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Abstract: In this paper, we introduce the second order lin-
ear recurrence relation of the AB-generalized Fibonacci se-
quence {un} and give the relationships between {un} and
Hessenberg permanents and determinants. Moreover, we
also give representations of u2n and u2n+1. These formulas
generalize the one obtained earlier by Kiliç et al. in [9].
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1 Introduction

For n > 0, the Fibonacci sequence {Fn} is defined by

Fn+1 = Fn + Fn�1,

where F0 = 0 and F1 = 1, the Pell sequence {Pn} is defined
by

Pn+1 = 2Pn + Pn�1,

where P0 = 0 and P1 = 1, and the Jacobsthal sequence is
defined by

Jn+1 = Jn + 2Jn�1,
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42 On the AB-Generalized Fibonacci, Pell and...

where J0 = 0 and J1 = 1.
In [5], Kiliç introduced the generalized Fibonacci se-

quence and gave the explicit formulas for the sums of the
terms of this sequence using matrix methods. He constructed
essential generating matrices and used matrix properties
to obtain these sums. Kiliç’s definition provided a moti-
vation to the construction of the so called AB-generalized
Fibonacci sequence.

Let n > 0 and let A and B be nonzero integers with
A

2 + 4B 6= 0. The AB-generalized Fibonacci sequence
{un} has the recurrence relation

un+1 = Aun +Bun�1,

where u0 = 0 and u1 = 1.
Let ↵ and � be the roots of the characteristic equation

x
2
�Ax�B = 0. Then the Binet’s formula of the sequence

{un} has the form

un =
↵
n
� �

n

↵� �
.

In [1], the author gave the combinatorial representation
of {un} and is given by

un+1 =

b
n
2 cX

k=0

✓
n� k

k

◆
A

n�2k
B

k
.

Several authors have studied the second order linear re-
currences and show their relationships between the perma-
nents and determinants of tridiagonal matrices.

In [10], the authors gave interesting results involving
the permanent of the (�1, 0, 1)-matrix and the Fibonacci
number Fn+1. Consequently, the authors established some

The MINDANAWAN
Journal of Mathematics

Volume 3 Issue 1
May 2012



M.A. Labendia, M.B. Frondoza 43

results involving the positively and negatively subscripted
terms of the Fibonacci and Lucas numbers.

In [8], the authors discovered the families of (0, 1)-matrices
and then gave the relationships between the permanents of
these matrices and the sums of the Fibonacci and Lucas
numbers.

In [4], the author introduced two tridiagonal matrices
and then gave the relationships between the permanents
and determinants of these matrices and the second order
linear recurrences.

In [11], the authors introduced the two generalized dou-
bly stochastic matrices and then show the relationships be-
tween the doubly stochastic permanents and the second or-
der linear recurrences.

Recently, the authors in [9], define lower Hessenberg ma-
trices and gave the relationships between the permanents
and determinants of these matrices and the generalized Fi-
bonacci and Pell sequences.

A lower Hessenberg matrixMn = (aij) is an n⇥n matrix
where ajk = 0 whenever k > j + 1 and aj(j+1) 6= 0 for some
j. Clearly,

Mn =

2

6666666664

a11 a12 0 · · · 0 0

a21 a22 a23
. . .

... 0

a31 a32 a33
. . . 0

...
...

...
. . .

. . . a(n�2)(n�1) 0
a(n�1)1 a(n�1)2 · · · a(n�1)(n�2) a(n�1)(n�1) a(n�1)n

an1 an2 an3 · · · an(n�1) ann

3

7777777775

.

In [2], the authors considered the above general lower
Hessenberg matrix and then gave the following determinant
formula: For n � 2,

detMn = ann · detMn�1 +
n�1X

r=1

0

@(�1)n�r
amr

n�1Y

j=r

aj(j+1) detMr�1

1

A .
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In this paper, we consider the AB-generalized Fibonacci
sequence {un} and then we show the relationships between
the AB-generalized Fibonacci sequence and the Hessenberg
determinants and permanents. Also, we give the representa-
tions of u2n and u2n+1. The authors in [9] proved the results
for special case B = 1.

2 On the AB-Generalized Fibonacci
sequence by Hessenberg matri-
ces

In this section, we consider first the following Hessenberg
matrices. Let the n⇥n lower Hessenberg matrix Hn defined
by

Hn =

2

666666664

A
2 +B B 0 · · · 0 0

B A
2 +B B

. . .
... 0

B B A
2 +B

. . . 0
...

...
...

. . . . . . B 0
B B · · · B A

2 +B B

B B B · · · B A
2 +B

3

777777775

.

We also define another n ⇥ n lower Hessenberg matrix
Tn by

Tn =

2

666666664

A
2 +B B 0 · · · 0 0

B A
2 +B B

. . .
... 0

B B A
2 +B

. . . 0
...

...
...

. . . . . . B 0
B B · · · B A

2 +B B

B B B · · · B B

3

777777775

.
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Following the methods employed by the authors in [9],
we have the following results.

Lemma 2.1 For every n � 3,

detTn = A
2
B detHn�2.

Proof : We subtract first the (n� 1)th row from the nth row
and then expanding with respect to the last row, we can
easily obtain detTn = A

2
B detHn�2. ⇤

Theorem 2.2 For every n > 0,

un+2 =
detHn

An�1
or detHn =

b
n+1
2 cX

k=0

✓
n+ 1� k

k

◆
A

2n�2k
B

k
.

Proof : The equation holds for n = 1. Now, assume that

un+2 =
detHn

An�1
. We now show that the equation holds for

n+ 1. By the cofactor expansion along the last column, we
have detHn+1 = (A2+B) detHn�B detTn. By Lemma 2.2
and using the assumption, we have

detHn+1 = (A2 +B) detHn � A
2
B

2 detHn�2 = A
n
un+3.

Thus, by induction, the assertion must be true. ⇤

If A = B = 1, then the sequence {un} is a Fibonacci
sequence {Fn}, and using Theorem 2.2, we have

��������������

2 1 0 · · · 0 0

1 2 1
. . .

... 0

1 1 2
. . . 0

...
...

...
. . . . . . 1 0

1 1 · · · 1 2 1
1 1 1 · · · 1 2

��������������
n⇥n

= Fn+2,
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which can be found in [2].

Moreover, if A = 1 and B = 2, then the sequence {un} is
a Jacobsthal sequence {Jn}. Similarly, using Theorem 2.2,
we have

��������������

3 2 0 · · · 0 0

2 3 2
. . .

... 0

2 2 3
. . . 0

...
...

...
. . . . . . 2 0

2 2 · · · 2 3 2
2 2 2 · · · 2 3

��������������
n⇥n

= Jn+2.

As done by the authors in [9], we shall now consider the
permanent of a Hessenberg matrix. We define first the fol-
lowing concepts.

A matrix M is said to be convertible if there is an n⇥n

(1,�1)-matrix H such that per M = det(M � H), where
M � H denotes the Hadamard product of M and H. The
matrix H is called the converter of M .

Now, let S be an n⇥ n (1,�1)-matrix defined by

S =

2

666666664

1 �1 1 · · · 1 1

1 1 �1
. . .

... 1

1 1 1
. . . 1

...
...

...
. . . . . . �1 1

1 1 · · · 1 1 �1
1 1 1 · · · 1 1

3

777777775

.
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We denote the Hadamard product Hn � S by Cn. Then

Cn =

2

666666664

A
2 +B �B 0 · · · 0 0

B A
2 +B �B

. . .
... 0

B B A
2 +B

. . . 0
...

...
...

. . . . . . �B 0
B B · · · B A

2 +B �B

B B B · · · B A
2 +B

3

777777775

.

Then, we have the following result which is a conse-
quence of Theorem 2.2.

Corollary 2.3 For every n > 0,

un+2 =
per Cn

An�1
or per Cn =

b
n+1
2 cX

k=0

✓
n+ 1� k

k

◆
A

2n�2k
B

k
.

If A = 2 and B = 1, then the sequence {un} is a Pell
sequence {Pn}, and using Corollary 2.4, we have

per

2

666666664

5 �1 0 · · · 0 0

1 5 �1
. . .

... 0

1 1 5
. . . 0

...
...

...
. . . . . . �1 0

1 1 · · · 1 5 �1
1 1 1 · · · 1 5

3

777777775

n⇥n

= 2n�1
Pn+2.

3 Representations of u2n and u2n+1

In this section, we give the representations of u2n and u2n+1

using permanents and determinants of some Hessenberg ma-
trices.
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Firstly, let the n⇥n lower Hessenberg matrixWn defined
by

Wn =

2

666666664

A
2 +B �B 0 · · · 0 0

A
2

A
2 +B �B

. . .
... 0

A
2

A
2

A
2 +B

. . . 0
...

...
...

. . . . . . �B 0
A

2
A

2
· · · A

2
A

2 +B �B

A
2

A
2

A
2

· · · A
2

A
2 +B

3

777777775

.

Then, we have the following result.

Theorem 3.1 For every n > 0,

u2n+1 = detWn.

Proof : The equation holds when n = 1. Assume that u2n+1 =
detWn. We now show that the equation also holds for n+1.
Now, subtracting the nth row from the (n+1)th row and ex-
panding along the last column, we have detWn+1 = (A2 +
B) detWn�B

2 detWn�1. By the assumption and the recur-
rence relation of the sequence {un}, we have detWn+1 =
u2n+3. Thus, by induction, the assertion must be true. ⇤

Secondly, Let the n⇥ n lower Hessenberg matrix Vn de-
fined by

Vn =

2

666666664

A
2

�B 0 · · · 0 0

A
2

A
2 +B �B

. . .
... 0

A
2

A
2

A
2 +B

. . . 0
...

...
...

. . . . . . �B 0
A

2
A

2
· · · A

2
A

2 +B �B

A
2

A
2

A
2

· · · A
2

A
2 +B

3

777777775

.
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Then, we have the following result.

Theorem 3.2 For every n > 0,

u2n =
detVn

A
.

Proof : The equation is clearly true if n = 1. Assume that

u2n =
detVn

A
. We now show that the equation also holds

for n + 1. Then expanding along the first row, we have
detVn+1 = A

2 detWn+B detVn. By assumption, recurrence
relation of the sequence {un} and Theorem 3.3, we have

detVn+1 = A
2
u2n+1 + ABu2n = Au2n+2.

Hence, by induction, the result follows. ⇤

Consider again the n⇥n (1,�1) matrix S defined previ-
ously. We denote the Hadamard products Wn �S and Vn �S

by Rn and Qn, respectively. Then

Rn =

2

666666664

A
2 +B B 0 · · · 0 0

A
2

A
2 +B B

. . .
... 0

A
2

A
2

A
2 +B

. . . 0
...

...
...

. . . . . . B 0
A

2
A

2
· · · A

2
A

2 +B B

A
2

A
2

A
2

· · · A
2

A
2 +B

3

777777775

and

Qn =

2

666666664

A
2

B 0 · · · 0 0

A
2

A
2 +B B

. . .
... 0

A
2

A
2

A
2 +B

. . . 0
...

...
...

. . . . . . B 0
A

2
A

2
· · · A

2
A

2 +B B

A
2

A
2

A
2

· · · A
2

A
2 +B

3

777777775

.
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Then we have the following results which are consequences
of Theorems 3.3 and 3.4.

Corollary 3.3 For every n > 0,

u2n+1 = per Rn.

Corollary 3.4 For every n > 0,

u2n =
per Qn

A
.

Using the above results and identity in [2], we have the
following representations:

detWn = per Rn =
nX

k=0

✓
2n� k

k

◆
A

2n�2k
B

k
,

and

detVn = per Qn =

b
2n�1

2 cX

k=0

✓
2n� 1� k

k

◆
A

2n�2k
B

k
.
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[7] E. Kiliç and D. Stanica, Factorizations and repre-
sentations of second order linear recurrences with in-
dices in arithmetic progressions, Bul. Mex. Math. Soc.,
15(1)(2009) 23-36.
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