, u3 and u4 are convex functions on Cn ×C, u is not strictly psh in all open balls of
Cn × C and φ is strictly psh on Cn × C;

(B) 1 ≤ n ≤ 8, u is not strictly psh at all points of Cn ×C and for all j ∈ {1, 2, 3, 4}, we have
the holomorphic representation{

fj(z) = Aj(< z/λj > +µj) +Bjφj(z)

gj(z) = Bj(< z/λj > +µj)−Ajφj(z)

for all z ∈ Cn, where λj ∈ Cn, µj ∈ C, φj : Cn → C is a holomorphic function, |φj | is
convex on Cn, λj = (λj1, ..., λjn), with the following statements.

(i) For n = 8. We have {(λ1, λ2, λ3, λ4, (∂φ1

∂z1
(z), ..., ∂φ1

∂z8
(z)), (∂φ2

∂z1
(z), ..., ∂φ2

∂z8
(z)),

(∂φ3

∂z1
(z), ..., ∂φ3

∂z8
(z)), (∂φ4

∂z1
(z), ..., ∂φ4

∂z8
(z)))} is a basis of the complex vector space C8, for all

z ∈ C8.
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(ii) For n = 7. We have {(λ11, λ21, λ31, λ41, ∂φ1

∂z1
(z), ∂φ2

∂z1
(z), ∂φ3

∂z1
(z), ∂φ4

∂z1
(z)), ...,

(λ17, λ27, λ37, λ47,
∂φ1

∂z7
(z), ∂φ2

∂z7
(z), ∂φ3

∂z7
(z), ∂φ4

∂z7
(z))} is a free family on C8, for all z ∈ C7

and {(λ11, λ21, λ31, λ41, ∂φ1

∂z1
(z), ∂φ2

∂z1
(z), ∂φ3

∂z1
(z), ∂φ4

∂z1
(z)), ...,

(λ17, λ27, λ37, λ47,
∂φ1

∂z7
(z), ∂φ2

∂z7
(z), ∂φ3

∂z7
(z), ∂φ4

∂z7
(z)), (1, 1, 1, 1, 0, 0, 0, 0)} is not a free family

on C8, for all z ∈ C7.

(iii) For n = 6. We have {(λ11, λ21, λ31, λ41, ∂φ1

∂z1
(z), ∂φ2

∂z1
(z), ∂φ3

∂z1
(z), ∂φ4

∂z1
(z)), ...,

(λ16, λ26, λ36, λ46,
∂φ1

∂z6
(z), ∂φ2

∂z6
(z), ∂φ3

∂z6
(z), ∂φ4

∂z6
(z))} is a free family on C8, for all z ∈ C6

and {(λ11, λ21, λ31, λ41, ∂φ1

∂z1
(z), ∂φ2

∂z1
(z), ∂φ3

∂z1
(z), ∂φ4

∂z1
(z)), ...,

(λ16, λ26, λ36, λ46,
∂φ1

∂z6
(z), ∂φ2

∂z6
(z), ∂φ3

∂z6
(z), ∂φ4

∂z6
(z)), (1, 1, 1, 1, 0, 0, 0, 0)} is not a free family

on C8, for all z ∈ C6.

(iv) For n = 5. We have K(z) = {(λ11, λ21, λ31, λ41, ∂φ1

∂z1
(z), ∂φ2

∂z1
(z), ∂φ3

∂z1
(z), ∂φ4

∂z1
(z)), ...,

(λ15, λ25, λ35, λ45,
∂φ1

∂z5
(z), ∂φ2

∂z5
(z), ∂φ3

∂z5
(z), ∂φ4

∂z5
(z))} is a free family on C8, for all z ∈ C5

and {(λ11, λ21, λ31, λ41, ∂φ1

∂z1
(z), ∂φ2

∂z1
(z), ∂φ3

∂z1
(z), ∂φ4

∂z1
(z)), ...,

(λ15, λ25, λ35, λ45,
∂φ1

∂z5
(z), ∂φ2

∂z5
(z), ∂φ3

∂z5
(z), ∂φ4

∂z5
(z)), (1, 1, 1, 1, 0, 0, 0, 0)} is not a free family

on C8, for all z ∈ C5.

(v) For n = 4. We have K(z) = {(λ11, λ21, λ31, λ41, ∂φ1

∂z1
(z), ∂φ2

∂z1
(z), ∂φ3

∂z1
(z), ∂φ4

∂z1
(z)), ...,

(λ14, λ24, λ34, λ44,
∂φ1

∂z4
(z), ∂φ2

∂z4
(z), ∂φ3

∂z4
(z), ∂φ4

∂z4
(z))} is a free family on C8, for all z ∈ C4

and K(z) ∪ {(1, 1, 1, 1, 0, 0, 0, 0)} is not a free family on C8, for all z ∈ C4.

(vi) n ∈ {2, 3}. We have the same conclusion described as above.

(vii) n = 1. φ1, φ2, φ3, φ4 are constant functions on C and (λ1 ̸= 0, or λ2 ̸= 0, or λ3 ̸= 0, or
λ4 ̸= 0).

Proof. (A) implies (B). Define

ψ1(z, w) =
4∑

j=1

|w− < z/λj > −µj |2 +
4∑

j=1

|φj(z)|2,

ψ2(z, w) =
4∑

j=1

|w −< z/λj >− µj |2 +
4∑

j=1

|φj(z)|2,

ψ3(z, w) = |2w|2 +
4∑

j=1

| < z/λj > +µj |2 +
4∑

j=1

|φj(z)|2

for (z, w) ∈ Cn×C. Here φj : Cn → C, φj is analytic on Cn and |φj | is convex on Cn, (1 ≤ j ≤ 4)
and we have the holomorphic representation{

fj(z) = Aj(< z/λj > +µj) +Bjφj(z)

gj(z) = Bj(< z/λj > +µj)−Ajφj(z)

for all z ∈ Cn, with λj ∈ Cn, µj ∈ C, λj = (λj1, ..., λjn), 1 ≤ j ≤ 4, by Abidi [3, Theorem 1].
Note that uj , vj , u, v, φ, ψ1, ψ2, ψ3 are functions of class C∞ on Cn×C (for 1 ≤ j ≤ 4). We have
φ is strictly psh on Cn × C if and only if v is strictly psh on Cn × C. But v is strictly psh on
Cn×C if and only if ψ2 is strictly psh on Cn×C. By lemma 4.2, ψ2 is strictly psh on Cn×C if
and only if ψ3 is strictly psh on Cn ×C. Moreover, also by lemma 4.2, we have n ≤ 8. Observe
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that u is not strictly psh in all open balls of Cn × C if and only if ψ1 is not strictly psh in all
non- empty open balls of Cn × C.

State 1. n = 8.

Note that ψ3 is strictly psh on C8×C if and only if ψ4 is strictly psh on C8, where ψ4(z, w) =
4∑

j=1

| < z/λj > +µj |2 +
4∑

j=1

|φj(z)|2, for z ∈ C8. ψ4 is a function of class C∞ on C8. The Levi

Hermitian form of ψ4 is

L(ψ4)(z)(α) =

4∑
j=1

| < α/λj > |2 + |
8∑

j=1

∂φ1

∂zj
(z)αj |2 + |

8∑
j=1

∂φ2

∂zj
(z)αj |2+

|
8∑

j=1

∂φ3

∂zj
(z)αj |2 + |

8∑
j=1

∂φ4

∂zj
(z)αj |2 > 0

for any z = (z1, z2, z3, z4, z5, z6, z7, z8) ∈ C8, α = (α1, α2, α3, α4, α5, α6, α7, α8) ∈ C8\{0}. There-
fore the condition L(ψ4)(z)(α) = 0 if and only if α = 0. But L(ψ4)(z)(α) = 0 if and only if

< α/λ1 >= 0,
< α/λ2 >= 0,
< α/λ3 >= 0,
< α/λ4 >= 0,

< α/(∂φ1

∂z1
(z), ..., ∂φ1

∂z8
(z)) >= 0,

< α/(∂φ2

∂z1
(z), ..., ∂φ2

∂z8
(z)) >= 0,

< α/(∂φ3

∂z1
(z), ..., ∂φ3

∂z8
(z)) >= 0, and

< α/(∂φ4

∂z1
(z), ..., ∂φ4

∂z8
(z)) >= 0,

which imply that α = 0. Thus, (λ1, λ2, λ3, λ4, (
∂φ1

∂z1
(z), ..., ∂φ1

∂z8
(z)), (∂φ2

∂z1
(z), ..., ∂φ2

∂z8
(z)),

(∂φ3

∂z1
(z), ..., ∂φ3

∂z8
(z)), (∂φ4

∂z1
(z), ..., ∂φ4

∂z8
(z))) is a basis of the complex vector space C8, for all z ∈ C8.

Note that C8 is considered a complex vector space of dimension 8. Now ψ1(z, w) =
4∑

j=1

|w− <

z/λj > −µj |2 +
4∑

j=1

|φj(z)|2, for (z, w) ∈ Cn × C = C9. By Lemma 4.2, ψ1 is not strictly psh at

all points of C8 × C.
State 2. n = 7.

The Levi Hermitian form of ψ3 is

L(ψ3)(z, w)(α, β) = 4|β|2 + | < α/λ1 > |2 + | < α/λ2 > |2 + | < α/λ3 > |2 + | < α/λ4 > |2+

|
7∑

j=1

∂φ1

∂zj
(z)αj |2 + |

7∑
j=1

∂φ2

∂zj
(z)αj |2 + |

7∑
j=1

∂φ3

∂zj
(z)αj |2 + |

7∑
j=1

∂φ4

∂zj
(z)αj |2,
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z = (z1, ..., z7) ∈ C7, α = (α1, ..., α7) ∈ C7, β ∈ C. Fix now z = (z1, ..., z7) ∈ C7 and w ∈ C. We
have L(ψ3)(z, w)(α, β) = 0, implies that β = 0 and

< α/λ1 >= 0, < α/2 >= 0, < α/λ3 >= 0, < α/λ4 >= 0,

< α/(∂φ1

∂z1
(z), ..., ∂φ1

∂z7
(z)) >= 0, < α/(∂φ2

∂z1
(z), ..., ∂φ2

∂z7
(z)) >= 0,

< α/(∂φ3

∂z1
(z), ..., ∂φ3

∂z7
(z)) >= 0, < α/(∂φ4

∂z1
(z), ..., ∂φ4

∂z7
(z)) >= 0

for all α = (α1, ..., α7) ∈ C7, β ∈ C. Moreover, L(ψ3)(z, w)(α, β) = 0 implies that α = 0 ∈ C7

and β = 0. Indeed, 

α1λ11 + α2λ12 + ...+ α7λ17 = 0

α1λ21 + α2λ22 + ...+ α7λ27 = 0

α1λ31 + α2λ32 + ...+ α7λ37 = 0

α1λ41 + α2λ42 + ...+ α7λ47 = 0

α1
∂φ1

∂z1
(z) + α2

∂φ1

∂z2
(z) + ...+ α7

∂φ1

∂z7
(z) = 0

α1
∂φ2

∂z1
(z) + α2

∂φ2

∂z2
(z) + ...+ α7

∂φ2

∂z7
(z) = 0

α1
∂φ3

∂z1
(z) + α2

∂φ3

∂z2
(z) + ...+ α7

∂φ3

∂z7
(z) = 0

α1
∂φ4

∂z1
(z) + α2

∂φ4

∂z2
(z) + ...+ α7

∂φ4

∂z7
(z) = 0

and α = (α1, α2, ..., α7) ∈ C7 implies that α = 0. This condition is in fact equivalent with

α1(λ11, λ21, λ31, λ41,
∂φ1

∂z1
(z),

∂φ2

∂z1
(z),

∂φ3

∂z1
(z),

∂φ4

∂z1
(z)) + . . .

+α7(λ17, λ27, λ37, λ47,
∂φ1

∂z7
(z),

∂φ2

∂z7
(z),

∂φ3

∂z7
(z),

∂φ4

∂z7
(z)) = 0 ∈ C8

implies that α1 = . . . = α7 = 0. Thus,

{(λ11, λ21, λ31, λ41,
∂φ1

∂z1
(z),

∂φ2

∂z1
(z),

∂φ3

∂z1
(z),

∂φ4

∂z1
(z)), ...,

(λ17, λ27, λ37, λ47,
∂φ1

∂z7
(z),

∂φ2

∂z7
(z),

∂φ3

∂z7
(z),

∂φ4

∂z7
(z))}

is a free family of 7 vectors of C8, C8 is a complex vector space of dimension 8. It follows that
there exists a = (a1, ..., a8) ∈ C8\{0} such that

((λ11, λ21, λ31, λ41,
∂φ1

∂z1
(z),

∂φ2

∂z1
(z),

∂φ3

∂z1
(z),

∂φ4

∂z1
(z)), ...,

(λ17, λ27, λ37, λ47,
∂φ1

∂z7
(z),

∂φ2

∂z7
(z),

∂φ3

∂z7
(z),

∂φ4

∂z7
(z)), a)

is a basis of the complex vector space C8. The Levi Hermitian form of ψ1 is

L(ψ1)(z, w)(α, β) =

4∑
j=1

|β− < α/λj > |2 +
4∑

k=1

|
7∑

j=1

∂φk

∂zj
(z)αj |2

for α = (α1, ..., α7) ∈ C7 and β ∈ C.We will prove that ψ1 is not strictly psh at all points of C7×
C. In fact we prove that there exists (α, β) ∈ (C7\{0})×(C\{0}) such that L(ψ1)(z, w)(α, β) = 0.
Moreover, L(ψ1)(z, w)(α, β) = 0 if and only if

< α/λ1 > −β = 0, < α/λ2 > −β = 0, < α/λ3 > −β = 0,

< α/λ4 > −β = 0,

7∑
j=1

∂φ1

∂zj
(z)αj = 0,

7∑
j=1

∂φ2

∂zj
(z)αj = 0,

7∑
j=1

∂φ3

∂zj
(z)αj = 0,

7∑
j=1

∂φ4

∂zj
(z)αj = 0

70



Some Properties of Holomorphic Functions having Convex Absolute Values and Applications

where α = (α1, ..., α7) ∈ C7 and β ∈ C. Then

α1λ11 + α2λ12 + ...+ α7λ17 − β = 0

α1λ21 + α2λ22 + ...+ α7λ27 − β = 0

α1λ31 + α2λ32 + ...+ α7λ37 − β = 0

α1λ41 + α2λ42 + ...+ α7λ47 − β = 0

α1
∂φ1

∂z1
(z) + α2

∂φ1

∂z2
(z) + ...+ α7

∂φ1

∂z7
(z) = 0

α1
∂φ2

∂z1
(z) + α2

∂φ2

∂z2
(z) + ...+ α7

∂φ2

∂z7
(z) = 0

α1
∂φ3

∂z1
(z) + α2

∂φ3

∂z2
(z) + ...+ α7

∂φ3

∂z7
(z) = 0

α1
∂φ4

∂z1
(z) + α2

∂φ4

∂z2
(z) + ...+ α7

∂φ4

∂z7
(z) = 0.

Thus

α1(λ11, λ21, λ31, λ41,
∂φ1

∂z1
(z),

∂φ2

∂z1
(z),

∂φ3

∂z1
(z),

∂φ4

∂z1
(z)) + ...+ α7(λ17, λ27,

λ37, λ47,
∂φ1

∂z7
(z),

∂φ2

∂z7
(z),

∂φ3

∂z7
(z),

∂φ4

∂z7
(z))− β(1, 1, 1, 1, 0, 0, 0, 0) = 0 ∈ C8.

Now if

K(z) = ((λ11, λ21, λ31, λ41,
∂φ1

∂z1
(z),

∂φ2

∂z1
(z),

∂φ3

∂z1
(z),

∂φ4

∂z1
(z)), ...,

(λ17, λ27, λ37, λ47,
∂φ1

∂z7
(z),

∂φ2

∂z7
(z),

∂φ3

∂z7
(z),

∂φ4

∂z7
(z)), (1, 1, 1, 1, 0, 0, 0, 0))

is a basis of the complex vector space C8, then α1 = ... = α7 = β = 0. Then there exists
R > 0 such that for all ξ ∈ B(z,R) ⊂ C7, K(ξ) is a basis of C8 by using the determinant
det(K(z)) ̸= 0. Since K(ξ) is a basis of C8, the function ψ1 is strictly psh on B(z,R)×C. Now
since ψ1 is not strictly psh in all open balls of C7 × C, we have a contradiction. Consequently,
K(z) is not a basis of C8. Then there exists (α1, ..., α7, β) ∈ C7 × C\{0} such that

α1(λ11, λ21, λ31, λ41,
∂φ1

∂z1
(z),

∂φ2

∂z1
(z),

∂φ3

∂z1
(z),

∂φ4

∂z1
(z)) + . . .+ α7(λ17, λ27,

λ37, λ47,
∂φ1

∂z7
(z),

∂φ2

∂z7
(z),

∂φ3

∂z7
(z),

∂φ4

∂z7
(z))− β(1, 1, 1, 1, 0, 0, 0, 0) = 0 ∈ C8.

If now β = 0, then α = 0 ∈ C7, because

{(λ11, λ21, λ31, λ41,
∂φ1

∂z1
(z),

∂φ2

∂z1
(z),

∂φ3

∂z1
(z),

∂φ4

∂z1
(z)), ..., (λ17, λ27,

λ37, λ47,
∂φ1

∂z7
(z),

∂φ2

∂z7
(z),

∂φ3

∂z7
(z),

∂φ4

∂z7
(z))}

is a free family of 7 vectors of the complex vector space C8, a contradiction. Thus β ̸= 0.
Since β ̸= 0, α ̸= 0. Consequently, there exists (α, β) ∈ (C7\0})× (C\{0}) ⊂ C8\{0} such that
L(ψ1)(z, w)(α, β) = 0, for all (z, w) ∈ C7 × C. ψ1 is not strictly psh at all points of C7 × C.
Note that the proof of the other cases are obvious by the above proof.

Using the notation of theorem 4.9, we can study several problems, for example the following
questions.
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Question 4.10. Find all the holomorphic functions f1, g1, f2, g2, f3, g3, f4, g4 such that u1+u2+
u3 is not strictly psh in all open balls of Cn×C. v1+v2 and v3+v4 are not strictly psh in all open
balls of Cn×C, but φ is strictly psh on Cn×C (u1, u2, u3 and u4 are convex functions on Cn×C).

Question 4.11. Characterize exactly all the holomorphic functions fj , gj , 1 ≤ j ≤ 4 such that
u, v1+v2+v3, v1+v2+v4, v1+v3+v4 and v2+v3+v4 are functions not strictly psh in all open
balls of Cn×C, but v is strictly psh on Cn×C, u1, u2, u3 and u4 are convex functions on Cn×C.
Now find all the holomorphic functions fj , gj (1 ≤ j ≤ 4), such that (u + v1 + v2 + v3) is not
strictly psh on all open balls of Cn × C, but φ is strictly psh on Cn × C and φ is not strictly
convex on all not empty open balls of Cn × C, u1, u2, u3, u4 are convex functions on Cn × C.

We can generalize the above two questions for 2N functions fj , gj , 1 ≤ j ≤ N and we obtain
several classifications of many classes of holomorphic functions.

5 Concluding remarks

Theorem 5.1. Let g : Cn → C be an analytic function. Given a, c ∈ Cn, b, d ∈ C and define
u(z) = |g(z)+ < z/a > +b|2, v(z) = |g(z)+ < z/c > +d|2, z ∈ Cn. Assume that u and v are
convex functions on Cn and there exists z0 ∈ Cn such that (< z0/a > +b) ̸= (< z0/c > +d).
Then g is an analytic polynomial on Cn with deg(g) ≤ 2.

Proof. Case 1. n = 1.

u(z) = |g(z)+az+ b|2, v(z) = |g(z)+ cz+d|2, for z ∈ C and we have (a, b) ̸= (c, d). Observe
that f1 and f2 are holomorphic functions on C, f1(z) = g(z) + az + b, f2(z) = g(z) + cz + d,
z ∈ C. Since |f1|2 is convex on C, by [2, Théorème 19 ], the function |f ′1|2 is convex on C. Thus
|g′ + a| is convex on C. Also |g′ + c| is convex on C. Assume that a = c. Then b ̸= d. Define
g1(z) = g(z)+az, for z ∈ C. In this case, we have |g1+ b|2 and |g1+ c|2 are convex functions on
C. By theorems 3.1 and 3.7, we have g1 is affine on C. Consequently, g is affine on C. Asume
that a ̸= c. Since |g′ + a| and |g′ + c| are convex functions on C, g′ is affine on C. Therefore g
is a holomorphic polynomial on C with deg(g) ≤ 2.

Case 2. n ≥ 2. This is obvious by the problem of fibration.

Corollary 5.2. Here we use the notations of theorem 5.1. Assume that b ̸= d and a = c. Then
g is affine on Cn.

We can use theorem 5.1 for the study of the following problem. Let n ≥ 1. Find all the
holomorphic functions g : Cn → C such that |g + φ1|2 and |g + φ2|2 are convex functions on
Cn, where φ1, φ2 : Cn → C are two holomorphic functions such that |φ1|2 and |φ2|2 are convex
functions on Cn.

Remark 5.3. Let a1, a2 ∈ Cm, m ≥ 1. Let f1, f2 : Cm → C be two analytic functions, n ≥ 1.
Define {

u(z, w) = | < w/a1 > −f1(z)|2 + | < w/a2 > −f2(z)|2,
v(z, w) = | < w/a1 > −f1(z)|2 + | < w/a2 > −f2(z)|2

for (z, w) ∈ Cn × Cm. (A) We can study the following two problems{
u is convex on Cn × Cm,
v is strictly psh on Cn × Cm

and{
u is convex on Cn × Cm,
v is strictly psh but not strictly convex on Cn × Cm.
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(B) Assume that {a1, a2} is a free family on Cm and let f3 : Cn → C be a analytic function.
Define {

φ(z, w) = u(z, w) + |f3(z)|2,
ψ(z, w) = v(z, w) + |f3(z)|2

for (z, w) ∈ Cn × Cm. We prove that φ is convex on Cn × Cm if and only if f1, f2 are affine
functions on Cn, |f3| is convex on Cn and we can study the question where{

φ is convex but not strictly psh on Cn × Cm,
ψ is strictly psh on Cn × Cm.
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[14] Hyvönen, J., Rühentaus, J., On the extension in the Hardy classes and in the Nevanlinna
class, Bull. Soc. Math. France, 112 (1984), 469- 480, Zbl 0587.32011.

[15] Klimek, M., Pluripotential Theory, Clarendon Press, Oxford, 1991, Zbl 0742.31001.

[16] Krantz, S. G., Function Theory of Several Complex Variables, Wiley, New York, 1982, Zbl
0471.32008.

[17] Lárusson, F., Sigurdsson, R., Plurisubharmonic functions and analytic discs on manifolds,
J. Reine Angew. Math., 501 (1998), 1-39, Zbl 0901.31004.
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