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Weighted Improved Hardy-Sobolev Inequality on a Ball Domain

ALNAR L. DETALLA
Department of Mathematics, Central Mindanao University, Musuan, 8710 Bukidnon, Philippines
e-mail: al_detalla@yahoo.com

Abstract: Let 2 be a bounded domain in R™ with 0 € {2 and n > 2. We consider the Hardy-

Sobolev inequality
/’ ( )‘2 S n—2 2/u($)2 (0 1)
Vu(x)|*dx 5 |$|2 dx .

for any u € W, *(Q). When no weight function is involved, the improvement of (0.1) is already
proven. In this paper!, we shall investigate the weighted type of the improvement of (0.1) in a
ball domain.

1 Introduction

The study of the minimal and the extremal solutions of the quasilinear elliptic equations gains
much attention in the recent years because of its applications in Magnetic and Potential Theory.
Under some conditions, the analysis will start on the establishment of the existence of the
minimal and the extremal solutions and then study their behaviors in the linearized quasilinear
elliptic equations. To analyze the linearized equation at extremal solution, the classical Hardy-
Sobolev inequality in not enough since it has only singularity at the origin. Hence we have to
essentially improve the classical result by having a weight on both sides of the inequality. The
study will focus on improving the classical result of A.L. Detalla [4] by having a weight function
|z|* on both sides of the equation where the domain is a ball centered at = € R™ of radius p and
this is denoted by B,(z) where B,(z) C R".

2 Known Results

Let €2 be a bounded domain in R” with 0 € Q and n > 2. For 1 < p < n the well known

Hardy-Sobolev inequality
_ p P
/]Vu(x)\pdxz (" p) /“(x) dz. (2.1)
Q p Q |zfP

holds for u € Wy (), where W, ?(Q) is the completion of C$°(Q) in the norm

lull1p0 = (/Q [u(z)[Pdx + /Q |VU($)|pdx);-

An improvement of inequality (2.1) involving one remainder term in the right hand side was
proven by Adimurthi, Chaudhuri, and Ramaswamy [1] and this is given by the following results:
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1. Noncritical case (1 < p < n): Let R > sup <|m|e%> Then there exist K > 0 depending
Q
on n, p, and R such that for any u € W, *(Q)

/|Vu )Pz > (” P) /\U dx +K/ lu(z)]” o ( x’)ﬁ/c& (2.2)

where v > 2.
2. Critical case (p=n): Let R > sup <|$|e%) Then for any u € WOI”(Q)
Q

V()| de > ”T_l ’ '“;ﬁ 1og§ s (2.3)
Q o || ||

For p = 2 an optimal improvement of the Hardy-Sobolev inequality with infinitely many
terms was proven by Detalla, Horiuchi, and Ando [4] and is given by

fraorae (52 [ 5 oo

(AmunAxwo)2+~-~+(AmunAxwo~-Auu®)jdm

(2.4)

for any u € W, () where A;(|z]) = log% and Ag(|z|) = log Ax_1(|z|). Here R > eg sup |z
Q

and e; = e, e = e%1.

This study aims improve this classical result by having a weight on both sides of inequality
(2.4) on a ball domain.
3 Result and Discussion

In this section we will introduce our result about the weighted type of inequality (2.4). The
main results are as follows:

Theorem 3.1 Let n, o and k be a positive integers and a ball B, C Q such thatn > 2, k > 1
and R > epsup |x|. Then the inequality
Q

/B Vu(o)2|efods > =2+ 20 =2) /B ()| ]o~2dz

4

P

e e e[aga - (aebagan) e e
+ (et A} ] o

holds for any u € Wy*(B,).
Remark 3.1 If o = 0 inequality (3.1) reduces to a known result given by inequality (2.4).
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First we introduce the following lemma needed in the proof of the main result.

Lemma 3.1 Assume u € CZ(By) is radial satisfying u(r) > 0 where r = |z|. Set vi(r) =
w(r)rs Ay(r)"2 and vp(r) = v (r)Ax(r)"2 for k > 2. If R > ey, then for any integer > 0

. 'V (u(z)|z|") |Pdx = (n — 2)24_ (2n)?

1

+ % 0 ue(r)2 AL (1) As(r) . . . Ag(r) {Al(r)_2+ (Al(r)Ag(r)> 72+...

Wh, /0 vp(r)2AL(r) Ag(r) ... Ap(r)r®tdr

+ (Al(r)Ag(r) . Ak(r)) _2} r#1 =t dr
. (3.2)
+ nwn/o vg(r)? |:A2(T)A3(T) L AR(r) F As(r)Au(r) oL Ag(r) 4+

+ Ap(r) + 1] 1=t dr

+ wn/o v, (1)2 AL (1) Ag(r) ... Ap(r)r*" .

for all k > 1.

Proof Since R > e, A, is define for all 1 <1 < k. Let u, = u(r)r". Then

N

Uy = vk(r)rz_Tn+" (A1(r)As(r) ... Ag(r))2.

Direct calculation gives

2 = (#)QUk(T)27"_"+277A1(T)A2(7’) amhad
where
C=— 22_ T [%Al(r)—l bt % (Al(r)Ag(r) g .Ak(r)) e z:ggr}
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Then
\V(()\x|>|dx—wn/ 2y

(" - 22_ 2’7) wn /01 vk(r)2A; (1) Ag(r) .. Ag(r)
(” nors 2”) n /01 on(r? AL () As(r) ... Ax(r) (14 20 + C) 1\ dr
(” - 22_ 2”) wn /0 AL As(r) . Ae(r)r
(-2 2w, /01 o) AL (1) As(r) . .. Au(r) [%Al(r)—l .
+ % (A1 () As(r) . .Ak(r)> s U,k—mrl r2Ldy

vg(r)

2

1+ C| r*ar

+ wn/O vR(r)2 AL (r) As(r) . .. A(r) BAl(r)l +...

+ % (Al(r)AQ(r) y .Ak(r)> s Z:—Egr} g B9
= (#)2% /0 oA () Ag(r) . Ag ()2
= (—" - 22_ 2”) W /0 ()2 A () Aa(r) - Ay
+ (u) W /O lvk(r)zAl(r)Ag(r) L A(r) FAl(T)_l +...

+ % (Al(r)Ag(r) . Akm) o ”W)r} gy

Uk(’r‘)

Applying integration by parts to second term of (3.3) we get

9 o) e = SO ) a) At

B 4

+ w, /0 1 v (r)?Ai (r) As(r) . .. A(r) BAl (r)™

+3 (Al(r)AQ(r) . Ak(r)> o Mr} iy

vk(r)

Also after expanding the second term of (3.4) and by integration by parts we get (3.2). By
inductive argument we will show the validity of (3.2) for all k > 1. For k = 1, it is easy to verify
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by similar calculation that

[ 19 wwlap P - (n—2) / 2y

1
/vk Ly 1d7"+77wn/ vp(r)2 ¥ L dr
4 Jo 0

/ r2t gy

Since vy () = vp(r)Ape1(r) "2, direct calculation gives

P a1 (1) = a1 () (A1) 420 Aa(r) )

+ 4—12vk+1(7“)2 (A1(7“)A2(7’) = .Ak(r)> 7 A (r) ™

Then the last term in the right hand side of (3.2) becomes

Wn /0 V(1) A (r) Ag(r) ... Ap(r)r*"dr

1 1
= wn/ U,;H(r)QAl(r)AQ(T) o A(P) A () dr - an/ Vpg1(r)?r?dr
0 0

+ % 01 Ve (7)2 (Al(T)Ag(r) . Ak(r)AkH(r)) RN

Hence the last term in the right hand side of (3.2) generates the new terms such that

M2 g (n— 2)2 - (277)2 ! 2 m—1
. |V (u(x)|z|") |*de = 1 wn/o Vg1 (1) AL (1) Ag(r) o A (r)r=" ™ dr

1

+ e (A A (1) Apia () {Amr)? + (A1 <r>A2<r>) T
t+ (Al (r)As(r) .- .Ak(r)> Ty (Al(r)AQ(r) AR Ak+1(7~)> _2] P21y
e /D ) {A2<7’)As(r> o Apt () As()Ag(r) - A () +
A A () + A () + 1] 214y

1
+ Wy / U2+1(T>2A1 (T)AQ(T) - Ak(r)Ak+1(T’)T2n+ldr
0

Therefore (3.2) is valid for all £ > 1.

(3.5)

(3.6)

O

PROOF OF THEOREM 3.1: We shall first prove inequality (3.1) for smooth positive
radially nonincreasing function defined on a unit ball Bj, centered at the origin. Thegl R > e
and for v € C2(By), u(r) > 0, r = |z, radially nonincreasing, we set vy (r) = u(r)r'z A;(r)"z
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and vg(r) = vk,l(r)Ak(r)’% for k> 2. Since R > ey, A; is define for all 1 < ¢ < k. Then direct
calculation gives

u(r)u' (1) =ve(r)v,,(r)r* " Ay (r) ... Ag(r) + 2= nvk(r)2r1*"A1 (r)... Ag(r)
— %vk(r)er_”Ag(T) o Ag(r) — %vk(r)er_”Ag(r) L AR(r) — (3.8)

1 2, 1-n
2vk(7’) r "

Then for any integer n > 0 we have
! !/
ann/ w(r)u (r)r* 12 dr —nwn/ (vk(r)?) Ay (r k(r)r¥dr
0
(2—n) nwn/ vp(r)2AL(r) .. Ap(r)r® T Ly
0

_ / W(r)2As(r) - Ag(r)r?n L

(3.9)
—nwn/ k(r)2As(r) ... Ap(r)r®"tdr —
0
1
— nwn/ v ()2 ¥ L dr
0
applying integration by parts in the first term of the right hand side of (3.9) we get
1
2nwn/ w(r)u (r)r? 2 dr =
0
1
1
— [n(n —2) + 2n*] wn/ vR(r)2AL(r) .. Ap(r)r® T tdr. (3.10)
0
Also
1 1
772wn/ u(r)*r?t 3 dy = nzwn/ vR(r)2AL(r) .. Ap(r)r® T tdr. (3.11)
0 0
Hence from (3.10) and (3.11) we have
1 1
ann/ w(r)u (r)r* 2 dr + 772wn/ u(r)?r?t S dr =
0 0
(3.12)

). .. Ap(r)r* " dr.

O
(S
3
O\
it
-t
El
~—
=
N—

— [n(n _
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From Lemma 3.1 we have

1
Y —
0

(n—2)* - (2n)®
4

F ()2 AL () As(r) . A(r) {Al(r)_z + (Al(r)Ag(r)>_2 +...

Wh, /0 vp(1)2 AL () Ag(r) ... Ag(r)r*"dr

4 Jo
+ <A1(T)A2(7’) . Ak(r)> _2] r21=tdr (3.13)
+ 1w, /01 o(r)? {A2(r)A3(r) L AR(r) + As(MAL(r) A + .
+ Ag(r) + 1} 21~ dr

+own /0 VL ()AL (1) Ao (r) - A (r)r2 Ay

but

1 1
wn/ [ () P = ‘*’n/ |/ (r)r" + nu(r)r" e dr
0 0
1
= wn/ |u/(r)|2r2n+n—1dr
0
1

+2nw, [ w(r)d ()T 2dr

+ 0w, [ ou(r)? 3 dr

|

1
|
hence

1 1
wn/ [u/ (7)) ?r? "ty :wn/ | (u(r)r™) |>r™tdr
0 0
1

—2nwn/0 w(r)u (r)yr* 12 dy (3.14)

1
—7720%/ u(r)?r2t =3 dy
0
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substituting equations (3.11),(3.12) and (3.13) to equation (3.14) and by letting oo = 2n we get

Lun/o [ (r)[Prem~ldr = n=? +4204(71 - 2)%/0 v (1) 2 Ay (r) ... Ag(r)r®~tdr
+% i ()2 Ay (r) Ag(r) ... Ag(r) [Al(r)—2+ (Al(r)Az(r)) +...

+ (A1 (r)As(r) .. .Ak(r)> _T roldy

oWy,

2

/0 v (r)? [Ag(r)Ag(r) L AR(r) + As(r) Ag(r) o A(r) + .
+ Ap(r) + 1] roldr

+on /0 WL (rV2AL (M) Ag(r) - Ap(r)r+dr.

Since [, |V (u(z)) *|lz|[*dr = w, fol |u/(r)|>re T~ 1dr then

I (ua) Plafrds = o220 = 2)

wn/o ve(1)2 AL () Ag(r) ... Ap(r)r®dr

B, 4
e Dlvk(r)2A1(r)A2(r) A [Al(r)_2 + <A1(T)A2(7’))_2 +o
+ (Al(r)AQ(r) g .Ak(m) 2} o1 g
awn (3.15)

5 /0 v (1)? [Ag(r)Ag(r) L AR(r) + As(r)Ag(r) o Ak(r) 4

+ Ag(r) + 1] rodr

+ wn/o v (1) AL (r) As(r) ... Ap(r)r®dr

By inductive argument we will show the validity of (3.15) for all £ > 1. For k = 1, it is easy to
verify by similar calculation that

IV (u(z)) [2]|*de = (n —2)? +42a(n —2)

1
W / vp(r)2 AL (r)r®dr
0

1 1
4 on vp(r)2 AL (r) I dr + e / vp(r)?r*tdr
4 Jo 2 Jo

1
—i—wn/ v, ()2 AL (r)r*tdr.
0
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Since vy 1(r) = vk(T)AkH(r)’%, direct calculation gives

P (1P s () = Sa 0D 1) (A1) 00

412vk+1(r)2 (A1 (1) As(r) . . .Ak(r)> - Ay (1)

Then the last term in the right hand side of (3.15) becomes

wn/o U (r)2 AL (r) As(r) .. Ag(r)redr

1 1
0 0
1

+ % U1 (1) <A1(T)A2(T) . Ak(T)Ak+1(r)) - o1

0

Hence the last term in the right hand side of (3.15) generates the new terms such that

n—2)%+2a(n — 2)
4

IV (u()) |?|z|*dx = ( wn/o Vpg1 (1) 2 AL (r) Ao (r) ... At (r)r® dr

+ % /0 1vk+1(7*)2A1(r)A2(r) A (1) {Al(rw + (Al(r)Ag(r)) L
+ (Al(r)AQ(T) " Ak(r)) cL (Al(r)Ag(r) . Ak(r)AkH(T)) 2] ro=Ldy

Qwy,
2

/0 Vg1 (r)? [AQ(T)Ag(r) co A (1) + As(r)Au(r) o A (r) + .
+ Ap(r) Ap1 (1) + Agga (1) + 1} r*tdr

+ wn/o Vpir (r)? A1 (1) Ao (1) . . Ag(r) Apis (r)r®Hdr

Therefore (3.15) is valid for all £ > 1.
Ignoring the last two terms in the right hand side of (3.15) and for

vp(r)? = u(r)?r"? (Al(r)AQ(r) . .Ak(r)) : , k>1

we get

_ 2 _
V() P > 2L 20022 / w(@)|2]*d
Bl Bl

1 [t [+ (Aebased) e
# (At Aalla) - e ]daz

Hence inequality (3.1) holds for domain B;. By density argument, inequality (3.1) is valid for
any u € Wy*(B,), u > 0. Thus theorem 3.1 follows. O
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