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Abstract: Let n > 0 be any integer and

L, = {P : P(z) = Xn:ajzj,aj € {1,—1}}

be a set of polynomials of degree n. The elements of the set
£, are restricted polynomials called Littlewood polynomial.
If P e £,, then the L,,-norm of P over the unit circle is

1

PGl = (5 [ P@ra) =)

and the average of the mth power of the L,,-norms over £,

1S
1 m

PRSIV

The formulae for p,(m) for m = 2, 4, 6, and 8 have been
established in the literature by Borwein and Choi in their
paper entitled “The Average Norm of Polynomials of Fixed
Height”.

In this paper we give exact formulae for p,(m) for
m = 10. This result is new and is the tip of an iceberg
that we explore further.
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1 Introduction

Questions and results about polynomials with restricted co-
efficients has been given much attention in recent years.
Among the well-known and well-studied polynomials are
the Newmann polynomials [13], the Littlewood polynomials
[4, 5, 8], and the fixed height one polynomials [3, 12]. Some
authors like Peter Borwein and Kwok-Kwong Stephen Choi
[3] give a variety of related results for different classes of
polynomials including polynomials of fixed height H, poly-
nomials with coefficients of modulus one, derivative polyno-
mials and reciprocal polynomials.

Problems concerning the location and multiplicity of ze-
ros of polynomials with restricted coefficients, some of the
approximation theoretic properties of such polynomials, on
the maximum and minimum norms of such polynomials,
and finding the average norm of such polynomials are only
few questions in literature that arose in the above mention
polynomials.

The results in [3] which deals with the average norm
of Littlewood polynomials are already established in 2005
by Toufik Mansour [12]. His proof and techniques, without
doubt are significantly more complicated and requires a con-
siderable foundation in the area of generating functions and
knowledge in using the MAPLE program explicitly. With
the aid of MAPLE software, it was then that the results in
[12] were implemented and produced a lot of outputs.

However, the exact formula for the average norm of Lit-
tlewood polynomials are provided with proof in an entirely
different approach in [3] in an article entitled “ The Aver-
age Norm of Polynomials of Fixed Height”. This paper then
enumerates the results in [3] which determines the average
of the mth power of the L,,-norms of Littlewood polynomi-
als for an even integer m where 2 < m < 8. Furthermore,
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190 The Average of the mith Power of the L,,-norms of...

the author extended this study to the case m = 10.

2 Preliminary Concepts and Known
Results

Definition 2.1 [3] Let n > 0 be any integer. A polyno-

mial P(z) = Zajzj, where a; € {1,—1}, is a restricted
=0
polynomial called Littlewood polynomial.

The results obtain about Littlewood polynomials by Man-
sour [12] presented below are provided with algebraic proofs
by Borwein and Choi [3]. These results are so critical that
we need them to enumerate in this section. We also enu-
merate all lemmas in [3] for these are badly needed for the
proof of the main result. They are the following.

Lemma 2.2 For m # 0, we have

1 1 27 .
o X o | PGP s —o.
0

Pely,

Lemma 2.3 For an integer m > 1, we have

1 1 2m .
on+1 Z %/ |P'(2)|" 2™ P'(2)* df = 0.
Pcg, 0

Lemma 2.4 For an integer m > 0, we have

1 I 1 ifm<n,
WZg/ﬂ 2P0 =]

orrd if m > n.
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Lemma 2.5 For an integer m > 1, we have

1 e — 1 ifm<
Y [Pt a = s
2 2m Jo 0 if m>n.

Pely,

Lemma 2.6 For an integer m > 1, we have

1 1 27 -
T Z %/0 \P’(z)]4z2 P'(2)* d

Pel,

_ %(n—m)2+%(n—m)—l—w if m<n,
0 if m > n.

The following result are called the average of the second,
fourth, sixth, and eighth power of the norms of Littlewood
polynomials on the unit circle, respectively.

Theorem 2.7 Forn >0, we have

2(2) = n+1,

pn(4) = 2n* +3n+1,
(6)
(8)

=

pn(6) = 6n° +9n*+4n+1, and
pn(8) = 24n* 4+ 30n® 4+ 4n? +5n +4 — 3(—1)"

3 Main Results

The formula for x,(10) is somewhat more complicated. We
proceed as follows.

Lemma 3.1 For m € Z, we have

1 1 2 0 if m # 0
— P ™ dh = ’
ST D 27r/0 P {n—|—1 if m = 0.

pPeg,
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Proof: The case when m # 0 is the same as Lemma 2.2.
Suppose m = 0. We prove this case by induction on n.
When n = 0, we have

1 > : /%IP’( )|? 20 db 1/%659 1
— — 2)|" 2 = — = 1.
20+1 27T 0 271— 0

P'efy

Now, by writing every polynomial in £, as zP(z) + 1 for
some P € £, 1 and using the induction assumption, we
have

1 1 2
> 5 | IPE

Peg,

- Ly %/0W(\zP(z)+1]2+|2P(z)—1|2) a6

2n+1
PeL, 1

1 1 2
= o 3 %/0 (2|P(2)|* +2) do

Pel, 1

S 1/27r|P( Pdo+~ 3 1/2wd0
T o J, TV on or J,

Pefy, 1 PeL,
= n+ 1. ]

Lemma 3.2 For an integer m > 1, we have
2T

> / |P'(2)]? 2™ P'(2)* df = 0.

peg, 0

Proof: We prove this result by induction on n. When n = 0,
we have

2 2
3 / P(2)] 2" P (=) db = 2/ 2™ dh =0,
0

P'egy 0
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because fo% 2™ df = 0 when m # 0. Now, by writing every
polynomial in £, as zP(z) £+ 1 for some P € £,_; and using
the induction assumption, we have

2w

> / |P'(z)]> 2™ P'(2)* df

Pefyiq 0

Z/% " 1P) +1P )+ 1)

Pegy

+|2P(2) — 1)° (2P(2) — 1)*] dé.

We expand the integrand out and after some simple cancel-
lation we get that the above expression is

> / [2|zP< P2 P() 1 202 P(2) P 2 P(:)?

Pely

+10|zP(2)]? 2™ 4 22™ (52 P(2)* 4+ 1022P(2)? + 2) | db

Z/ 2|2P(2)]? 2" P(2)* db

Pely
+Z/ 20|2P(2)|* 2" 2 P(2)? df
Pefy
+Z/ 10]2P(2)[* 2™ db
Pegy

because 22™(521P(2)1 41022 P(2)?+2) is a polynomial with
zero constant term in z.

Now the above integrals are equal to zero by Lemmas
2.2, 2.3 and the induction assumption. |
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Lemma 3.3 For P’ € £,,, we have

1 1 2w
ontl > %/ |P'(2)]" P'(z) d6 = 3n+1.
0

pPeg,

Proof: We write every polynomial in £, as zP(z) &1 for
2

some P € £, 1. Note that 2™ df = 0 for m # 0. Now,
0
using Lemmas 2.2 and 2.3, we have

1 Lo o
> o [ PP s

Pegl,

— 2n1+1 S %/Oﬂ{\zP(z)—klf(EP(E)—l—lf

Pef, 1

+|2P(2) — 1)? (zP(z) — 1)2] do

- 5 X 3 | IPOPPER+3IPEL

Pesn—l
+327°P(z)* + 1] df
- > 5 / PR 22 PE) o
2n 2m J,
Pel, 1
b o /2ﬂ3lP< )2 do
on or J, :
PeL, 1
42 > ! /27r 3272P(z) db
2n 2m Jo
Pef, 1
1 1 27
— — do
3 2 o |
Pel, 1
= 0+3n+3(0)+1
= 3n+1. |
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Lemma 3.4 For an integer m > 0, we have

1 1 In+1 ifm<
i 2 g [ PP ERa =T T
pres. 2T Jo 0 if m > n.

Proof: Let F,(m) be the left hand side of Equation (22).
By writing every polynomial in £, as 2P (z) £ 1, for some
P(z) € £,_1, and using Lemma 3.1, and since z = 2! and

2w
/ 2™ df = 0 for m # 0, we have
0

1 o, S
Fo(m) = o5 Z%/O 22 [|2P(z)+1|2(zp(z)+1)2
Pegl,

+[2P(2) — 1 (zP(2) — 1)2}d9

1 1 2
= o Z %/0 22m|:|ZP<Z)|2§2P(E)2+3|ZP(Z)’2

Peln1

+37°P(2)* + 1} db

1 1 27 2 9
_ - (m—1) —\2
= > o /0 1P(2)[? 22mD) p(z)2d0

Pef,_1

1 1 27 )
— — P mdp
ton D 2W/O 3|P(2) 2

Pely 1

1 1 21 )
~ — (m=1 P(z)*do
to Y o / 3 )

Pesn—l

b 3 o [Tma
— — z
2n 2m Jo

Pel, 1

Volume 3 Issue 2 The MINDANAWAN
October 2012 Journal of Mathematics
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1 1 2w )
- - P Q(m—l)P —\2
o E 27r/0 |P(2)| = (Z)°df + 0

PeL, 1
1 > L / " 3220 P(2)2d6 + 0
2n 2m Jo
Pel, 1
= Fn_l(m - 1) + 3C’n_1(m — 1),
where
1 L[ 1 ifm<n
Cn(m) = — — 2P (Z)% df = -
(m) 2”+1P§ 27T/0 ) {0 if m > n,

by Lemma 2.4. Clearly,
2w
Fy(0) =1 and Fy(m) = / 2*™ df = 0 for m > 1.
0

For n > 1, we have
F,(m)=F,_1(m —1) +3C,_1(m —1).
If m > n, then C,,_1(m — 1) = 0 and hence
F,(m) = F,_1(m—1) =--- = Fi(m—n+1) = Fy(m—n) = 0.
If m <n, then

F.(m) = F,_.1(m—1)43C,_1(m—1)
= F,o(m—2)4+3C,_—2(m—2)+3C,—1(m—1)
= F,3(m—3)+3C,_3(m —3) 4+ 3C,,—2(m — 2)
+3C,_1(m —1)

= Fomi1(1) +3C me1(1) +3C,_mia(2) + ...
—|—3C’n,3(m — 3) + 3C’n,2(m — 2) -+ BCn,l(m — 1)
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m(0> + 30n7m<0> + BCnferl(l) + 30n7m+2(2)

= F,_
+...4+3C,_3(m—3)+3C,_o(m—2)+3C,_1(m—1)

= F, m(0)+3<1+1+...+1>
e ——

m times
= F,_n(0)+3m
= [B(n—m)+1]+3m
= 3n+1. n

Lemma 3.5 For an integer m > 1, we have

1 1 2 6 om
i X g | PG

pPeg,

%(n—m)2+%(n—m)

= +3n-m)Bn+3m—-1)+9Im -3 ifm<n

0 if m > n.
Proof: Let
Dym) = L3 L/W\p'(@y%?m a0
n T oondl = 27 J, )

Then

D, (m) = 2n1+1 Z %/0 ' (|zP(z) +1/°

Pel, 1
+ |2P(2) — 1|6) 22™ df.

We expand the integrand out and use Lemmas 2.5, 2.4, and
3.4. We derived that for n,m > 1,

Dn(m) = Dn—l (m)—l—an_l (m)+30n_1 (m—l)—|—3Fn_1 (m—l)
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It is clear that Dy(m) = 0. Thus if m > n > 1, then
B,_1(m), C,_1(m — 1), and F,_1(m — 1) are all equal to
zero and hence

D, (m) = D,_1(m) = Dyp_o(m) = --- = Dy(m) = 0.
If 1 <m <n, then
D,(m) = Dy_1(m)+9B,_1(m)+3C,_1(m — 1)
+3F,—1(m —1)
= D,_o(m)+9B,_2(m)+9B,_1(m)
+3C,—2(m — 1) +3C,_1(m — 1)
+3F,_o(m — 1)+ 3F,_1(m — 1)

= Dy (m)+ 9B, (m) + 9B11(m) + . ..
+9B,_1(m) + 3C,,(m — 1) + 3C41(m — 1) +
e+ 3C 1 (m—1)+3F,(m—1)
+3Fa(m—1)+ ...+ 3F,_1(m—1)

= (9m—3)—|—9nz:Bj(m)+3nz:Cj(m—l)

Jj=m

n—1
+3) " Fj(m — 1)
j=m

n—1 n—1
= (m=3)+9> (j-m+1)+3> 1
Jj=m j=m

+3(n —m) + g(n —m)(3n+3m — 1)

The MINDANAWAN Volume 3 Issue 2
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9 5 15 3
= §(n—m) +7(n—m)+§(n—m)(3n—|—3m—1)

+9m — 3. [ ]

Lemma 3.6 For an integer m > 1, we have

1 1 27 6 .
Y o / P ()| 22 P (2)2d8
Pleg, 0

(%(n—m)‘g + %(n—m)Q%— %(n—m)

+2(9n 4 3m — 2)(n —m)
+2(Bn+m —6)(n—m)(n—m+2)
+8(n+m) -7 ifn+m=0 (mod 2)

and m<mn

Bn—m)*+2(n—m)*+ 5 (n—m)
+2(n—m—1)(9n+3m+1)

+8(n—m—1)

(5n? — 4nm + 9n — m? 4+ 9m — 12)

+32(n +m) — 2% ifn+m=1 (mod 2)

and m <n,

L0 if m > n.

Proof: Let

1 1 o / 6 _2m p/ 2
E,(m) = 5 P; %/0 |P'(2)|° 22" P'(2)%d0.
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Then

Bm) = oo S %/OWZQm{|zP(z)+1|6(ZP(Z)+1)2

PeL,_1

+|2P(2) = 1|° (2P(2) — 1)} db.

We expand the integrand out and use Lemmas 2.4, 2.5, 3.4
and 3.5. We derived that for n,m > 1,

E,(m) = E, 1(m+1)+10D,_1(m)+ 154, 1(m+1)
+3OBn_1(m) =+ 5Fn_1(m — 1) + 3C’n_1(m — ]_),

where

1 1 o / m p/
Alm) = om > o /0 [P'(2)|" 2P (2)? o
Pety

(n—m)2+%(n—m)+$ it m <mn,

- {O if m>n.

by Lemma 2.6. It is clear that Ey(m) = 0. Thus if m >
n > 1, then

N

D,_1(m) = A,1(m+1)=B,_1(m)
= Fooim—-1)=C,1(m—-1)=0

and hence

E,(m) = Epy(m+1)=E, o(m+2)=--
= Ei(m+n—1) = Ey(m+n)=0.

Suppose 1 <m <n. If n+m =0 (mod 2), then

The MINDANAWAN Volume 3 Issue 2
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= Foim (n —; m) + 10 |:Dn_1(m) + Dn_g(m + 1)

+m
+Dps(m+2) + ...+ Dan (” : —1”

+15[An1(m + 1)+ A, o(m+2)+...+ Angm <n+ m) }

+30 [Bn_l(m) + B o(m+1)+...+ BHTm <n;m — 1) }

+5{Fn_1(m— 1)+Fn_2(m)+...+Fn+Tm (n;m —2)}

—|—3{Cn_1(m—1)+C’n_2(m)—|—...+0n+2m (”;m—Q)]

Using Lemmas 2.4, 2.5, 2.6, 3.4 and 3.5, we see that

= Bntm) =7 10[2 G0t = 6) (0~ mn - m +2)]

+15 [%(n —m)*+Ln—m)>—3(n— m)}

(n—m)*> n-m
+3o[ L R
+5[2 (9n+3m —2) (n —m)] + 3(n —m)
= Bn-mP’+Zn-m)*+Zn-—m)
+2(9n 4 3m — 2)(n —m)
+2(5n+m —6)(n—m)(n —m+2)
+8(n+m)—T7.
The case n +m = 1 (mod 2) can be proved in the same
way. |
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In particular, Ey(1) = 0 and for n > 1

45 19 1

E,(1) 5 n® —15n? — 11n + 5 T 5(—1)”(15n —19).(23)

We now come to the proof of 11,,(10). Since
|2P(2) + 1| + |2P(z) — 1]

= 2|2P(2)]" + 50 |2P(2)[® + 200 |zP(2)|° 4 200 |2 P(z)[*
+50 |zP(2)]* + 24 20 |2P(2)|° (22P(2)? + 22P(%)?)
+100|2P(2)|* (2P (2)? + Z2P(2)?)
+100 |zP(2)]? (z2P(2)? + 22 P(2)?)
+10 [2P(2)]? (z*P(2)* + 2 P(2)Y)
+10(z*P(2)* + 2 P(2)*) 4+ 20(z2P(2)? + 22 P(2)?),

it follows from Lemmas 2.6, 3.6 and (23) that

+1007tn-1(4) + 251n-1(2) + 1 + 20E,,1(1)
+100A,_1(1).

In view of Theorem 2.7 and (23), we have

11n(10)

= i,_1(10) + 25(24n* — 660> + 58n* — 9n — 3 + 3(—1)")
+100(61° — 9n* + 4n) + 100(2n* — n) + 25n + 1

+20 [435713 —188p2 4 By — 17— L(—1)" (15n — 34)}

#100 30— 27+ §o -2+ 2]

= 120n° + 150n* — 350n% + 26512
+281n — 144 — 5(—1)"(15n — 29). ]
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Thus we have proved
Theorem 3.7 For any integer n > 0,

1,(10) = 120n° + 150n" — 350n® + 265n°
+281n — 144 — 5(—1)"(15n — 29).
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