
TMJM 
THE MINDANAWAN
Journal of Mathematics

The Mindanawan Journal of Mathematics
Official Journal of the Department of Mathematics and Statistics

Mindanao State University-Iligan Institute of Technology

ISSN: 2094-7380 (Print) | 2783-0136 (Online)

Vol. 5 (2023), no. 2, pp. 75–90
.

θω-Open Set and its Corresponding Topological Concepts
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Abstract

In this paper, we introduce a different version of open set called θω-open set, and then
described its connection to the other well-known concepts such as the classical open, θ-open,
and ω-open sets. It is worth noting that the family of all θω-open sets forms a topology. We
also define and investigate the concepts of θω-interior and θω-closure of a set. The concepts
of strongly θω-open function, strongly θω-closed function, θω-open function, and θω-closed
function are defined and characterized. Finally, related concepts such as θω-continuous
function, strongly θω-continuous function, and θω-connected are investigated further.

1 Introduction and Preliminaries

Several mathematicians are still drawn to proposing alternative topological concepts that can
replace concepts with stronger or weaker properties. This is due to the work done by Levine [15]
in 1963 where he introduced the concepts of semi-open, semi-closed set, and semi-continuity of
a function. This then generated new results, some of which are generalization of existing ones.

In 1968, Velicko [17] introduced the concepts of θ-closure and θ-interior of a subset of a topo-
logical space and subsequently defined the concepts of θ-continuity of a function in topological
spaces. Several authors then have obtained results related to θ-open sets, see [1, 4, 5, 6, 7, 8].

Let (X,T) be a topological space and A ⊆ X. The θ-closure and θ-interior of A are,
respectively, denoted and defined by

Clθ(A) = {x ∈ X : Cl(U) ∩A ̸= ∅ for every open set U containing x}

and

Intθ(A) = {x ∈ X : Cl(U) ⊆ A for every open set U containing x},

where Cl(U) is the closure of U in X. A subset A of X is θ-closed if Clθ(A) = A and θ-open if
Intθ(A) = A. Equivalently, A is θ-open if and only if X \ A is θ-closed. It is known that the
collection Tθ of all θ-open sets forms a topology on X, which is strictly coarser that T.
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In 1982, Hdeib [10] introduced the concepts of ω-open and ω-closed sets and ω-closed map-
pings on a topological space. Several papers have studied the concepts of ω-open sets and its
corresponding topological concepts, such as [14, 16].

A point x of a topological space X is called a condensation point of A ⊆ X if for each
open set G containing x, G ∩ A is uncountable. A subset B of X is ω-closed if it contains all
of its condensation points. The complement of B is ω-open. Equivalently, a subset U of X is
ω-open if and only if for each x ∈ U , there exists an open set O containing x such that O \ U
is countable.

A topological space X is said to be connected (resp., θ-connected, ω-connected) if X cannot
be written as the union of two nonempty disjoint open (resp., θ-open, ω-open) sets. Otherwise,
X is disconnected (resp., θ-disconnected, ω-disconnected).

It is known that Intθ(A) [12] (resp., Intω(A) [14]) is the largest θ-open (resp., ω-open) set
contained in A and Clθ(A) [12] (resp., Clω(A) [14]) is the smallest θ-closed (resp., ω-closed) set
containing A. Moreover, x ∈ Intθ(A) [17] (resp., x ∈ Intω(A) [14]) if and only if there exists an
open (resp., ω-open) set U containing x such that Cl(U) ⊆ A (resp., U ⊆ A) and x ∈ Clθ(A)
[17] (resp., x ∈ Clω(A) [14]) if and only if for every open (resp., ω-open) set U containing x,
Cl(U) ∩ A ̸= ∅ (resp., U ∩ A ̸= ∅). It is worth noting that Intθ(A) ⊆ Int(A) [12] (resp.,
Intθ(A) ⊆ Intω(A) [14]) and Cl(A) ⊆ Clθ(A) [12] (resp., Clω(A) ⊆ Clθ(A) [14]), as well as
Clω(A) ⊆ Cl(A) [2], for any subset A of a topological space X.

Let A be an indexing set and {Yα : α ∈ A} be a family of topological spaces. For each α ∈ A,
let Tα be the topology on Yα. The Tychonoff topology on {Yα : α ∈ A} is the topology generated
by a subbase consisting of all sets ⟨Uα⟩ = p−1

α (Uα), where pα :
∏
{Yα : α ∈ A} → Yα, the αth

coordinate projection map is defined by pα(⟨Yβ⟩) = yα, Uα ranges over all members of Tα, and
α ranges over all elements of A. Corresponding to Uα ⊆ Yα, denote p

−1
α (Uα) by ⟨Uα⟩. Similarly,

for finitely many indices α1, α2, · · · , αn and sets Uα1 ⊆ Yα1 , Uα2 ⊆ Yα2 , · · · , Uαn ⊆ Yαn , the
subset

⟨Uα1⟩ ∩ ⟨Uα2⟩ ∩ · · · ∩ ⟨Uαn⟩ = p−1
α (Uα1) ∩ p−1

α (Uα2) ∩ · · · ∩ p−1
α (Uαn)

is denoted by ⟨Uα1 , Uα2 , · · · , Uαn⟩. We note that for each open set Uα subset of Yα, ⟨Uα⟩ =
p−1
α (Uα) = Uα×

∏
β ̸=α Yβ. Hence, a basis for the Tychonoff topology consists of sets of the form

⟨Bα1 , Bα2 , · · · , Bαk
⟩, where Bαi is open in Yαi for every i ∈ K = {1, 2, · · · , k}.

Now, the projection map pα :
∏
{Yα : α ∈ A} → Yα is defined by pα(⟨yβ⟩) = yα for each

α ∈ A. It is known that every projection map is a continuous open surjection. Also, it is well
known that a function f from an arbitrary space X into the Cartesian product Y of the family
of spaces {Yα : α ∈ A} with the Tychonoff topology is continuous if and only if each coordinate
function pα ◦ f is continuous, where pα is the α-th coordinate projection map.

In this paper, we introduced a new class of open set called θω-open set. Related concepts
such as θω-open (resp., closed) and strongly θω-open (resp., strongly θω-closed) functions, θω-
continuous, and θω-connectedness are defined and characterized.

2 θω-Open and θω-Closed Functions

In this section, we define and characterize the concepts of θω-open (resp., θω-closed) and strongly
θω-open (resp., strongly θω-closed) functions. Throughout, if no confusion arises, let X and Y
be topological spaces.

Definition 2.1. Let X be a topological space. A subset A of X is said to be θω-open if for
every x ∈ A, there exists an ω-open set U containing x such that Clω(U) ⊆ A. A subset B of
X is said to be θω-closed if its complement X \B is θω-open.
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Theorem 2.2. Let X be a topological space and A ⊆ X. Then the following holds:

(i) If A is θ-open, then A is θω-open; and

(ii) If A is θω-open, then A is ω-open.

Proof. (i) Suppose that A is θ-open in X and let x ∈ A. Then there exists an open set U with
x ∈ U such that Cl(U) ⊆ A. Since U is open, U is also ω-open. Also, Clω(U) ⊆ Cl(U) ⊆ A.
Hence, Clω(U) ⊆ A. Therefore, A is θω-open.

(ii) Suppose that A is θω-open. Then for every x ∈ A, there exists an ω-open set U containing
x such that U ⊆ Clω(U) ⊆ A. Since U is ω-open, there exists an open set V containing x such
that V \ U is countable. Note that V \ A ⊆ V \ U . Since V \ U is countable, V \ A is also
countable. Hence, A is ω-open.

Corollary 2.3. Let X be a topological space and A ⊆ X. Then the following holds:

(i) If A is θ-closed, then A is θω-closed; and

(ii) If A is θω-closed, then A is ω-closed.

Proof. (i) Suppose A is θ-closed, then X \ A is θ-open. Thus, by Theorem 2.2 (i), X \ A is
θω-open. Therefore, X \ (X \A) = A is θω-closed.

(ii) Suppose that A is θω-closed, then by Definition 2.1, X \ A is θω-open. Thus, by Theo-
rem 2.2 (ii), X \A is ω-open. Therefore, X \ (X \A) = A is ω-closed.

The proof of the following Lemma is omitted since it is an immediate consequence of Defi-
nition 2.1.

Lemma 2.4. Let X be a topological space and A ⊆ X. If A is both ω-open and ω-closed, then
A is θω-open.

Remark 2.5. θω-open (resp., θω-closed) sets and open (resp., closed) sets are two independent
notions.

Example 2.6. Consider X = {a, b, c} with topology T = {∅, X, {a}, {c}, {a, c}}.
Consider the set {b, c}, which is not an open set. Since X is countable, every subset of X

is ω-open and ω-closed. It follows that {b, c} is ω-open and ω-closed. Hence, by Lemma 2.4,
{b, c} is θω-open.

Example 2.7. Let X = [
√
2, 2) be an interval in R with the topology

T = {∅, [
√
2, 2),Qc ∩ [

√
2, 2)}.

For any set S ⊆ [
√
2, 2), let Sc := [

√
2, 2) \S. We note first that if U is ω-open, then U must be

uncountable since [
√
2, 2) and Qc ∩ [

√
2, 2) are uncountable. Let A = Qc ∩ [

√
2, 2) which is an

open set. By [8, Remark 4], A is ω-open. We will show that A is not θω-open in X. Suppose on
the contrary that A is θω-open. Then, for every x ∈ A, there exists an ω-open set U containing
x such that U ⊆ Clω(U) ⊆ A. Since U is ω-open, either [

√
2, 2) \ U or [Qc ∩ [

√
2, 2)] \ U is

countable. If [Qc ∩ [
√
2, 2)] \ U is countable, then

[
√
2, 2) \ U = [[Qc ∩ [

√
2, 2)] \ U ] ∪ [Q ∩ [

√
2, 2)]
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is countable. Either case, [
√
2, 2) \ U is countable.

Next, we show that A = Qc ∩ [
√
2, 2) is not ω-closed. Suppose that A is ω-closed. Then

X \A = Q∩ [
√
2, 2) is ω-open, a contradiction since X \A is countable. Thus, A is not ω-closed.

It follows that U ⊆ Clω(U) ⊊ A. This means that there exists y ∈ A such that y /∈ Clω(U).
Hence, by [14, Lemma 2 (iii)], there exists an ω-open set B containing y such that B ∩ U = ∅.
This implies that B ⊆ [

√
2, 2)\U . This is a contradiction since B is uncountable and [

√
2, 2)\U

is countable. Accordingly, A is not θω-open.

Similar argument above can be used to verify that θω-closed sets and closed sets are two
independent notions.

In view of Theorem 2.2, Corollary 2.3, and Remark 2.5, we have the following remark.

Remark 2.8. The following diagram holds for a subset of topological space.

ω-open

θω-open

θ-open open

We remark that the above diagram also holds for its respective closed sets. The reverse
implications for ω-open and θω-open sets and θω-open and θ-open sets are not true as shown
in the following examples. Counterexamples for the other reverse implication are found in [8,
p.295].

Example 2.9. Consider X = {a, b, c, d} with a topology T = {∅, X, {a}, {b}, {a, b}}. Consider
A = {c, d}. Since X is countable, all subsets of X is ω-open and ω-closed. Hence, {c, d} is
ω-open and ω-closed. Thus, by Lemma 2.4, A is θω-open. Clearly, A is not open. Thus, A is
not θ-open (see [8]).

Example 2.10. Consider again Example 2.7 with the same topology. Let A = Qc ∩ [
√
2, 2). It

is already shown in Example 2.7 that A is ω-open but not θω-open.

Lemma 2.11. Let X be a topological space and let A,B ⊆ X. Then Clω(A ∩B) ⊆ Clω(A) ∩
Clω(B).

Proof. Let A,B ⊆ X. Since A ⊆ Clω(A) and B ⊆ Clω(B). Hence, we have A ∩B ⊆ Clω(A) ∩
Clω(B). Since Clω(A ∩ B) is the smallest ω-closed set containing A ∩ B. Thus, we have
Clω(A ∩B) ⊆ Clω(A) ∩ Clω(B).

Theorem 2.12. Let Tθω be the family of θω-open subsets of a topological space X. Then Tθω

forms a topology on X.

Proof. Clearly, X,∅ ∈ Tθω .
Now, let {Aα}α∈A be a collection of θω-open subsets of X. Let x ∈

⋃
α∈AAα. Then x ∈ Aα0

for some α0 ∈ A. Since Aα0 is θω-open, then there exist an ω-open set Uα0 with x ∈ Uα0 such
that Clω(Uα0) ⊆ Aα0 ⊆

⋃
α∈AAα. Thus,

⋃
α∈AAα ∈ Tθω .

Lastly, let A1 and A2 ∈ Tθω and let x ∈ A1∩A2. Since A1∩A2 is θω-open, then there exists
an ω-open sets U1 and U2 with x ∈ U1 ∩ U2 such that Clω(U1) ⊆ A2 and Clω(U2) ⊆ A2. Since
Tω forms a topology, it follows that U1 ∩ U2 is ω-open set containing x, then by Lemma 2.11,
we have Clω(U1 ∩ U2) ⊆ Clω(U1) ∩ Clω(U2) ⊆ A1 ∩A2. Hence, A1 ∩A2 ∈ Tθω .

Therefore, Tθω is a topology on X.
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Definition 2.13. Let X be a topological space and A ⊆ X.

(i) The θω-interior of A denoted by Intθω(A), is defined by Intθω(A) =
⋃
{U : U is a θω-open

set and U ⊆ A}. We note that in view of Theorem 2.12, Intθω(A) is the largest θω-open
set contained in A. Moreover, x ∈ Intθω(A) if and only if there exists a θω-open set U
with x ∈ U such that U ⊆ A.

(ii) The θω-closure of A denoted by Clθω(A), is defined by Clθω(A) =
⋂
{F : F is a θω-

closed set and A ⊆ F}. Then by Theorem 2.12, Clθω(A) is the smallest θω-closed set
containing A. Moreover, x ∈ Clθω(A) if and only if for every θω-open set U containing x,
U ∩A ̸= ∅.

Remark 2.14. Let X be a topological space and A,B ⊆ X. Then the following statements
hold:

(i) Intθω(A) ⊆ A.

(ii) A is θω-open if and only if A = Intθω(A).

(iii) A ⊆ B implies that Intθω(A) ⊆ Intθω(B).

(iv) Intθω(A) = Intθω(Intθω(A)).

(v) Intθω(A) ∩ Intθω(B) = Intθω(A ∩B).

(vi) A ⊆ Clθω(A).

(vii) A is θω-closed if and only if A = Clθω(A).

(viii) A ⊆ B implies that Clθω(A) ⊆ Clθω(B).

(ix) Clθω (Clθω(A)) = Clθω(A).

(x) Clθω(A) ∪ Clθω(B) = Clθω(A ∪B).

(xi) Intθω(X \A) = X \ Clθω(A).

(xii) Clθω(X \A) = X \ Intθω(A).

(xiii) x ∈ Intθω(A) if and only if there exists an ω-open set U containing x such that Clω(U)
⊆ A.

(xiv) x ∈ Clθω(A) if and only if for each ω-open set U containing x, Clω(U) ∩A ̸= ∅.

(xv) Intθ(A) ⊆ Intθω(A) ⊆ Intω(A).

(xvi) Clω(A) ⊆ Clθω(A) ⊆ Clθ(A).

In view of Theorem 2.2 and Remark 2.8 we have the following corollary.

Corollary 2.15. Let (X,T) be a topological space. Then Tθ ⊆ Tθω ⊆ Tω.

We shall give some characterizations of strongly θω-open (resp., strongly θω-closed) and
θω-open (resp., θω-closed) functions.

Definition 2.16. Let X and Y be a topological spaces. A function f : X → Y is said to be
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(i) strongly θω-open (resp., strongly θω-closed) on X if f(G) is θω-open (resp. θω-closed) in
Y for every open (resp., closed) set G in X.

(ii) θω-open (resp., θω-closed) on X if f(G) is θω-open (resp., θω-closed) in Y for every θ-open
(resp., θ-closed) set G in X.

In [8, Remark 4], if A is θ-open (resp., θ-closed), then A is open (resp., closed). Then we
have the following remarks.

Remark 2.17. Every strongly θω-open function is a θω-open function but the converse is not
necessarily true.

Example 2.18. Let X = Y = R with topologies TX = {∅,R,N} and TY = {∅,R,R \ N}.
Consider f : R → R be the identity function, that is, f(x) = x for all x ∈ R. Observe that

the only θ-open sets in X are ∅ and X. Also, f(∅) = ∅ and f(X) = Y are θω-open in Y .
Thus, f is θω-open on X.

To show that f is not strongly θω-open, we will verify first that N is not ω-open in Y .
Suppose that N is ω-open in Y . Then for all x ∈ N, there exists an open set V containing x
such that V \N is countable. Since R is the only open set containing x ∈ N, R\N is uncountable,
a contradiction. Hence, N is not ω-open. Accordingly, N is not θω-open, by Theorem 2.2 (ii).

Next, note that N is not θω-open in X, it follows that f(N) = N is not θω-open in Y . Thus,
f is not strongly θω-open on X.

Remark 2.19. Every strongly θω-closed function is a θω-closed function but the converse is
not necessarily true.

Consider again Example 2.18 with the same topologies. Note that the only θ-closed in X
are ∅ and R. Also, f(∅) = ∅ and f(X) = Y are θω-closed in Y . Thus, f is θω-closed on X.

Next, we show that f is not strongly θω-closed on X. Observe that the closed sets in X
are ∅, R, and R \ N. Also, f(R \ N) = R \ N. We have shown in Example 2.18, that N is not
θω-open in Y . Thus, R \ N is not θω-closed in Y . Therefore, f is not strongly θω-closed on X.

Theorem 2.20. Let X and Y be a topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is strongly θω-open on X.

(ii) f(Int(A)) ⊆ Intθω(f(A)) for every A ⊆ X.

(iii) f(B) is θω-open for every basic open set B in X.

(iv) For each p ∈ X and every open set O in X containing p, there exists an ω-open set W in
Y containing f(p) such that Clω(W ) ⊆ f(O).

Proof. (i) ⇒ (ii): Suppose that f is strongly θω-open on X. Let A ⊆ X. Note that Int(A) ⊆ A,
this means that f(Int(A)) ⊆ f(A). Since f is strongly θω-open and Int(A) is open in X,
f(Int(A)) is θω-open set contained in f(A). Observe that Intθω(f(A)) is the largest θω-open
set contained in f(A). Thus, f(Int(A)) ⊆ Intθω(f(A)).

(ii) ⇒ (iii): Assume that (ii) holds and let B be a basic open set in X. Then by assumption,
f(B) = f(Int(B)) ⊆ Intθω(f(B)) ⊆ f(B). Hence, Intθω(f(B)) = f(B). Thus, f(B) is θω-open
in X.

(iii) ⇒ (iv): Suppose that (iii) holds. Let p ∈ X and let O be an open in X containing
p. Since O is open, then there exists a basic open set B with p ∈ B such that B ⊆ O. Thus,
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f(p) ∈ f(B) ⊆ f(O). Then f(B) is θω-open in Y , by assumption. Thus, there exists an ω-open
set W in Y with f(p) ∈ W such that Clω(W ) ⊆ f(B) ⊆ f(O).

(iv) ⇒ (i): Assume that (iv) holds. Let O be open in X and let y ∈ f(O). Then there
exists p with p ∈ O such that f(p) = y. By assumption, there exists an ω-open set W in Y
with y ∈ W such that Clω(W ) ⊆ f(O). Thus, f(O) is θω-open in Y . Therefore, f is strongly
θω-open on X.

Theorem 2.21. Let X and Y be a topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is strongly θω-closed on X.

(ii) Clθω(f(A)) ⊆ f(Cl(A)) for every A ⊆ X.

Proof. (i) ⇒ (ii): Assume that f is strongly θω-closed on X and let A ⊆ X. Since A ⊆ Cl(A),
then f(A) ⊆ f(Cl(A)). Note that Cl(A) is closed in X and f(Cl(A)) is θω-closed in Y . Thus,
Clθω(f(A)) ⊆ f(Cl(A)) since Clθω(f(A)) is the smallest θω-closed set containing f(A).

(ii) ⇒ (i): Let F be closed in X. Thus, F = Cl(F ). This means that f(F ) = f(Cl(F )).
By assumption, we have f(F ) ⊆ Clθω(f(F )) ⊆ f(Cl(F )) = f(F ). Thus, Clθω(f(F )) = f(F ),
which means f(F ) is θω-closed in Y . Therefore, f is strongly θω-closed on X.

Theorem 2.22. Let X and Y be a topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is θω-open on X.

(ii) f(Intθ(A)) ⊆ Intθω(f(A)) for every A ⊆ X.

(iii) For each p ∈ X and every open set O in X containing p, there exists an ω-open set W in
Y containing f(p) such that Clω(W ) ⊆ f(Cl(O)).

Proof. (i) ⇒ (ii): Suppose f is θω-open on X. Let A ⊆ X. Since Intθ(A) ⊆ A, f(Intθ(A)) ⊆
f(A). Now, note that f is θω-open and Intθ(A) is θ-open in X, so we have f(Intθ(A)) is a
θω-open set contained in f(A). Since Intθω(f(A)) is the largest θω-open set contained in f(A),
f(Intθ(A)) ⊆ Intθω(f(A)).

(ii) ⇒ (iii): Assume that (ii) holds. Then let p ∈ X and O be an open in X containing
p. Then there exists an open set U containing p such that U ⊆ O. This means x ∈ U ⊆
Cl(U) ⊆ Cl(O). It follows that p ∈ Intθ(Cl(O)). By assumption, f(p) ∈ f(Intθ(Cl(O))) ⊆
Intθω(f(Cl(O))). By Remark 2.14 (xiv), there exists an ω-open set W in Y containing f(p)
such that Clω(W ) ⊆ f(Cl(O)).

(iii) ⇒ (i): Assume that (iii) holds. Let O be a θ-open in X and let y ∈ f(O). Then, there
exists p with p ∈ O such that f(p) = y. Since O is θ-open, there exists an open set V containing
p such that Cl(V ) ⊆ O. By assumption, there exists an ω-open set W in Y with y ∈ W such
that Clω(W ) ⊆ f(Cl(V )) ⊆ f(O). Thus, f(O) is θω-open in Y . Therefore, f is θω-open on
X.

Theorem 2.23. Let X and Y be a topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is θω-closed on X.

(ii) Clθω(f(A)) ⊆ f(Clθ(A)) for every A ⊆ X.
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Proof. (i) ⇒ (ii): Assume that f is θω-closed on X and let A ⊆ X. Since A ⊆ Clθ(A), then
f(A) ⊆ f(Clθ(A)). Since Clθ(A) is θ-closed inX, f(Clθ(A)) is θω-closed in Y . Since Clθω(f(A))
is the smallest θω-closed set containing f(A). Thus, Clθω(f(A)) ⊆ f(Clθ(A)).

(ii) ⇒ (i): Let F be θ-closed in X. Then F = Clθ(F ). This means that f(F ) = f(Clθ(F )).
By assumption, we have f(F ) ⊆ Clθω(f(F )) ⊆ f(Clθ(F )) = f(F ). Thus, Clθω(f(F )) = f(F ),
which means f(F ) is θω-closed in Y . Therefore, f is θω-closed on X.

Theorem 2.24. Let X and Y be a topological spaces and f : X → Y be a bijective function.
Then

(i) f is strongly θω-open if and only if f is strongly θω-closed.

(ii) f is θω-open if and only if f is θω-closed.

Proof. (i): Suppose that f is strongly θω-open on X and let G be closed in X. Then, f(X \G)
is θω-open in Y . Since f is bijective, f(X \G) = Y \ f(G) which is θω-open in Y . Hence, f(G)
is θω-closed in Y .

Conversely, suppose that f is strongly θω-closed on X and let A be open in X. Thus,
f(X \ A) is θω-closed in Y . Since f is bijective, f(X \ A) = Y \ f(A) is θω-closed in Y . Thus,
f(A) is θω-open in Y .

(ii): Suppose that f is θω-open on X and let G be θ-closed in X. Then, f(X \G) is θω-open
in Y . Since f is bijective, f(X \G) = Y \f(G) which is θω-open in Y . Hence, f(G) is θω-closed
in Y .

Conversely, Suppose that f is θω-closed on X and let A be θ-open in X. Thus, f(X \ A)
is θω-closed in Y . Since f is bijective, f(X \ A) = Y \ f(A) is θω-closed in Y . Thus, f(A) is
θω-open in Y .

3 θω-Continuous Functions and Other Versions of Continuity

This section characterizes the concepts of θω-continuous functions and strongly θω-continuous
functions. Moreover, relationships of these concepts to the other well-known versions of conti-
nuity are described.

Definition 3.1. Let X and Y be topological spaces. A function f : X → Y is strongly θω-
continuous on X if f−1(A) is θω-open in X for every open set A in Y .

Definition 3.2. Let X and Y be topological spaces. A function f : X → Y is θω-continuous
on X if f−1(A) is θω-open in X for every θ-open set A in Y .

Theorem 3.3. Let X and Y be topological spaces and f : X → Y be a function. Then the
following are equivalent:

(i) f is θω-continuous on X

(ii) f−1(F ) is θω-closed in X for each θ-closed subset F in Y

(iii) For every x ∈ X and every open set V in Y containing f(x), there exists an ω-open set
U containing x such that f(Clω(U)) ⊆ Cl(V ).

(iv) f(Clθω(A)) ⊆ Clθ(f(A)) for each A ⊆ X.

(v) Clθω(f
−1(B)) ⊆ f−1(Clθ(B)) for each B ⊆ Y .

(vi) f−1(V ) ⊆ Intθω(f
−1(Cl(V ))) for each open set V ⊆ Y .
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(vii) Clθω(f
−1(V )) ⊆ f−1(Cl(V )) for each open set V ⊆ Y .

Proof. (ii) ⇒ (i): Suppose that (ii) holds. Let G be θ-open in Y . Then Y \G is θ-closed in Y .
By assumption, f−1(Y \G) = X \ f−1(G) is θω-closed in X. It follows that f−1(G) is θω-open
in X. Accordingly, f is θω-continuous on X.

(i) ⇒ (iii): Suppose that (i) holds. Let x ∈ X and let V be an open set in Y containing
f(x). This means that there exists an open set O in Y containing f(x) such that O ⊆ V .
It follows that Cl(O) ⊆ Cl(V ). Thus, f(x) ∈ Intθ(Cl(V )). Since f is θω-continuous and
Intθ(Cl(V )) is θ-open in Y , f−1(Intθ(Cl(V ))) is θω-open in X. Hence, by Definition 2.1, there
exists an ω-open set U ∋ x such that Clω(U) ⊆ f−1(Intθ(Cl(V ))). Accordingly, f(Clω(U)) ⊆
f(f−1(Intθ(Cl(V )))) ⊆ Intθ(Cl(V )) ⊆ Cl(V ).

(iii) ⇒ (iv): Assume that (iii) holds. Let A ⊆ X and x ∈ Clθω(A). Let O be an open set
in Y with f(x) ∈ O. By assumption, there exists an ω-open set V ∋ x such that f(Clω(V )) ⊆
Cl(O). Since x ∈ Clθω(A), then by Theorem 2.14 (xiv), Clω(V ) ∩ A ̸= ∅. It follows that
∅ ̸= f(Clω(V ) ∩ A) ⊆ f(Clω(V )) ∩ f(A) ⊆ Cl(O) ∩ f(A). Then, f(x) ∈ Clθ(f(A)) so that
x ∈ f−1(Clθ(f(A))). Hence, f(Clθω(A)) ⊆ Clθ(f(A)).

(iv) ⇒ (v): Let B ⊆ Y and let A = f−1(B) ⊆ X. Then f(A) = f(f−1(B)) ⊆ B. By
assumption, f(Clθω(A)) ⊆ Clθ(f(A)). Hence, Clθω(f

−1(B)) = Clθω(A) ⊆ f−1(f(Clθω(A))) ⊆
f−1(Clθ(f(A))) ⊆ f−1(Clθ(B)).

(v) ⇒ (ii): Let F be a θ-closed subset in Y . Since F is θ-closed, it follows that F = Clθ(F ).
By assumption,

Clθω(f
−1(F )) ⊆ f−1(Clθ(F )) = f−1(F )

Since f−1(F ) ⊆ Clθω(f
−1(F )), it follows that Clθω(f

−1(F )) = f−1(F ). Hence, f−1(F ) is
θω-closed in X.

(iii) ⇒ (vi): Suppose that (iii) holds. Let V be an open set in Y and let x ∈ f−1(V ).
Then f(x) ∈ f(V ). By assumption, there exists an ω-open set U containing x such that
f(Clω(U)) ⊆ Cl(V ). This means that x ∈ U ⊆ Clω(U) ⊆ f−1(Cl(V )). Thus, by Remark 2.14
(xiii), x ∈ Intθω(f

−1(Cl(V ))). Hence, (vi) holds.

(vi) ⇒ (vii): Suppose that (vi) holds. Let V be an open set in Y and let x ∈ Clθω(f
−1(V )).

Suppose on the contrary that x /∈ f−1(Cl(V )). Then f(x) /∈ Cl(V ). This means that there exists
an open set G with f(x) ∈ G such that G∩V = ∅. Since both G and V are open, Cl(G)∩V = ∅
so that f−1(Cl(G)) ∩ f−1(V ) = ∅. By assumption, x ∈ f−1(G) ⊆ Intθω(f

−1(Cl(G))). This
implies that there exists an ω-open set U containing x such that Clω(U) ⊆ f−1(Cl(G)). Hence,
Clω(U) ∩ f−1(V ) = ∅. By Remark 2.14 (xiv), x /∈ Clθω(f

−1(V )), a contradiction. Hence,
x ∈ f−1(Cl(V )) so that (vii) holds.

(vii) ⇒ (iii): Assume that (vii) holds. Let x ∈ X and let V be an open set in Y with
f(x) ∈ V . Then V ∩ (Y \ Cl(V )) = ∅ so that f(x) /∈ Cl(Y \ Cl(V )). This means that
x /∈ f−1(Cl(Y \ Cl(V ))). By assumption, x /∈ Clθω(f

−1(Cl(Y \ Cl(V )))). By Remark 2.14
(xiv), there exists an ω-open set U ∋ x such that

Clω(U) ∩ f−1(Y \ Cl(V )) = Clω(U) ∩ (X \ f−1(Cl(V ))) = ∅

Thus, f(Clω(U)) ⊆ Cl(V ). Therefore, (iii) holds.

Theorem 3.4. Let X be a topological space and V be an open subset of X. Then

(i) Int(Cl(V )) is regular open; and

(ii) Cl(V ) is regular closed
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Proof. (i): Let A = Int(Cl(V )). Then A = Int(Cl(V )) ⊆ Cl(V ) so that Cl(A) ⊆ Cl(V ).
Thus, Int(Cl(A)) ⊆ Int(Cl(V )) = A . Conversely, note that A ⊆ Cl(A). Since A is open,
A = Int(A) ⊆ Int(Cl(A)). Consequently, Int(Cl(V )) is regular open.

(ii): Let B = Cl(V ). Then, V ⊆ Cl(V ) = B. Since V is open, V = Int(V ) ⊆ Int(B)
so that B = Cl(V ) ⊆ Cl(Int(B)). Conversely, note that Int(B) ⊆ B. Since B is closed,
Cl(Int(B)) ⊆ Cl(B) = B. Accordingly, Cl(V ) is regular closed.

Theorem 3.5. Let X and Y be topological spaces and let f : X → Y be a function.

(i) If f is strongly θω-continuous, then f is ω-continuous.

(ii) If f is ω-continuous, then f is almost ω-continuous.

(iii) If f is almost ω-continuous, then f is θω-continuous.

(iv) If f is θω-continuous, then f is weakly ω-continuous.

Proof. (i): Suppose that f is strongly θω-continuous. Then for every open set A in Y , f−1(A) is
θω-open in X. By Theorem 2.2 (ii), every θω-open is ω-open. Hence, f−1(A) is ω-open. Thus,
f is ω-continuous.

(ii): Let f be ω-continuous on X. Let V be a regular open set in Y . Then, V is open in Y .
By assumption, f−1(V ) is ω-open in X. Hence, by [16, Theorem 2.2], f is almost ω-continuous
on X.

(iii): Suppose that f is almost ω-continuous. Let x ∈ X and let V be open in Y containing
f(x). Then f−1(Int(Cl(V )) is ω-open in X by [16, Theorem 2.2]. Since Cl(V ) is regular closed
by Theorem 3.4, f−1(Cl(V )) is ω-closed in X by [16, Theorem 2.2]. Let U = f−1(Int(Cl)V )
which contains x. Then

Clω(U) = Clωf
−1(Int(Cl(V )) ⊆ Clω(f

−1(Cl(V )) = f−1(Cl(V )).

Consequently, f(Clω(U)) ⊆ Cl(V ). Then by Theorem 3.3 (iii), f is θω-continuous.
(iv): Let f be θω-continuous. Let x ∈ X and let V be open in Y containing f(x). Then

by Theorem 3.3, there exists an ω-open set U ∋ x such that f(Clω(U)) ⊆ Cl(V ). Since
U ⊆ Clω(U), it follows that f(U) ⊆ f(Clω(U)) ⊆ Cl(V ). Thus, f is weakly ω-continuous.

Remark 3.6. The following diagram holds for a function f : X → Y .

strongly θω-continuous ω-continuous

θω-continuous almost ω-continuous

weakly ω-continuous

Except for θω-continuity and weakly ω-continuity, the following examples show that the
implications above are not reversible.

Example 3.7. Let X = [
√
2, 2) and Y = {a, b} be two topological spaces with respective

topologies TX = {∅, [
√
2, 2),Qc ∩ [

√
2, 2)} and TY = {∅, Y, {a}}. Define f : X → Y as follows

f(x) =

{
a, if x ∈ Qc ∩ [

√
2, 2)

b, if x ∈ Q ∩ [
√
2, 2).
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Note that f−1({a}) = Qc ∩ [
√
2, 2) and f−1(Y ) = X are ω-open in X. However, f is not

strongly θω-continuous since f−1({a}) = Qc ∩ [
√
2, 2) is not θω-open, by Example 2.7.

Example 3.8. LetX = R and Y = {a, b, c} be two topological spaces with respective topologies
TX = {∅,R,Z} and TY = {∅, Y, {a}}.

First, we show that {a} is not regular open in Y . Note that Int(Cl({a})) = Int(Y ) = Y ̸=
{a}. Hence, {a} is not regular open. It follows that the only regular open sets in Y are ∅ and
Y .

Next, we show that Q is not ω-open in X. Suppose that Q is ω-open. Then for all x ∈ Q,
there exists an open set U ∋ x such that U \ Q is countable. If x ∈ Q \ Z, the only open set
containing x is R. But R \Q is uncountable, a contradiction. Thus, Q is not ω-open.

Define f : X → Y as follows

f(x) =

{
a, if x ∈ Q
b, if x /∈ Q

Then, f is almost ω-continuous since f−1(∅) = ∅ and f−1(Y ) = X are ω-open. However,
f is not ω-continuous since f−1({a}) = Q is not ω-open in X.

Example 3.9. Let X = R and Y = {a, b, c, d} be two topological spaces with respective
topologies TX = {∅,R,Qc} and TY = {∅, Y, {a}, {c, d}, {a, c, d}}.

We will show first that N is not ω-open in X. Suppose that N is ω-open in X. Then, for all
x ∈ N, there exists an open set U ∋ x such that U \ N is countable. Note further that the only
open set U containing x ∈ N is R. But R \ N is uncountable, a contradiction. Thus, N is not
ω-open.

Define f : X → Y as follows

f(x) =

{
a, if x ∈ N
b, if x /∈ N

Observe that the only θ open sets in Y are ∅ and Y . Also, f−1(∅) = ∅ and f−1(Y ) = R are
θω-open. Thus f is θω-continuous on X. Next, note that {a} is a regular open set since {a} =
Int(Cl({a})) = Int({a, b}) = {a}. However, f−1({a}) = N is not ω-open in X. Therefore, by
[16, Theorem 2.2], f is not almost ω-continuous.

Theorem 3.10. Let X and Y be topological spaces and f : X → Y be a function. Then the
following are equivalent:

(i) f is strongly θω-continuous on X.

(ii) f−1(F ) is θω-closed in X for each closed subset F in Y .

(iii) f−1(B) is θω-open in X for each (subbasic) basic open set B in Y .

(iv) For every x ∈ X and every open set V in Y containing f(x), there exists an ω-open set
U containing x such that f(Clω(U)) ⊆ V .

(v) f(Clθω(A)) ⊆ Cl(f(A)) for each A ⊆ X.

(vi) Clθω(f
−1(B)) ⊆ f−1(Cl(B)) for every B ⊆ Y .

Proof. (i) ⇒ (ii): Suppose that f is strongly θω-continuous on X. Let F be a closed set in Y .
Then Y \ F is open in Y . Since f is θω-continuous, then f−1(Y \ F ) = X \ f−1(F ) is θω-open
in X. Thus, f−1(F ) is θω-closed in X.
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(ii) ⇒ (i): Assume that f−1(F ) is θω-closed in X for each closed set F in Y . Let G be an
open set in Y . Then, Y \G is a closed set in Y so that f−1(Y \G) = X \ f−1(G) is θω-closed
in X. This means that f−1(G) is θω-open in X. Therefore, f is strongly θω-continuous on X.

(i) ⇒ (iii): Suppose that f is strongly θω-continuous on X. Note that every (subbasic) basic
open set is open. Thus, by assumption, (iii) holds.

(iii) ⇒ (i) Let f−1(B) be θω-open in X for each B ∈ β, where β is a basis for the topology
in Y . Let G be an open set in Y . Then,

G =
⋃
{B : B ∈ β∗}

where β∗ ⊆ β. It follows that f−1(G) =
⋃
{f−1(B) : B ∈ β∗} Since the arbitrary union of

θω-open sets is θω-open by Theorem 2.12, f−1(G) is θω-open in X. It follows that f is strongly
θω-continuous on X.

(i) ⇒ (iv): Suppose that f is strongly θω-continuous on X. Let x ∈ X and let V be an open
set in Y such that V contains f(x). Since f is strongly θω-continuous, f−1(V ) is θω-open in X
containing x. Thus, there exists an ω-open set U that contains x such that Clω(U) ⊆ f−1(V ).
Consequently, f(Clω(U)) ⊆ f(f−1(V )) ⊆ V . Thus (iv) is satisfied.

(iv) ⇒ (v): Suppose that (iv) holds. Let A ⊆ X and x ∈ Clθω(A). Let O be an open
set in Y containing f(x). By assumption, there exists an ω-open set U containing x such
that f(Clω(U)) ⊆ O. Since x ∈ Clθω(A), by Remark 2.14, Clω(U) ∩ A ̸= ∅. It follows that
∅ ̸= f(Clω(U)∩A) ⊆ f(Clω(U))∩f(A) ⊆ O∩f(A). This implies that f(x) ∈ Cl(f(A)). Thus,
f(Clθω(A)) ⊆ Cl(f(A)).

(v) ⇒ (vi): Assume that f(Clθω(A)) ⊆ Cl(f(A)). Let B ⊆ Y and A = f−1(B). Since
A = f−1(B), then Clθω(f

−1(B)) = Clθω(A). Hence,

Clθω(f
−1(B)) ⊆ f−1(f(Clθω(A))) ⊆ f−1(Cl(f(A))) ⊆ f−1(Cl(B)).

(vi) ⇒ (ii): Let F be a closed set in Y . Then, F = Cl(F ). By assumption,

Clθω(f
−1(F )) ⊆ f−1(Cl(F )) = f−1(F ) ⊆ Clθω(f

−1(F )).

Since f−1(F ) ⊆ Clθω(f
−1(F )), it follows that Clθω(f

−1(F )) = f−1(F ) so that f−1(F ) is θω-
closed in X by Remark 2.14 (vii).

Theorem 3.11. Let X and Y be topological spaces and fA : X → D the characteristic function
of a subset A of X, where D is the set {0, 1} with the discrete topology. Then the following
statements are equivalent:

(i) fA is strongly θω-continuous on X.

(ii) A is both θω-open and θω-closed.

(iii) fA is θω-continuous on X.

Proof. (i) ⇒ (ii): Let fA be strongly θω-continuous on X. Let G1 = {1} and G2 = {0}. Then
G1 and G2 are open in {0, 1}. Hence, f−1

A (G1) = A and f−1
A (G2) = X \ A are θω-open in X.

Hence, A is both θω-open and θω-closed.
(ii) ⇒ (i): Suppose that A is both θω-open and θω-closed. Let G be an open set in {0, 1}.

Then,

f−1
A (G) =


∅ if G = ∅
X if G = {0, 1}
A if G = {1}

X \A if G = {0}

Hence, f−1
A (G) is θω-open and so fA is strongly θω-continuous on X.
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(i) ⇒ (iii): Follows from Remark 3.6.
(iii) ⇒ (ii): Let fA be θω-continuous on X. Since every set in D is θ-open, using similar

argument in (i) ⇒ (ii), (ii) holds.

The following results are related to strongly θω-continuous functions in the product space.

In the succeeding results, if Y =
∏
{Yα : α ∈ A} is a product space and Aα ⊆ Yα for each

α ∈ A, we denote Aα1×· · ·×Aαn×
∏
{Yα : α /∈ K} by ⟨Aα1 , · · · , Aαn⟩, where K = {α1, · · · , αn}.

Theorem 3.12. Let X be a topological space and Y =
∏
{Yα : α ∈ A} be a product space.

A function f : X → Y is strongly θω-continuous on X if and only if each coordinate function
pα ◦ f is strongly θω-continuous on X for every α ∈ A.

Proof. Assume that f is strongly θω-continuous on X. Let α ∈ A and Uα be open in Yα. Since
pα is continuous, then p−1

α (Uα) is open in Y . Thus,

f−1(p−1
α (Uα)) = (pα ◦ f)−1(Uα)

is θω-open in X. Hence, pα ◦ f is strongly θω-continuous for every α ∈ A.
Conversely, assume that each coordinate function pα ◦ f is strongly θω-continuous. Let Oα be
open in Yα. Then ⟨Oα⟩ is a subbasic open set in Y and (pα ◦ f)−1(Oα) = f−1(p−1

α (Oα)) =
f−1(⟨Oα⟩) is θω-open in X. Thus, by Definition 3.1, f is strongly θω-continuous on X.

Corollary 3.13. Let X be a topological space, Y =
∏
{Yα : α ∈ A} be a product space, and

fα : X → Yα be a function for each α ∈ A. Let f : X → Y be the function defined by
f(x) = ⟨fα(x)⟩. Then f is strongly θω-continuous on X if and only if each fα is strongly
θω-continuous on X for each α ∈ A.

Proof. Let α ∈ A and x ∈ X. Then we have

(pα ◦ f)(x) = pα(f(x)) = pα(⟨fα(x)⟩) = fα(x)

Thus, pα ◦ f = fα for each α ∈ A. The result follows from Theorem 3.12.

4 θω-Connected Space

This section provides a characterization of θω-connectedness and investigate its relationship to
connected, θ-connected, and ω-connected topological spaces.

Definition 4.1. A topological space X is said to be a θω-connected if it is not the union of
two nonempty disjoint θω-open sets. Otherwise, X is said θω-disconnected. A subset B of X is
θω-connected if it is θω-connected as a subspace of X.

Example 4.2. Let X = R with topology T = {∅,R,Qc}. Note that if U is ω-open, then U
must be uncountable since R and Qc are uncountable. Let A be a θω-open set in R. We will
show that Ac := R\A is not θω-open so that (R,T) is θω-connected. Suppose that Ac is θω-open.
Then for all x ∈ A, there exists an ω-open set U containing x such that U ⊆ Clω(U) ⊆ A.
Since U is ω-open, either R \ U is countable or Qc \ U is countable. If Qc \ U is countable,
then R \ U is countable since R \ U ⊆ Q ∪ (Qc \ U). Either case, R \ U is countable. Observe
that U ⊆ Clω(U) ⊆ A implies that R \ A ⊆ R \ U so that R \ A is also countable. It follows
that R \A is not ω-open. Thus, R \A is not θω-open, by Theorem 2.2 (ii). Therefore, (R,T) is
θω-connected.

Theorem 4.3. Let X be a topological space. Then the following statements are equivalent.
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(i) X is θω-connected.

(ii) The only subsets of X that are both θω-open and θω-closed are ∅ and X.

(iii) No θω-continuous function f : X → D is surjective.

(iv) No strongly θω-continuous function f : X → D is surjective.

Proof. (i) ⇒ (ii): Assume that X is θω-connected and A ⊆ X. Let A be both θω-open and
θω-closed. Then X \A is both θω-open and θω-closed. Note that X = A ∪ (X \A). Since X is
θω-connected, by assumption, so A is either ∅ or X.

(ii) ⇒ (iii): Suppose that ∅ and X are the only subsets of X that are both θω-open and
θω-closed and let f : X → D be a θω-continuous surjection. Then f−1({0}) ̸= ∅, X. Note that
every set in D is θ-open. Also, {0} is both θ-open and θ-closed in D. Then f−1({0}) is both
θω-open and θω-closed in X, a contradiction.

(iii) ⇒ (iv): Suppose that no θω-continuous function f : X → D is surjective. Since every
strongly θω-continuous is θω-continuous. It follows that no strongly θω-continuous function
f : X → D is surjective.

(iv) ⇒ (i): Suppose no strongly θω-continuous function f : X → D is surjective. Then
let X = A ∪ B, where A and B are disjoint nonempty θω-open sets. Then A and B are also
θω-closed sets. Consider the characteristic function fA : X → D of A ⊆ X. By Theorem 3.11,
fA is strongly θω-continuous, a contradiction. Thus, X is θω-connected.

Theorem 4.4. Let X be a topological space. Then X is ω-connected if and only if X is θω-
connected.

Proof. Suppose that X is ω-connected. Thus, X cannot be expressed as the union of two
nonempty disjoint ω-open sets. Since every θω-open is ω-open, by Theorem 2.2 (ii), X cannot
be the union of two nonempty disjoint θω-open sets. Thus, X is θω-connected.

Conversely, assume thatX is θω-connected. Suppose on the contrary thatX is ω-disconnected.
Then X = A∪B, where A and B are two disjoint ω-open sets. This means that A = X \B and
B = X\A are ω-closed sets. By Lemma 2.4, A and B are θω-open. Hence, X is θω-disconnected,
a contradiction. Thus, X is ω-connected.

In [12], θ-connected space and connected space are equivalent. Moreover, in [14, Remark 4
(iii)], every ω-connected space is connected space. Then we have the following corollary.

Corollary 4.5. Let X be a topological space. If X is θω-connected, then X is connected.

In view of Theorem 4.4 and Corollary 4.5, we have the following remark.

Remark 4.6. The following diagram holds for a subset of topological space.

ω-connected θω-connected

connected θ-connected

The converse of Remark 4.6, is not necessarily true.

Consider X = {a, b, c} with topology T = {∅, X, {a}}. It is not difficult to see that (X,T)
is connected. However, (X,T) is θω-disconnected since {a} and {b, c} are θω-open sets and
{a} ∪ {b, c} = X.
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