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Abstract

In this paper, we introduce a new Henstock-type integral for the uncertain process with
respect to a Liu process called Liu-Henstock integral. We show that the Liu-Henstock
integral adheres to the standard properties of an integral.

1 Introduction

Over three centuries ago, it is undeniable that the world has benefited from the practical
applications of integration, particularly the Riemann integration, a well-known integral learned
in elementary calculus. However, it turns out that the said integral has several principal defects.
The most serious one is that the class of Riemann integrable functions is restricted.

In 1902, another approach to integration arose called the Lebesgue integral, formulated by
Henri Lebesgue to address the defects of the Riemann integral. Even though it can handle
a broader class of functions than the Riemann integral, it still possesses certain limitations.
In addition, it also demands an extensive study of measure theory, which can be challenging,
especially for non-mathematicians.

In the 1960s, the Henstock-Kurzweil, or HK integral, was studied independently by Ralph
Henstock and Jaroslav Kurzweil. In this study, however, we will refer to this integral simply as
Henstock integral. In some sense, the Henstock integral is more general than the Riemann and
Lebesgue integrals (see [8]). Since then, Henstock integration has been profoundly studied by
numerous researchers (see [3, 4, 5, 7, 9]). Contrary to the Riemann integral, the Henstock
integral employed non-uniform meshes. Such a technique is now known as the Henstock
approach.

In stochastic calculus, the utilization of the Riemann approach to define the stochastic
integral is unattainable because the integrators exhibit paths with unbounded variation, and
the integrands display so many oscillations. What causes this issue is the use of uniform meshes
in the Riemann sums (see [18]). Moreover, the classical way of defining the stochastic integral
closely resembles that of the Lebesgue integral for a measurable function. Consequently, several
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authors have studied and explored the Henstock approach to stochastic integration to provide
a way out of this alleged deadlock and lessen the technicalities when defining the stochastic
integral (see [6, 10, 16, 17]).

It is well-established that stochastic processes are described based on the probability theory.
Using the probability theory necessitates a large sample size to estimate the probability
distribution based on long-run frequency. Liu noted in [15], however, that in reality, the sample
size is frequently too small or sometimes non-existent. It appears that inviting some domain
experts is needed to evaluate their belief degree about the event occurring. Due to the tendency
of human beings to overweight unlikely events [19], the belief degree may have a larger variance
than the long-run frequency. These facts motivated Liu [13] to discover an uncertainty theory,
a branch of mathematics dealing with human uncertainty (see [2]).

Let L be a σ-algebra on a nonempty set Γ. A number M(Λ) indicates the level that each
Λ ∈ L (which is called an event) will occur. Then a set function M from L to [0, 1] is called an
uncertain measure if it satifies the following three axioms:

Axiom 1. (Normality) M(Γ) = 1.

Axiom 2. (Self-Duality) M(Λ) +M(Λc) = 1 for any event Λ.

Axiom 3. (Subadditivity) For every countable sequence of events {Λi}, we have

M

( ∞⋃
i=1

Λi

)
≤

∞∑
i=1

M{Λi}.

The triplet (Γ,L,M) is called an uncertainty space.
The probability measure met the conditions to be an uncertain measure. However, the

converse is not true as the uncertain measure failed to conform to the countable additivity
property, making the uncertainty space more general than the probability space. Despite
this, probability theory is not a special case of uncertainty theory since the uncertainty theory
assumes product uncertain measure is the minimum of uncertain measures of individual events,
while probability theory assumes product probability measure is the multiplication of probability
measures of individual events (see [13]).

An uncertain variable is a function ξ from an uncertainty space (Γ,L,M) to the set of real
numbers such that {ξ ∈ B} is an event for any Borel set B of real numbers.

In 2008, Liu [11] introduced an uncertain process, a sequence of uncertain variables indexed
by time. Later on, Chen [1] investigated some properties of uncertain stationary independent
increments. In 2009, Liu [12] developed an uncertain calculus based on the Liu process, a type
of uncertain process that plays as an uncertain counterpart of the Brownian motion.

An uncertain process Ct is said to be a Liu process if:

(i) C0 = 0 and almost all sample paths are Lipschitz continuous;

(ii) Ct is an stationary independent increment process; and

(iii) every increment Cs+t−Cs is normal uncertain variable with expected value 0 and variance
t2, whose uncertainty distribution is

Φ(x) =

(
1 + exp

(
−πx√
3t

))−1

, x ∈ R.

The Liu process holds significant importance in describing dynamic, uncertain phenomena. In
order to handle the integration and differentiation of uncertain processes, Liu [12] introduced
an uncertain integral with respect to the Liu process called the Liu integral.
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Let f : [0, T ] × Γ → R be an uncertain process and C : [0, T ] × Γ → R be a Liu process.
For any partition of closed interval [0, T ] with 0 = t1 < t2 < · · · < tn < tn+1 = T , the mesh is
written as ∆ = max

1≤i≤n
|ti+1 − ti|. Then the Liu integral of f with respect to C is defined as

(Liu)
∫ T

0
ftdCt = lim

∆→0

n∑
i=1

fti(Cti+1 − Cti) (1)

provided that the limit exists almost surely (a.s.) and is finite. In this case, the uncertain
process f is said to be Liu integrable.

As indicated, this definition of the Liu integral employs uniform meshes in the Riemann
sums. One can consider the problem even only if the integrand has varying behavior or sharp
changes in certain regions, and hence, a more precise approximation of the integral is challenging.
For this reason, in this paper, we use a Henstock approach to define the new integral of an
uncertain process (the integrand) with respect to ar Liu process (the integrator) called the
Liu-Henstock integral. We show that the Liu-Henstock integral satisfies the standard properties
of an integral.

2 Liu-Henstock Integral

In this section, we define the Liu-Henstock integral of an uncertain process with respect to a
Liu-process. Throughout this paper, R>0 stands for the set of positive real numbers and N
stands for the set of positive integers.

Definition 2.1. [16, 18] Let δ be a positive function on [0, T ). A finite collection
D = {([τi, vi], τi)}ni=1 of interval-point pairs is said to be δ-fine belated partial division of [0, T ]
if {[τi, vi]}ni=1 is a collection of non-overlapping subintervals of [0, T ] and each [τi, vi] is δ-fine
belated, that is, [τi, vi] ⊂ [τi, τi + δ(τi)).

The term partial is used in Definition 2.1 since the finite collection of non-overlapping
intervals [τ, v] of D may not cover the entire interval [0, T ]. Using the Vitali covering lemma,
the following concept can be defined.

Definition 2.2. [16, 18] Given a number η > 0, a given δ-fine belated partial division
D = {([τ, v], τ)} of [0, T ] is said to be (δ, η)-fine belated partial division of [0, T ] if it fails
to cover [0, T ] by at most length η, that is,∣∣∣T − (D)

∑
(v − τ)

∣∣∣ ≤ η.

This type of partial division is the basis to which we define the Liu-Henstock integral. Since
ft and Ct are uncertain variables for all t ∈ [0, T ], the limit in (1) is also an uncertain variable
provided that the limit exists almost surely and is finite. Hence an uncertain process f is Liu
integrable with respect to C if and only if the limit in (1) is an uncertain variable (see [12]).
In [13], the convergence a.s. of the sequence {ξi} of uncertain variables to ξ is defined in a way
that there exists an event Λ with M(Λ) = 1 such that lim

i→∞
|ξi(γ)− ξ(γ)| = 0 for every γ ∈ Λ.

In view of these, the Liu-Henstock integral is defined as follows.

Definition 2.3. Let f : [0, T ] × Γ → R be an uncertain process. Then f is said to be
Liu-Henstock integrable or LH-integrable on [0, T ] with respect to C if there exists an uncertain
variable L such that for every ϵ > 0, there is a positive function δ on [0, T ) and a number η > 0
such that for any (δ, η)-fine belated partial division D = {([τ, v], τ)} of [0, T ], we have

|S(f,D, δ, η)− L| < ϵ on Λ

13
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for some event Λ with M(Λ) = 1, where

S(f,D, δ, η) := (D)
∑

fτ (Cv − Cτ ) := (D)

n∑
i=1

fτi(Cvi − Cτi).

In this case, f is LH-integrable to L on [0, T ] and L is called the LH-integral of f which will
be denoted by

(LH)

∫ T

0
ftdCt or (LH)

∫ T

0
fdC.

Example 2.4. Let C : [0, T ]×Γ → R be a Liu process. Then C is LH-integrable on [0, T ] and

(LH)

∫ T

0
CtdCt =

1

2
C2
T .

Let ϵ > 0 be given. Since almost all sample paths of C are Lipschitz continuous on [0, T ],
there exists k ∈ R>0 such that

|Ct − Cs| ≤ k(t− s) on Λ

for all s, t ∈ [0, T ] with s < t, and for some event Λ with M(Λ) = 1. Moreover, it implies
that C is continuous on [0, T ] at each element of Λ. Since [0, T ] is a closed interval, by
boundedness theorem, there exists c ∈ R>0 such that |Ct| ≤ c on Λ for each t ∈ [0, T ]. Choose

δ(τ) =
ϵ

2k2T
and η =

ϵ

4ck
. Let D = {([τ, v], τ)} be a (δ, η)-fine belated partial division of

[0, T ]. Let Dc = [0, T ] \
⋃
D

[τ, v], i.e., the closure of [0, T ] \
⋃
D

[τ, v], which is the collection of

closed subintervals of [0, T ] not in D. Then D ∪Dc = [0, T ] is a collection of non-overlapping
subintervals of [0, T ]. Since D is a (δ, η)-fine belated partial division of [0, T ], it follows that

(Dc)
∑

(v − τ) ≤ η.

Now, ∣∣∣∣(D)
∑

Cτ (Cv − Cτ )−
1

2
C2
T

∣∣∣∣
=

∣∣∣∣(D)
∑

Cτ (Cv − Cτ ) + (D)
∑

−1

2
(C2

v − C2
τ )− (D)

∑
−1

2
(C2

v − C2
τ )

− (D ∪Dc)
∑ 1

2
(C2

v − C2
τ )

∣∣∣∣
=

∣∣∣∣(D)
∑{

Cτ (Cv − Cτ )−
1

2
(C2

v − C2
τ )

}
+ (D)

∑ 1

2
(C2

v − C2
τ )

− (D)
∑ 1

2
(C2

v − C2
τ )− (Dc)

∑ 1

2
(C2

v − C2
τ )

∣∣∣∣
=

∣∣∣∣(D)
∑{

CτCv − C2
τ − 1

2
C2
v +

1

2
C2
τ

}
− 1

2
(Dc)

∑
(C2

v − C2
τ )

∣∣∣∣
=

∣∣∣∣(D)
∑{

−1

2
C2
v + CτCv −

1

2
C2
τ

}
− 1

2
(Dc)

∑
(Cv + Cτ )(Cv − Cτ )

∣∣∣∣
≤
∣∣∣∣−1

2
(D)

∑
(Cv − Cτ )

2

∣∣∣∣+ ∣∣∣∣12(Dc)
∑

(Cv + Cτ )(Cv − Cτ )

∣∣∣∣
14
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≤ 1

2
(D)

∑
|Cv − Cτ |2 +

1

2
(Dc)

∑
|Cv + Cτ ||Cv − Cτ |

≤ k2

2
(D)

∑
(v − τ)(v − τ) + ck(Dc)

∑
(v − τ)

≤ k2

2
· Tδ(τ) + ck · η

=
k2

2
· T ϵ

2k2T
+ ck · ϵ

4ck

=
ϵ

4
+

ϵ

4
< ϵ on Λ.

Hence, ∣∣∣∣(D)
∑

Cτ (Cv − Cτ )−
1

2
C2
T

∣∣∣∣ < ϵ on Λ

for some event Λ with M(Λ) = 1. Therefore, C is LH-integrable on [0, T ] and

(LH)

∫ T

0
CtdCt =

1

2
C2
T .

The next example is the evaluation of Liu integral of C to the uncertain variable as in
Example 2.4.

Example 2.5. [14] For any partition of [0, T ] with 0 = t1 < t2 < · · · < tn < tn+1 = T , it follows
that from (1), we have

C2
T =

n∑
i=1

(C2
ti+1

− C2
ti) =

n∑
i=1

(Cti+1 − Cti)
2 + 2

n∑
i=1

Cti(Cti+1 − Cti) −→ 0 + 2 · (Liu)
∫ T

0
CtdCt

as the mesh ∆ → 0. Therefore,

(Liu)
∫ T

0
CtdCt =

1

2
C2
T .

3 Standard Properties

It is important to note that the Liu-Henstock integral satisfies the following standard properties
of an integral namely, uniqueness of an integral, linearity, the Cauchy criterion, sequential
definition, integrability on every subinterval, and the weak version of Saks-Henstock Lemma.

Proposition 3.1. Let (Γ,L,M) be an uncertainty space and Λ1, Λ2 ∈ L.
If M(Λ1) = M(Λ2) = 1, then M(Λ1 ∩ Λ2) = 1. Consequently, Λ1 ∩ Λ2 ̸= ∅.

Proof. Suppose that M(Λ1) = M(Λ2) = 1. Since Λ1,Λ2 ∈ L, it follows that Λ1 ∩ Λ2 ∈ L and
so, M(Λ1 ∩ Λ2) ≤ 1 . Now,

M(Λ1 ∩ Λ2) = 1−M((Λ1 ∩ Λ2)
c)

= 1−M(Λc
1 ∪ Λc

2)

≥ 1− [M(Λc
1) +M(Λc

2)]

= 1− [(1−M(Λ1)) + (1−M(Λ2))]

= 1− [(1− 1) + (1− 1)] = 1.

15
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Thus, 1 ≤ M(Λ1 ∩ Λ2) ≤ 1 implying that M(Λ1 ∩ Λ2) = 1.
Suppose that Λ1 ∩ Λ2 = ∅. Then

0 = M(∅) = M(Λ1 ∩ Λ2) = 1

which is a contradiction. Hence, Λ1 ∩ Λ2 ̸= ∅.

Corollary 3.2. Let (Γ,L,M) be an uncertainty space and {Λi}ni=1 ⊂ L. If M(Λi) = 1 for all

i = 1, . . . , n, then M

(
n⋂

i=1

Λi

)
= 1. Consequently,

n⋂
i=1

Λi ̸= ∅.

Proposition 3.1 and Corollary 3.2 are intended to prove the succeeding results.

Theorem 3.3. (Uniqueness) The Liu-Henstock integral is uniquely determined, in the sense
that if L1 and L2 are two Liu-Henstock integrals of f in Definition 2.3 , then L1 = L2.

Proof. Suppose that L1 and L2 are two Liu-Henstock integrals of f and let ϵ > 0. Then there
exists a positive function δ1 on [0, T ) and a number η1 > 0 such that for any (δ1, η1)-fine belated
partial division D1 of [0, T ], we have

|S(f,D1, δ1, η1)− L1| <
ϵ

2
on Λ1

for some event Λ1 with M(Λ1) = 1. Similarly, there exists a positive function δ2 on [0, T ) and
a number η2 > 0 such that for any (δ2, η2)-fine belated partial division D2 of [0, T ], we have

|S(f,D2, δ2, η2)− L2| <
ϵ

2
on Λ2

for some event Λ2 with M(Λ2) = 1. Choose δ(τ) = min{δ1(τ), δ2(τ)} for all τ ∈ [0, T ) and
η = min{η1, η2}. Then any (δ, η)-fine belated partial division D is also a (δ1, η1)-fine belated
partial division and a (δ2, η2)-fine belated partial division of [0, T ]. Take Λ = Λ1 ∩Λ2. Since Λ1

and Λ2 are events, Λ is also an event with Λ ⊂ Λ1 and Λ ⊂ Λ2. Moreover, by Proposition 3.1,
M(Λ) = 1 and Λ ̸= ∅. Thus, we have

|L1 − L2| = |[S(f,D, δ, η)− L2]− [S(f,D, δ, η)− L1]|
≤ |S(f,D, δ, η)− L2|+ |S(f,D, δ, η)− L1|

<
ϵ

2
+

ϵ

2
= ϵ on Λ.

Since ϵ is arbitrary, we have |L1(γ)− L2(γ)| = 0 for all γ ∈ Λ. That is, L1(γ) = L2(γ) for all
γ ∈ Λ. Since M(Λ) = 1, L1 = L2.

Theorem 3.4. (Linearity) Let α ∈ R. If f and g are LH-integrable on [0, T ], then

(i) f + g is LH-integrable on [0, T ] and

(LH)

∫ T

0
(f + g)dC = (LH)

∫ T

0
fdC + (LH)

∫ T

0
gdC;

(ii) αf is LH-integrable on [0, T ] and

(LH)

∫ T

0
αfdC = α · (LH)

∫ T

0
fdC.
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Proof. Let f, g be LH-integable on [0, T ] with

L = (LH)

∫ T

0
fdC and M = (LH)

∫ T

0
gdC

for some uncertain variables L and M .
(i) Let ϵ > 0. Then there exists a positive function δ1 on [0, T ) and a number η1 > 0 such

that for any (δ1, η1)-fine belated partial division D1 of [0, T ], we have

|S(f,D1, δ1, η1)− L| < ϵ

2
on Λ1

for some event Λ1 with M(Λ1) = 1. Similarly, there exists a positive function δ2 on [0, T ) and
a number η2 > 0 such that for any (δ2, η2)-fine belated partial division D2 of [0, T ], we have

|S(g,D2, δ2, η2)−M | < ϵ

2
on Λ2

for some event Λ2 with M(Λ2) = 1. Choose δ(τ) = min{δ1(τ), δ2(τ)} for all τ ∈ [0, T ) and
η = min{η1, η2}. Then any (δ, η)-fine belated partial division D = {([τ, v], τ)} of [0, T ] is a
(δ1, η1)-fine belated partial division and a (δ2, η2)-fine belated partial division of [0, T ]. Take
Λ = Λ1 ∩ Λ2. Then Λ is an event with Λ ⊂ Λ1 and Λ ⊂ Λ2. Moreover, by Proposition 3.1,
M(Λ) = 1 and Λ ̸= ∅. Observe that

S(f + g,D, δ, η) = (D)
∑

(fτ + gτ )(Cv − Cτ )

= (D)
∑

fτ (Cv − Cτ ) + (D)
∑

gτ (Cv − Cτ )

= S(f,D, δ, η) + S(g,D, δ, η) on Λ.

Since L and M are uncertain variables, so is L+M . Thus, we have

|S(f + g,D, δ, η)− (L+M)| = |S(f,D, δ, η) + S(g,D, δ, η)− (L+M)|
= |S(f,D, δ, η)− L+ S(g,D, δ, η)−M |
≤ |S(f,D, δ, η)− L|+ |S(g,D, δ, η)−M |

<
ϵ

2
+

ϵ

2
= ϵ on Λ.

Since ϵ is arbitrary, f + g is LH-integrable on [0, T ] and

(LH)

∫ T

0
(f + g)dC = L+M = (LH)

∫ T

0
fdC + (LH)

∫ T

0
gdC.

This proves the first part.
(ii) Let α ∈ R and ϵ > 0. Since f is LH-integrable on [0, T ] with integral L, there exists a

positive function δ on [0, T ) and a number η > 0 such that for any (δ, η)-fine belated partial
division D of [0, T ], we have

|S(f,D, δ, η)− L| < ϵ

1 + |α|
on Λ

for some event Λ with M(Λ) = 1. Take the same positive function δ on [0, T ) and a number
η > 0. Then for all (δ, η)-fine belated partial division D = {([τ, v], τ)} of [0, T ], we have

S(αf,D, δ, η) = (D)
∑

αfτ (Cv − Cτ )

17
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= α · (D)
∑

fτ (Cv − Cτ )

= α · S(f,D, δ, η) on Λ.

Since L is an uncertain variable, α · L is an uncertain variable for all α ∈ R. Thus, we have

|S(αf,D, δ, η)− α · L| = |α · S(f,D, δ, η)− α · L|
= |α · [S(f,D, δ, η)− L]|
= |α| · |S(f,D, δ, η)− L|

<
|α| · ϵ
1 + |α|

< ϵ on Λ.

Since ϵ is arbitrary, αf LH-integrable on [0, T ] and

(LH)

∫ T

0
αfdC = α · L = α · (LH)

∫ T

0
fdC.

This proves the theorem.

Theorem 3.5. [20] Let {ξi} be a sequence of uncertain variables and lim
i→∞

ξi = ξ almost surely.

Then ξ is an uncertain variable.

Definition 3.6. Let {ξi} be an uncertain sequence. Then we call the {ξi} a Cauchy sequence
a.s. if for every ϵ > 0, there exists an event Λ with M(Λ) = 1 and N ∈ N such that for every
γ ∈ Λ, we have

|ξi(γ)− ξj(γ)| < ϵ

for any i, j ≥ N .

Lemma 3.7. Let {ξi} be a sequence of uncertain variables. If {ξi} is a Cauchy sequence a.s.,
then {ξi} converges to some uncertain variable ξ a.s..

Proof. Let {ξi} be a Cauchy sequence a.s. and ϵ > 0. Then there exists an event Λ with
M(Λ) = 1 and N ∈ N such that for all γ ∈ Λ, we have

|ξi(γ)− ξj(γ)| <
ϵ

2

for all i, j ≥ N . This implies that for any fixed γ = γ0 ∈ Λ,

|ξi(γ0)− ξj(γ0)| <
ϵ

2
< ϵ

for all i, j ≥ N . Since {ξi} is a sequence of real-valued functions, {ξi(γ0)} is a Cauchy sequence
in R. Since R is complete, there exists k ∈ R such that ξi(γ0) −→ k as i −→ ∞. In this way,
define ξ : Γ → R by γ 7→ lim

j→∞
ξj(γ). Since Λ ⊂ Γ, it follows that for all ϵ0 > 0, there exists

N0 ∈ N such that for all γ ∈ Λ, we have

|ξj(γ)− ξ(γ)| < ϵ0

for all j ≥ N0. Now, for all γ ∈ Λ,

|ξi(γ)− ξ(γ)| = |ξi(γ)− ξj(γ) + ξj(γ)− ξ(γ)|
≤ |ξi(γ)− ξj(γ)|+ |ξj(γ)− ξ(γ)|

18
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<
ϵ

2
+ ϵ0

which implies that

|ξi(γ)− ξ(γ)| ≤ ϵ

2
< ϵ

for all i ≥ N . Since M(Λ) = 1, ξi −→ ξ a.s., and by Theorem 3.5, ξ is an uncertain variable.
This completes the proof.

Theorem 3.8. (Cauchy Criterion) An uncertain process f : [0, T ]×Γ → R is LH-integrable
on [0, T ] if and only if for every ϵ > 0, there exists a positive function δ on [0, T ) and a positive
number η such that for any two (δ, η)-fine belated partial divisions D and D′ of [0, T ], we have∣∣S(f,D, δ, η)− S(f,D′, δ, η)

∣∣ < ϵ on Λ

for some event Λ with M(Λ) = 1.

Proof. Suppose that f is LH-integrable on [0, T ] with integral L. Let ϵ > 0. Then there exists
a positive function δ on [0, T ) and a number η > 0 such that for any (δ, η)-fine belated partial
divisions D and D′ of [0, T ], we have

|S(f,D, δ, η)− L| < ϵ

2
on Λ and

∣∣S(f,D′, δ, η)− L
∣∣ < ϵ

2
on Λ

for some event Λ with M(Λ) = 1. Thus, we have∣∣S(f,D, δ, η)− S(f,D′, δ, η)
∣∣ = ∣∣S(f,D, δ, η)− L+ L− S(f,D′, δ, η)

∣∣
=
∣∣S(f,D, δ, η)− L− (S(f,D′, δ, η)− L)

∣∣
≤ |S(f,D, δ, η)− L|+

∣∣S(f,D′, δ, η)− L
∣∣

<
ϵ

2
+

ϵ

2
= ϵ on Λ.

Hence, |S(f,D, δ, η)− S(f,D′, δ, η)| < ϵ on Λ for some event Λ with M(Λ) = 1.
To prove the converse, note that for each n ∈ N, there exists a positive function δn on [0, T )

and a positive number ηn such that for all (δn, ηn)-fine belated partial divisions D and D′ of
[0, T ], we have

∣∣S(f,D, δn, ηn)− S(f,D′, δn, ηn)
∣∣ < 1

n
on Λ1

for some event Λ1 with M(Λ1) = 1. We may assume that for all n ∈ N, δn(x) ≥ δn+1(x) for all
x ∈ [0, T ); otherwise, we replace δn by δ̃n = min{δ1, δ2, . . . , δn} on [0, T ), for all n ∈ N and also
choose {ηn} to be decreasing. For each n ∈ N, let Dn be a (δn, ηn)-fine belated partial division
of [0, T ]. Since δn(x) ≥ δn+1(x) for all x ∈ [0, T ), for any n,m ∈ N with m ≥ n, Dm and Dn

are both (δn, ηn)-fine belated partial division of [0, T ]. Hence,

|S(f,Dn, δn, ηn)− S(f,Dm, δm, ηm)| < 1

n
on Λ1.

Thus, given any ϵ > 0, by taking N ∈ N such that
1

N
< ϵ, we have

|S(f,Dn, δn, ηn)− S(f,Dm, δm, ηm)| < 1

n
≤ 1

N
< ϵ on Λ1
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for all m,n ≥ N . This means that {S(f,Dn, δn, ηn)}n∈N is a Cauchy sequence a.s. of uncertain
variables. By Lemma 3.7, there exists an uncertain variable L and an event Λ2 with M(Λ2) = 1
such that

lim
n→∞

S(f,Dn, δn, ηn) = L on Λ2.

Let ϵ > 0. Then there exists N1 ∈ N such that for all n ≥ N1

|S(f,Dn, δn, ηn)− L| < ϵ

2
on Λ2.

Furthermore, there exists N2 ∈ N such that N2 >
2

ϵ
. Take N = max{N1, N2}. Choose

δ = δN on [0, T ) and η = ηN . Then any (δ, η)-fine belated partial division D of [0, T ] is also
a (δN , ηN )-fine belated partial division of [0, T ]. Take Λ = Λ1 ∩ Λ2. Then Λ is an event with
Λ ⊂ Λ1 and Λ ⊂ Λ2. Moreover, by Proposition 3.1, M(Λ) = 1 and Λ ̸= ∅. Thus, we have

|S(f,D, δ, η)− L| = |S(f,D, δ, η)− S(f,DN , δN , ηN ) + S(f,DN , δN , ηN )− L|
≤ |S(f,D, δ, η)− S(f,DN , δN , ηN )|+ |S(f,DN , δN , ηN )− L|

<
1

N
+

ϵ

2

≤ 1

N2
+

ϵ

2

<
ϵ

2
+

ϵ

2
= ϵ on Λ

Hence, f is LH-integrable to L on [0, T ].

Theorem 3.9. A function f : [0, T ]×Γ → R is LH-integrable on [0, c] and [c, T ] where c ∈ (0, T )
if and only if f is LH-integrable on [0, T ] and

(LH)

∫ T

0
f dC = (LH)

∫ c

0
f dC + (LH)

∫ T

c
f dC.

Proof. Suppose that f : [0, T ] × Γ → R is LH-integrable on [0, c] and [c, T ] where c ∈ (0, T )
with

L = (LH)

∫ c

0
fdC and M = (LH)

∫ T

c
fdC.

Let ϵ > 0. Then there exists a positive function δ1 on [0, c) and a number η1 > 0 such that for
any (δ1, η1)-fine belated partial division D1 of [0, c], we have

|S(f,D1, δ1, η1)− L| < ϵ

2
on Λ1

for some event Λ1 with M(Λ1) = 1. Similarly, there exists a positive function δ2 on [c, T ) and
a number η2 > 0 such that for any (δ2, η2)-fine belated partial division D2 of [c, T ], we have

|S(f,D2, δ2, η2)−M | < ϵ

2
on Λ2

for some event Λ2 with M(Λ2) = 1. Define δ on [0, T ) by

δ(x) =

{
min{δ1(x), c− x} if x ∈ [0, c)

δ2(x) if x ∈ [c, T )
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and take η = min{η1, η2}. Let D = {([τ, v], τ)} be any (δ, η)-fine belated partial division of
[0, T ]. Consider

P1 = {([τ, v], τ) ∈ D : [τ, v] ⊂ [0, c]} and P2 = {([τ, v], τ) ∈ D : [τ, v] ⊂ [c, T ]}

Observe that∣∣∣T − (D)
∑

(v − τ)
∣∣∣ = ∣∣∣c+ (T − c)− ((P1 ∪ P2)

∑
(v − τ))

∣∣∣
=
∣∣∣c+ (T − c)− ((P1)

∑
(v − τ) + (P2)

∑
(v − τ))

∣∣∣
=
∣∣∣c+ (T − c)− (P1)

∑
(v − τ)− (P2)

∑
(v − τ)

∣∣∣
=
∣∣∣c− (P1)

∑
(v − τ) + (T − c)− (P2)

∑
(v − τ)

∣∣∣
=
∣∣∣c− (P1)

∑
(v − τ)

∣∣∣+ ∣∣∣(T − c)− (P2)
∑

(v − τ)
∣∣∣

Then P1 is a δ1-fine belated partial division of [0, c] and∣∣∣c− (P1)
∑

(v − τ)
∣∣∣ ≤ ∣∣∣T − (D)

∑
(v − τ)

∣∣∣ ≤ η ≤ η1

so that P1 is a (δ1, η1)-fine belated partial division of [0, c]. Similarly, P2 is a δ2-fine belated
partial division of [c, T ] and∣∣∣(T − c)− (P2)

∑
(v − τ)

∣∣∣ ≤ ∣∣∣T − (D)
∑

(v − τ)
∣∣∣ ≤ η ≤ η2

so that P2 is a (δ2, η2)-fine belated partial division of [c, T ]. Take Λ = Λ1 ∩ Λ2. Then Λ is an
event with Λ ⊂ Λ1 and Λ ⊂ Λ2. Moreover, by Proposition 3.1, M(Λ) = 1 and Λ ̸= ∅. Note
that

S(f,D, δ, η) = (D)
∑

fτ (Cv − Cτ )

= (P1 ∪ P2)
∑

fτ (Cv − Cτ )

= (P1)
∑

fτ (Cv − Cτ ) + (P2)
∑

fτ (Cv − Cτ )

= S(f, P1, δ1, η1) + S(f, P2, δ2, η2) on Λ.

Since L and M are uncertain variables, so is L+M . Hence, we have

|S(f,D, δ, η)− (L+M)| = |S(f, P1, δ1, η1) + S(f, P2, δ2, η2)− (L+M)|
= |S(f, P1, δ1, η1)− L+ S(f, P2, δ2, η2)−M |
= |S(f, P1, δ1, η1)− L|+ |S(f, P2, δ2, η2)−M |

<
ϵ

2
+

ϵ

2
= ϵ on Λ.

Since ϵ is arbitrary, f is LH-integrable on [0, T ] and

(LH)

∫ T

0
fdC = L+M = (LH)

∫ c

0
fdC + (LH)

∫ T

c
fdC.

To prove the converse, we shall show that f is LH-integrable on [0, c]. Let f be LH-integrable
on [0, T ] and let ϵ > 0 be given. By Cauchy Criterion, there exists a positive function δ on
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[0, T ) and a positive number η such that for any (δ, η)-fine belated partial divisions D and D′

of [0, T ], we have ∣∣S(f,D, δ, η)− S(f,D′, δ, η)
∣∣ < ϵ on Λ

for some event Λ with M(Λ) = 1. Choose η′ = η
2 . Then any (δ, η′)-fine belated partial division

D1 = {([τi, vi], τi)}ni=1 of [0, T ] is a (δ, η)-fine belated partial division of [0, T ]. Hence, we
may assume that ([τg, c], τg) ∈ D1 for some g ∈ {1, 2, . . . , n}. Let D′

1 be the collection of

interval-point pairs in D1 by deleting ([τg, c], τg) and {([τi, vi], τi)}g−1
i=1 from D1. This means

that D′
1 is a (δ, η′)-fine belated partial division of [c, T ]. Let D2 and D′

2 be any (δ, η′)-fine
belated partial divisions of [0, c]. Then D2 ∪D′

1 and D′
2 ∪D′

1 are δ-fine belated partial divisions
of [0, T ]. Moreover,∣∣∣T − (D2 ∪D′

1)
∑

(v − τ)
∣∣∣ = ∣∣∣c+ (T − c)− (D2)

∑
(v − τ)− (D′

1)
∑

(v − τ)
∣∣∣

=
∣∣∣c− (D2)

∑
(v − τ)

∣∣∣+ ∣∣∣(T − c)− (D′
1)
∑

(v − τ)
∣∣∣

≤ η′ + η′ = η

so that D2 ∪ D′
1 is a (δ, η)-fine belated partial division of [0, T ]. Similarly, D′

2 ∪ D′
1 is also a

(δ, η)-fine belated partial division of [0, T ]. Then∣∣S(f,D2, δ, η
′)− S(f,D′

2, δ, η
′)
∣∣

=
∣∣∣(S(f,D2, δ, η

′) + (D′
1)
∑

fτ (Cv − Cτ )
)
−
(
(D′

1)
∑

fτ (Cv − Cτ ) + S(f,D′
2, δ, η

′)
)∣∣∣

=
∣∣∣((D2)

∑
fτ (Cv − Cτ ) + (D′

1)
∑

fτ (Cv − Cτ )
)
−
(
(D′

1)
∑

fτ (Cv − Cτ )

+ (D′
2)
∑

fτ (Cv − Cτ )
)∣∣∣

=
∣∣∣(D2 ∪D′

1)
∑

fτ (Cv − Cτ )− (D′
1 ∪D′

2)
∑

fτ (Cv − Cτ )
∣∣∣

=
∣∣S(f,D2 ∪D′

1, δ, η)− S(f,D′
2 ∪D′

1, δ, η)
∣∣ < ϵ on Λ

for some event Λ with M(Λ) = 1. Applying the Cauchy Criterion, f is LH-integrable on [0, c].
Following the same argument above, we can also verify that f is LH-integrable on [c, T ].

Theorem 3.10. (Sequential Definition) An uncertain process f : [0, T ] × Γ → R is
LH-integrable on [0, T ] if and only if there exists an uncertain variable L, a decreasing sequence
of {δn} of positive functions defined on [0, T ) and a decreasing sequence of positive numbers
{ηn} such that for any (δn, ηn)-fine belated partial division Dn of [0, T ], we have

lim
n→∞

|S(f,Dn, δn, ηn)− L| = 0 on Λ

for some event Λ with M(Λ) = 1. In this case,

L = (LH)

∫ T

0
ftdCt.

Proof. Suppose that f is LH-integrable on [0, T ] with integral L. Then for each n ∈ N, there
exists a positive function δn on [0, T ) and a positive number ηn such that for any (δn, ηn)-fine
belated partial division Dn of [0, T ],

|S(f,Dn, δn, ηn)− L| < 1

n
on Λ
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for some event Λ with M(Λ) = 1. We can choose {δn(τ)} and {ηn} to be decreasing for all
τ ∈ [0, T ). Hence,

lim
n→∞

|S(f,Dn, δn, ηn)− L| = 0 on Λ

for some event Λ with M(Λ) = 1.
Conversely, assume that there exists an uncertain variable L, a decreasing sequence {δn(τ)}

of positive functions defined on [0, T ) and a decreasing sequence of positive numbers {ηn} such
that for any (δn, ηn)-fine belated partial division Dn of [0, T ], we have

lim
n→∞

|S(f,Dn, δn, ηn)− L| = 0 on Λ0

for some event Λ0 with M(Λ0) = 1. Suppose that f is not LH-integrable to L on [0, T ]. Then
there exists ϵ > 0 such that for every positive function δ on [0, T ) and every number η > 0,
there exists (δ, η)-fine belated partial division D of [0, T ] with∣∣∣(D)

∑
fτ (γ)(Cv(γ)− Cτ (γ))− L(γ)

∣∣∣ ≥ ϵ

for some γ ∈ Λ, for all events Λ with M(Λ) = 1. This means that for each positive function δn
on [0, T ) and number ηn > 0, there exists a (δn, ηn)-fine belated partial division Dn of [0, T ]
with ∣∣∣(Dn)

∑
fτ (γ)(Cv(γ)− Cτ (γ))− L(γ)

∣∣∣ ≥ ϵ

for some γ ∈ Λ, for all events Λ with M(Λ) = 1. Hence,

lim
n→∞

∣∣∣(Dn)
∑

fτ (γ)(Cv(γ)− Cτ (γ))− L(γ)
∣∣∣ ̸= 0

for some event γ ∈ Λ, for all events Λ with M(Λ) = 1. This gives a contradiction.

Theorem 3.11. If f : [0, T ] × Γ → R is LH-integrable on [0, T ], then f is also LH-integrable
on every subinterval [c, d] of [0, T ].

Proof. Supoose f : [0, T ] × Γ → R is LH-integrable on [0, T ] and let c, d ∈ (0, T ) with c < d.
By Theorem 3.9, f is LH-integrable on [0, c] and [0, d]. Let

(LH)

∫ c

0
fdC = L and (LH)

∫ d

0
fdC = M

for some uncertain variables L and M . Let ϵ > 0 be given. Then there exists positive function
δ1 on [0, T ) and a number η1 > 0 such that for any (δ1, η1)-fine belated partial division D1 of
[0, c], we have

|S(f,D1, δ1, η1)− L| < ϵ

2
on Λ1

for some event Λ1 with M(Λ1) = 1. Similarly, there exists a positive function δ2 on [0, T ) and
a number η2 > 0 such that for any (δ2, η2)-fine belated partial division D2 of [0, d], we have

|S(f,D2, δ2, η2)−M | < ϵ

2
on Λ2

for some event Λ2 with M(Λ2) = 1. Choose δ = min{δ1, δ2} on [0, T ) and η = min{η1, η22 }.
Let D be a (δ, η)-fine belated partial division of [c, d] and let D′

1 be a (δ, η)-fine belated partial
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division of [0, c]. Then D′
2 = D′

1 ∪D is a (δ, 2η)-fine belated partial division of [0, d] and thus a
(δ2, η2)-fine belated partial division of [0, d]. Note that D = D′

2 \D′
1. Take Λ = Λ1 ∩ Λ2. Then

Λ is an event with Λ ⊂ Λ1 and Λ ⊂ Λ2. Moreover, by Proposition 3.1, M(Λ) = 1 and Λ ̸= ∅.
Since L and M are uncertain variables, so is M − L. Now,

|S(f,D, δ, η)− (M − L)| =
∣∣S(f,D′

2 \D′
1, δ, η)− (M − L)

∣∣
=
∣∣S(f,D′

2, δ2, η2)− S(f,D′
1, δ1, η1)− (M − L)

∣∣
=
∣∣S(f,D′

2, δ2, η2)−M − (S(f,D′
1, δ1, η1)− L)

∣∣
≤
∣∣S(f,D′

2, δ2, η2)−M
∣∣+ ∣∣S(f,D′

1, δ1, η1)− L
∣∣

<
ϵ

2
+

ϵ

2
= ϵ on Λ.

Therefore, f is LH-integrable on [c, d] ⊂ [0, T ] and

(LH)

∫ d

c
fdC = M − L = (LH)

∫ d

0
fdC − (LH)

∫ c

0
fdC

which completes the proof.

Theorem 3.12. (Saks-Henstock Lemma (Weak Version)) Let f be LH-integrable on

[0, T ] and F [u, v] := (LH)

∫ v

u
ftdCt for any [u, v] ⊆ [0, T ]. Then for every ϵ > 0, there exists a

positive function δ on [0, T ) and a positive number η such that for any (δ, η)-fine belated partial
division D = {([τ, v], τ)} of [0, T ], we have∣∣∣(D)

∑
{fτ (Cv − Cτ )− F [τ, v]}

∣∣∣ < ϵ on Λ

for some event Λ with M(Λ) = 1.

Proof. Let ϵ > 0 be given. Then there exists a positive function δ on [0, T ) and a positive
number η such that for any (δ, η)-fine belated partial division P of [0, T ], we have∣∣∣∣S(f, P, δ, η)− (LH)

∫ T

0
ftdCt

∣∣∣∣ < ϵ

2
on Λ0

for some event Λ0 with M(Λ0) = 1. Let D = {([τi, vi], τi)}ni=1 be a (δ, η)-fine belated partial

division of [0, T ]. Consider [0, T ] \
n⋃

i=1
[τi, vi], which consists of disjoint intervals of the form

(aj , bj), j = 1, . . . ,m. Note that f is also LH-integrable on [aj , bj ] for all j. This means that
for all j, there exists a positive function δj on [aj , bj) and a positive number ηj such that for
any (δj , ηj)-fine belated partial division Dj of [aj , bj ], we have

|S(f,Dj , δj , ηj)− F [aj , bj ]| <
ϵ

2j+1
on Λj

for some event Λj with M(Λj) = 1. We choose {δj}mj=1 and {ηj}mj=1 such that δj(τ) ≤ δ(τ) for

all j and
m∑
j=1

ηj ≤ η. Let P = D∪D1 ∪D2 ∪ . . . Dm which is a (δ, η)-fine belated partial division

of [0, T ]. Observe that∣∣∣∣S(f, P, δ, η)− (LH)

∫ T

0
ftdCt

∣∣∣∣
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=

∣∣∣∣∣∣(P )
∑

fτ (Cv − Cτ )−

[
n∑

i=1

(LH)

∫ vi

τi

ftdCt +

m∑
j=1

(LH)

∫ bj

aj

ftdCt

]∣∣∣∣∣∣
=

∣∣∣∣∣∣(P )
∑

fτ (Cv − Cτ )−
n∑

i=1

F [τi, vi]−
m∑
j=1

F [aj , bj ]

∣∣∣∣∣∣
=

∣∣∣∣∣∣(D ∪D1 ∪D2 ∪ . . . Dm)
∑

fτ (Cv − Cτ )−
n∑

i=1

F [τi, vi]−
m∑
j=1

F [aj , bj ]

∣∣∣∣∣∣
=

∣∣∣∣∣(D)
∑

fτ (Cv − Cτ ) +

 m⋃
j=1

Dj

∑ fτ (Cv − Cτ )−
n∑

i=1

F [τi, vi]−
m∑
j=1

F [aj , bj ]

∣∣∣∣∣
=

∣∣∣∣∣∣(D)
∑

{fτ (Cv − Cτ )− F [τ, v]}+
m∑
j=1

{S(f,Dj , δj , ηj)− F [aj , bj ]}

∣∣∣∣∣∣ .
It follows that∣∣∣∣∣∣(D)

∑
{fτ (Cv − Cτ )− F [τ, v]}+

m∑
j=1

{S(f,Dj , δj , ηj)− F [aj , bj ]}

∣∣∣∣∣∣ < ϵ

2
on Λ0

for some event Λ0 with M(Λ0) = 1. Take Λ = Λ0 ∩

(
m⋂
j=1

Λj

)
. Then Λ is an event with Λ ⊂ Λ0

and Λ ⊂

(
m⋂
j=1

Λj

)
. Moreover, by Corollary 3.2, M(Λ) = 1 and Λ ̸= ∅. Thus, we have

∣∣∣(D)
∑

{fτ (Cv − Cτ )− F [τ, v]}
∣∣∣

=

∣∣∣∣∣(D)
∑

{fτ (Cv − Cτ )− F [τ, v]}+
m∑
j=1

{S(f,Dj , δj , ηj)− F [aj , bj ]}

−
m∑
j=1

{S(f,Dj , δj , ηj)− F [aj , bj ]}

∣∣∣∣∣
≤

∣∣∣∣∣(D)
∑

{fτ (Cv − Cτ )− F [τ, v]}+
m∑
j=1

{S(f,Dj , δj , ηj)− F [aj , bj ]}

∣∣∣∣∣
+

∣∣∣∣∣
m∑
j=1

{S(f,Dj , δj , ηj)− F [aj , bj ]}

∣∣∣∣∣
≤

∣∣∣∣∣(D)
∑

{fτ (Cv − Cτ )− F [τ, v]}+
m∑
j=1

{S(f,Dj , δj , ηj)− F [aj , bj ]}

∣∣∣∣∣
+

m∑
j=1

|S(f,Dj , δj , ηj)− F [aj , bj ]|

<
ϵ

2
+

m∑
j=1

ϵ

2j+1
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<
ϵ

2
+

∞∑
j=1

ϵ

2j+1

=
ϵ

2
+

ϵ

2

∞∑
j=1

1

2j

=
ϵ

2
+

ϵ

2
= ϵ on Λ.

This completes the proof.

Conclusion and Recommendation

In this paper, we use a Henstock approach to define a new integral for the uncetain process
with respect to a Liu process. This newly defined integral, called Liu-Henstock integral adheres
to the standard properties of an integral. A worthwhile direction for further investigation is to
formulate a version of Itô’s formula for the Liu-Henstock integral.
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