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Abstract: We may view any graph as a network of resistors
each having a resistance of 1 ohm. The resistance distance
between a pair of vertices in a graph is defined as the ef-
fective resistance between the two vertices. This function
is known to be a metric on the vertex-set of any graph.
The main result of this paper is an explicit expression for
the resistance distance between any pair of vertices in the
complete n-partite graph K, ms,... m.,-

1 Introduction

We shall deal here with finite graphs without loops but pos-
sibly with multiple edges. The vertex-set of a graph G is
denoted by V(G) and its edge-set is denoted by E(G).

The usual distance from a vertex x to a vertex y in a
graph G is defined to be the length of any shortest path
joining x to y. Thus d: V(G) x V(G) — R is a function
that satisfies

1. d(z,y) > 0 for all z,y € V(G)
2. d(z,y) =0 if and only if z = y
3. d(z,y) =d(y,z) for all x,y € V(G)

4. d(z,y) < d(z,z) +d(z,y) for all z,y,z € V(G)
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2 Resistance Distance in Complete n-Partite Graphs

If A is any set, any function g from A x A to the set R of
real numbers satisfying the four conditions above is called
a metric on A.

Here we shall deal with a certain metric on the vertex-set
of a graph G called resistance distance.

We associate a graph G with a network N(G) of unit
resistors (resistor with resistance 1 ohm) in the most natural
way—each edge of G is a unit resistor in N(G). For example,
the fan F3 and the associated network N(Fj3) are shown in
Figure 1.

Figure 1: The fan F3 and the associated network of unit
resistors N (F3)

If a source of electromotive force is connected to two
nodes of the network, say at 0 and 1, current will flow into
and out of the network. According to Ohm’s law, if the dif-
ference in potential between two nodes is V' and the current
that flows into one node and out of another node is I, then
V = IR, where R is the effective resistance between the two
nodes. Please refer to Figure 2.
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Figure 2: An electrical circuit with effective resistance R
between 0 and 1

Ohm’s law easily yield formulas for the effective resis-
tance of resistors in series or resistors in parallel.
Figure 3 shows n resistors connected in series.
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Figure 3: Resistors in series with respect to a and b

According to Ohm’s law, the current that flows through
a resistor in an electrical circuit is equal to the potential
difference between the terminals of the resistor divided by
the resistance of the resistor. If V' is the potential difference,
i is the current, and R is the resistance, then : = V//R. Here,
resistor may be replaced by a network of resistors.

If n resistors are in series, the current that flows through
each of them is the same. Referring to Figure 3, let the po-
tential at a be V, and that at b be V},. Then the potential
difference between a and bis V =V, — V}, if we assume that
the potential at a is higher. Potential is much like pressure.
We can compare the situation to water flowing in a pipe
through loads rq,...,7,. There are different pressures at
points between adjacent loads. The summation of all pres-
sure differences from a to b is equal to the difference between
the pressures at a and b. Going back to the original set-up
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4 Resistance Distance in Complete n-Partite Graphs

of resistors, the potential difference between the terminals
of r1 is 2r;. The summation of all potential differences is

ilri4+re4-+mr)

If we view the resistors in series as one single resistor with
resistance R, then the potential difference between a and b
is R. Therefore, we get the equation

iR=i(ri+ro+---+ry)

Hence, if n resistors with resistances of ry, 9, ..., 1,
ohms are in series, their effective resistance is

Qa,b) =71 +rg+ -1, (1)

Figure 4 shows n resistors in parallel. Assume that the
total current entering at a is j and that the current flowing
through r; is j;. Then j = j1 + jo + -+ + Jn-

a
T l

- 1 n
§_<_j 1= J
b

Figure 4: Resistors in parallel with respect to a and b

If we denote by R the effective resistance between a and
b, then j = V/R, where V is the potential difference be-
tween a and b. But a and b are common terminals of all the
resistors. Therefore, we have

| 2 VA V4 \%
_— = —  — 4 —
R r 1 T,
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Therefore, if n resistors with resistances of r1, 79, ..., 1,
ohms are in parallel, their effective resistance 2(a, b) satisfies

L1, 1,1 (2)
Q(a,b) N ™ T2 Tn

Some networks of resistors may be simplified to a sin-
gle resistor using series and parallel connections analysis.
Consider the network shown in Figure 5. The effective re-
sistance between a and b is computed using equations (1)
and (2). In each step of the simplification, the equation used
is indicated in the block arrow.

P P
22

159/23 @ 44/23 5
a —MW——e | a W\ |

Figure 5: Simplification wvia series and parallel connections

Unfortunately, the method of simplification illustrated
in this example may not work for some pairs of vertices in
a network of resistors. Consider the network N shown in
Figure 6. The following effective resistances are easy to get:

17 26 52
a,c) = o, Aa,d) = 52.9(b,) = o7
95 9

The computation of Q(a, b) cannot be done directly using
series and parallel connections analysis.
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6 Resistance Distance in Complete n-Partite Graphs

c c c c
1 4 1 1 4
3 2
a 3 b a b
2 5 A
d d d d
N decomposition substitution

Figure 6: Network decomposition and substitution

If we look at the triangle acd in the middle part of Figure
6, the effective resistance between a and d is computed by
noting that the resistances of 1 and 3 are in series (with
respect to a and d) and their sum, 4, is in parallel with
the resistance of 2. Therefore, Q(a,d) = 4/3. Likewise,
Q(a,c) =5/6 and Q(c,d) = 3/2.

We are substituting for the triangle acd the star with
three resistors shown on the right of Figure 6. In this star,
the effective resistance between a and d is that of two resis-
tors in series, that is 1 + % = 4/3. This is so because the
resistance of 1/2 does not affect the unique path joining a
and d. We are therefore eliminating the resistor with one
terminal at d. We see that the effective resistance between
any pairs of vertices in the triangle is the same as that in
the star.

Going back to the computation of effective resistance
between a and b for the network N in Figure 6, the details
are shown in Figure 7.
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Figure 7: Simplification by substitution

For a graph G, Klein and Randi¢ defined a function
Q: V(G) x V(G) — R called resistance distance [6].

Definition 1.1 Let GG be a graph. The resistance distance
between two vertices i and j, denoted by (i, j), is the ef-
fective resistance between i and j in the network of unit
resistors N (G).

Remark 1.2 We sometimes write 5(i,7) to express the
fact that ¢ and j are vertices of the graph G. It is known
that the function €2 is a metric on the vertex-set of a graph.

The main contribution of this paper is an explicit expres-
sion for the resistance distance between vertices in complete
n-partite graphs.

2 Some Known Results

Klein [7] determined the resistance distances in the graphs
of the five Platonic solids. Bapat and Gupta [1] gave in-
teresting formulas in terms of Fibonacci numbers for the
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8 Resistance Distance in Complete n-Partite Graphs

resistance distances in wheels and fans. In [4] the limit of
the resistance distance between some pairs of vertices in
fans and wheels are determined as the order of the graph
increases without bound.

The Laplacian matriz of a graph with vertices 1,2,3,...,n
is the matrix L(G) = [¢; ;] where

deg(i) ifi=j,
b =<4 —1 if i and j are adjacent,

0 if 7 and j are non-adjacent.

Equivalently, L(G) = D(G)— A(G) where D(G) is the diag-
onal matrix with diagonal entries deg(1),deg(2),...,deg(n)
and A(G) is the adjacency matrix of G.

Bapat and Gutman [2| gave a simple formula for resis-
tance distance in terms of determinants of minors of L(G).

Klein [7] showed that for a connected graph, the sum-
mation of effective resistances between all pairs of adjacent
vertices is equal to the total number of vertices minus 1.
This result has actually been determined a long time ago

by Foster [3] and Weinberg [8].

Theorem 2.1 (Klein, [7]) Let G be a connected graph of
ordermn, Then > (i, j) = n—1 where the summation ranges
over all pairs of adjacent vertices i and j.

3 Zero and Negative Resistances

In reality, resistors have positive resistances. However, we
will find it useful to introduce the notion of zero and nega-
tive resistances. At the same time we extend equations (1)
and (2) to include zero and negative resistances.

If a resistor with zero resistance is in series with other
resistors, then it does not affect the effective resistance of

The MINDANAWAN Volume 1
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the resistors in series in view of equation (1). If a resistor
with zero resistance is in parallel with some resistors, then
the effecticve resistance of the parallel resistors becomes 0
in view of equation (2).

If a resistor with a resistance of r ohms is in parallel with
a resistor with a resistance of —r ohms, then their effective
resistance is +00. This means that the nodes to which the
two resistors are connected become effectively disconnected.

It should be noted however that with the introduction of
non-positive values of resistance, the function 2 is no longer
a metric.

4 Two Useful Principles in Electri-
cal Circuits

In a given network, we use the notation (i, ) to denote
the effective resistance between two vertices ¢ and j. In
case 7 and j are adjacent, we use the notation w(i, j) for the
resistance of the resistor with terminals at ¢ and j.

From hereon, we allow resistors to have any real value.
To facilitate the proof of our main result, we first discuss
two important principles in electrical circuits, particularly
network of resistors.

4.1 Principle of Elimnation

Recall that a cut-vertexr of a connected graph G is a vertex
whose removal from G disconnects G. A block of G is a
maximal connected subgraph of G which does not contain
a cut-vertex of itself.

Let N be a network of resistors with underlying graph
GG which is connected. Let B be a block of G containing
exactly one cut-vertex x of G. If N’ is the network obtained
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10 Resistance Distance in Complete n-Partite Graphs

from N by deleting all the vertices of B except x, then for
all 4,7 in N, Qn(7,5) = Qn(4,7). This is the principle of
elimination [7].

As an example, in Figure 8, the effective resistance be-
tween the vertices a and b is Q(a,b) =2+ 3 = 5.

O—0—0—0—/—0 O—"~WOw—0O
N N’

©—C0O

Figure 8: Eliminating the edges of a block from a network

The subgraph induced by the vertices x, y, z, v is a block
of N and if we remove the vertices z,y, z from N we get
the network N’ shown in Figure 8. Applying the principle
of elimination to N’ two more times, we are left with a
network with two resistors of 2 and 3 ohms in series.

4.2 Principle of Substitution

If N is a network of resistors, we may look at N as a weighted
graph where the weight of an edge is the resistance of the
resistor represented by the edge. For convenience, we intro-
duce the concept of S-equivalent networks.

Definition 4.1 Let N and M be networks of resistors and
let S C V(N)NV(M). we say that N and M are S-
equivalent if Qpn(i,7) = Qu(i,5) for all i, j € S.

The MINDANAWAN Volume 1
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1
N M

Figure 9: {1,2,3}-equivalent networks

The two networks N and M shown in Figure 9 are
{1, 2, 3}-equivalent. The network N is called a A-network
while the network M is called a Y-network. A A-network
is convertible to an equivalent Y-network by the formulas
indicated in Figure 10. These formulas were first derived by
Kennelly [5] in 1899.

T3

Ri=—"
! T+ e+ e
™rs R
) T3 RQ = - 1
T+ ry+73
Ry — T R @ Ry
" T1 + T + r3 c 9
A-network Y -network

Figure 10: Transformation from A to Y

The formulas in Figure 10 can easily be easily derived
using the fact that between any two vertices in a A-network,
we have a resistor in parallel with a pair of resistors in se-
ries. On the other hand, in a Y-network, the effective re-
sistance between two vertices is the sum of two resistances
in series. We simply require that for all 7, 7, we must have
QA(i,7) = Qy(i,7). So the formulas in Figure 10 are ob-
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12 Resistance Distance in Complete n-Partite Graphs

tained by solving the following system of equations:

1 1 \!
Qy(2,3) :R1+R2: (—+ ) :QA<2,3)

T3 1+ T2

1 1
Oy(2,1) = Ry + Ry = (—+

rL T2+T3

1 1
Oyv(1,3)=R3+ R = | —
Y(’) 3+ ! (T2+T1+T3

)_1 =0a(2,1)

)1 —0A(13)

The principle of substitution states that if H is a sub-
network of N and H is V(H)-equivalent to H*, then the
network N* obtained from N by replacing H by H* sat-
isfies Qn(i,7) = Qn+«(i,7) for all 3,5 € V(N), i.e., N is
V(N)-equivalent to N*.

If G is a graph, then for convenience G will also denote
the network N(G). To illustrate the principle of substi-
tution, consider the fan F3 in Figure 1. This network is
{0,1,2,3}-equivalent to the network Fj shown in Figure
11.

Figure 11: V(F3)-equivalent networks

Consiier the complet_e bipartite graph K,, ,, = K,+K,.
Ifi € V(K,, and i € V(K,,), then (4, j) is independent of
and j. Since K, , has mn edges, then mnf2(i, j) = m+n—1

The MINDANAWAN Volume 1
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—1
by Theorem 2.1. Thus, Q(,j) = mn=2 if 7 and j are
mn
adjacent vertices.

Theorem 4.2 (Klein, [7]) Let i, j be distinct vertices in the
complete bipartite graph K, . Then

2 ifi,j € V(Kn),
Qi,j) =42 ifi,jeV(K,),
min=lyf i e V(Ky) and i € V(K,).

Let us define the network K, to be the network whose
underlying graph consists of m+n+2 vertices z;, 0 <i < m
and y;, 0 < i < n with edges [zo,v0]; [zo,xi], 1 < i < m;
and [yo, vi], 1 < i < n. See Figure 12.

Figure 12: The underlying graph of the network K7, ,

The resistances of the edges of K}, are w(xo,z;) = +
for i # 7, w(yo, yi) = % for i # 0, and w(xo, yo) = —ﬁ.
By the principle of elimination, we see that Q(z;,z;) = %

it # j; Quiyy) = 2 it i # jy; Qi yy) = £ — 0+ &
—mjn’;‘fl for all 4 and j. Therefore, we have established the

following theorem.

Theorem 4.3 The network K, ,, is V(Kp.n)-equivalent to

Volume 1 The MINDANAWAN
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14 Resistance Distance in Complete n-Partite Graphs

Corollary 4.4 Let G be a graph with two non-adjacent ver-

tices a and b such that N(a) = N(b). Then Q(a,b) =
2

IN(a)]

Proof: To prove this Corollary, we apply the principles of
substitution and elimination. We replace the subgraph K ,,
where n = |N(a)|, by the network K. The conclusion then
follows after applying the principle of elimination. U

5 Complete n-Partite Graph

The complete n-partite graph is denoted by K, ms....m..-

n

This graph is the disjoint union of K,,.,i=1,2,...,n, i.c.,
Kml,mg,...,mn = le + ET’M + .o+ fmn'

Note that K,,, m,...m., is the edge-disjoint union of K, 1,
and Ko,y tmoms...mn- NOW Ko my 18 V (K, m, )-equivalent
to K shown in Figure 13.

miy,m2

Figure 13: The underlying graph of the network K*

mi,m2

On the other hand, K,,, +ms,ms...m, contains the span-

n

ning subgraph K, 4my.m, , Where m; 5 = Z m;—(mi+may).

i=1

n

The MINDANAWAN Volume 1
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We substitute in place of this spanning subgraph its equiv-
alent K7 . . " Then apply the principle of elimination

to obtain the graph in Figure 14. We need this graph only
to get Q(z1,91).

The network N

Figure 14: Determining the effective resistance between x;
and U1 in Kml,mg,...,mn

Figure 14 is the result after replacing the subgraph K, 1 my.m,

by the equivalent network K, ., . . Here we have the

following values of resistances:

1

m1m2’

1
w(zo, ;) = p— for i # 0,
2

w(zo, yo) = —

1 .
W(Z/(J,Z/i) = m_l for i 7é 07

1
w(z,x;) = — for all 4
)

maio
( ) L for all 5
w(z,y;) = — for all j.

T mi2
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16 Resistance Distance in Complete n-Partite Graphs

The network N in Figure 14 is {xg, yo, x1, Y1, 2 }-equivalent
to the network N’ shown in Figure 15 (a). We obtain N’ by
simplifying some series-parallel connections to their equiva-
lent.

® ®
@

g————e > g@‘e
@ ®

Figure 15: The network N’ subjected to A-to-Y substitu-
tions

In what follows, we use the fact that k& resistors in par-
allel, each having a resistance of r, has effective resistance
of 7. In the network N', we have the following resistances
between pairs of adjacent vertices:

1 1
w(xo, = — , Wz, 1) = ——
( 0 yo) mime ( 1) mi2
1 1
w(zo, x1) = E , w(z, ) = m_12

(o) = — w2 m0) = — (i n L)

mi my — 1 mo mio

( ) 1 1 n 1
wl(z = —_—+ —
o mo — 1 \'my maio

Our next step is to replace each of the A-networks zgzz
and ygzy; by their equivalent Y-networks. Please refer to

The MINDANAWAN Volume 1
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Figure 15 for the resulting network N” after two A-Y" trans-
formations.

Referring to the network N” in Figure 15, by A to Y
conversion, we have

1 1
(«U(l’o,yo) = _m1m2 ) w(yayﬂ) = myme
1 mo — 1
w(x, ) = My , wy, ) = m
mq — 1 1
W($7I1) - ml(ml T m2) ) w(yu Z) - Mamy o
1
wl(z,z) =
( ) mymsy 2

Between nodes x; and y; in the network N” we have a
combination of resistors in series and parallel. Therefore by
equations (1) and (2), we have

Qz1, 1) = wlz,21) + w(y, 1)

1
T 1 B 1
w(r,2) +w(y,2)  wl(w,z0) +w(y,yo) +w(To, Yo)
. myi — 1 mo — 1
my(ma +mya)  ma(my +my o)

1

1 1 -t 1 -1
(mlml,z - m2m1,2> T <m1m2>

_ (p=1)(2p—my —my)
p(p —my)(p — ma)

+

where p=mq +mg + -+ + m,,.
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18 Resistance Distance in Complete n-Partite Graphs

In general, if a € V(K,,,) and b € V(K,,,), then

- D)@ —mi—my)
e ) = =)

We summarize our results in the next theorem.

Theorem 5.1 Let n > 0 and m; > 0 be integers and p =
my +my + - £ mn._]f a and b_are distinct vertices in
Koymo,omn = Ky + Koy + -+ + Koy, then

.....

g _2m' if a,b € V(Ky,),
)= -1 —m-m) o
plp—mi)(p—mj) V(K,,) and i # j.

Remark 5.2 In case a and b belong to different sets V(K ,,,)

and V(K ), it might be easier to remember the formula for
resistance distance in the following form:

Q(a,b):p_1< - )

p p—m; p—1my
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