

Vol. 4 (2022), no. 1, pp. 1–12

$\theta_{sw}\text{-}\mathrm{Continuity}$ of Maps in the Product Space and Some Versions of Separation Axioms

Jan Alejandro C. Sasam¹ and Mhelmar A. Labendia^{2,*}

^{1,2}Department of Mathematics and Statistics MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines janalejandro.sasam@g.msuiit.edu.ph, mhelmar.labendia@g.msuiit.edu.ph

Received: 23rd May 2021 Revised: 12th February 2022

Abstract

In this study, the concept of θ_{sw} -open set is introduced and its relationship to the other well-known concepts such as the classical open, θ -open, and ω_{θ} -open sets is described. The concepts of θ_{sw} -interior and θ_{sw} -closure of a set is also defined and investigated. Related concepts such as θ_{sw} -open and θ_{sw} -closed functions, θ_{sw} -continuous function, θ_{sw} -connected, and some versions of separation axioms are defined and characterized. Finally, the concept of θ_{sw} -continuous function from an arbitrary topological space into the product space is investigated further.

1 Introduction and Preliminaries

The first attempt to substitute concept in topology with concept possessing either weaker or stronger property was done by N. Levine [24] when he introduced the concepts of semi-open set, semi-closed set, and semi-continuity of a function. Several mathematicians then became interested in introducing other topological concepts which can replace the concept of open set, closed set, and continuity of a function.

In 1968, Velicko [27] introduced the concepts of θ -continuity between topological spaces and subsequently defined the concepts of θ -closure and θ -interior of a subset of topological space. The concept of θ -open set and its related topological concepts had been deeply studied and investigated by numerous authors, see [1, 7, 8, 15, 16, 20, 21, 22, 25, 26].

Let (X, \mathfrak{T}) be a topological space and $A \subseteq X$. The θ -closure and θ -interior of A are, respectively, denoted and defined by

 $Cl_{\theta}(A) = \{x \in X : Cl(U) \cap A \neq \emptyset \text{ for every open set } U \text{ containing } x\}$

and

 $Int_{\theta}(A) = \{x \in X : Cl(U) \subseteq A \text{ for some open set } U \text{ containing } x\},\$

where Cl(U) is the closure of U in X. A subset A of X is θ -closed if $Cl_{\theta}(A) = A$ and θ -open if $Int_{\theta}(A) = A$. Equivalently, A is θ -open if and only if $X \setminus A$ is θ -closed.

In 1971, Hoyle and Gentry [19] introduced the class of *somewhat*-continuous functions and *somewhat*-open functions. The *somewhat*-continuous functions, which are generalization of

Keywords and Phrases: θ_{sw} -open, θ_{sw} -closed, θ_{sw} -connected, θ_{sw} -continuous, θ_{sw} -Hausdorff, θ_{sw} -regular, θ_{sw} -normal This research has been supported by Department of Science & Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP)

^{*}Corresponding author

²⁰²⁰ Mathematics Subject Classification: 54A10, 54A05

continuity requiring nonempty inverse images of open sets to have nonempty interiors instead of being open, have proved to be very useful in topology. Since then, the concepts of *somewhat*-interior and *somewhat*-closure of a subset of a topological space have been subsequently defined and the concept of *somewhat*-open and *somewhat*-closed sets have been used to characterize *somewhat*-continuity, see [5, 6].

A subset U of a space X is said to be somewhat-open if $U = \emptyset$ or if there exists $x \in U$ and an open set V such that $x \in V \subseteq U$. A set is called somewhat-closed if its complement is somewhat-open. Let A be a subset of a space X. The somewhat-closure and somewhat-interior of A are, respectively, denoted and defined by $swCl(A) = \bigcap \{F : F \text{ is somewhat-closed and } A \subseteq F\}$ and $swInt(A) = \bigcup \{U \subseteq A : U \text{ is somewhat-open}\}.$

In 1982, Hdeib [18] introduced the concepts of ω -open and ω -closed sets and ω -closed mappings on a topological space. He showed that ω -closed mappings are strictly weaker than closed mappings and also showed that the Lindelöf property is preserved by counter images of ω -closed mappings with Lindelöf counter image of points. The concepts of ω -open sets and its corresponding topological concepts had been studied in several papers, see [2, 3, 4, 9, 10, 11, 12, 13, 14, 23].

In 2010, Ekici et al. [17] introduced the concepts of ω_{θ} -open and ω_{θ} -closed sets on a topological space. They showed that the family of all ω_{θ} -open sets in a topological space X forms a topology on X. They also introduced the notions of ω_{θ} -interior and ω_{θ} -closure of a subset of a topological space.

A point x of a topological space X is called a condensation point of $A \subseteq X$ if for each open set G containing $x, G \cap A$ is uncountable. A subset B of X is ω -closed if it contains all of its condensation points. The complement of B is ω -open. Equivalently, a subset U of X is ω -open (resp., ω_{θ} -open) if and only if for each $x \in U$, there exists an open set O containing x such that $O \setminus U$ (resp., $O \setminus Int_{\theta}(U)$) is countable. A subset B of X is ω_{θ} -closed if its complement $X \setminus B$ is ω_{θ} -open.

A topological space X is said to be *somewhat*-connected (resp., θ -connected, ω -connected) if X cannot be written as the union of two nonempty disjoint *somewhat*-open (resp., θ -open, ω -open, ω_{θ} -open) sets.

Otherwise, X is somewhat-disconnected (resp., θ -disconnected, ω -disconnected, ω_{θ} -disconnected).

Let \mathcal{A} be an indexing set and $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of topological spaces. For each $\alpha \in \mathcal{A}$, let \mathcal{T}_{α} be the topology on Y_{α} . The Tychonoff topology on $\Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ is the topology generated by a subbase consisting of all sets $p_{\alpha}^{-1}(U_{\alpha})$, where the projection map $p_{\alpha} : \Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\} \to Y_{\alpha}$ is defined by $p_{\alpha}(\langle y_{\beta} \rangle) = y_{\alpha}$, U_{α} ranges over all members of \mathcal{T}_{α} , and α ranges over all elements of \mathcal{A} . Corresponding to $U_{\alpha} \subseteq Y_{\alpha}$, denote $p_{\alpha}^{-1}(U_{\alpha})$ by $\langle U_{\alpha} \rangle$. Similarly, for finitely many indices $\alpha_1, \alpha_2, \ldots, \alpha_n$, and sets $U_{\alpha_1} \subseteq Y_{\alpha_1}, U_{\alpha_2} \subseteq Y_{\alpha_2}, \ldots, U_{\alpha_n} \subseteq Y_{\alpha_n}$, the subset

$$\langle U_{\alpha_1} \rangle \cap \langle U_{\alpha_2} \rangle \cap \dots \cap \langle U_{\alpha_n} \rangle = p_{\alpha_1}^{-1}(U_{\alpha_1}) \cap p_{\alpha_2}^{-1}(U_{\alpha_2}) \cap \dots \cap p_{\alpha_n}^{-1}(U_{\alpha_n})$$

is denoted by $\langle U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n} \rangle$. We note that for each open set U_{α} subset of Y_{α} , $\langle U_{\alpha} \rangle = p_{\alpha}^{-1}(U_{\alpha}) = U_{\alpha} \times \prod_{\beta \neq \alpha} Y_{\beta}$. Hence, a basis for the Tychonoff topology consists of sets of the form $\langle B_{\alpha_1}, B_{\alpha_2}, \dots, B_{\alpha_k} \rangle$, where B_{α_i} is open in Y_{α_i} for every $i \in K = \{1, 2, \dots, k\}$.

Now, the projection map $p_{\alpha} : \Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\} \to Y_{\alpha}$ is defined by $p_{\alpha}(\langle y_{\beta} \rangle) = y_{\alpha}$ for each $\alpha \in \mathcal{A}$. It is known that every projection map is a continuous open surjection. Also, it is well known that a function f from an arbitrary space X into the Cartesian product Y of the family of spaces $\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ with the Tychonoff topology is continuous if and only if each coordinate function $p_{\alpha} \circ f$ is continuous, where p_{α} is the α -th coordinate projection map.

In this paper, given a topology on X, we define a new type of topology on X which is finer than the topology formed by the collection of θ -open sets, but coarser than the given topology on X.

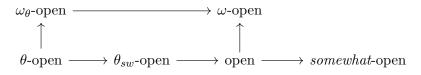
 $\theta_{sw}\text{-}\mathrm{Continuity}$ of Maps in the Product Space and Some Versions of Separation Axioms

2 θ_{sw} -Open and θ_{sw} -Closed Functions

In this section, we shall determine the connection of θ_{sw} -open set to the classical open, θ -open, and ω_{θ} -open sets. We shall also define and characterize the concepts of θ_{sw} -open and θ_{sw} -closed functions.

Definition 2.1. Let X be a topological space. A subset A of X is said to be θ_{sw} -open if for every $x \in A$, there exists an open set U containing x such that $swCl(U) \subseteq A$. A subset F of X is called θ_{sw} -closed if $X \setminus F$ is θ_{sw} -open.

Remark 2.2. The following diagram holds for a subset of a topological space.



We remark that the above diagram is also true for their respective closed sets.

The following examples show that the implications in the above diagram (with respect to θ_{sw} -open set) are not reversible. We note that since ω_{θ} -open and open are two independent notions [17, Example 5], ω_{θ} -open does not imply θ_{sw} -open.

- **Example 2.3.** (i) Let $X = \{a, b, c, d, e\}$ with topology $\mathcal{T} = \{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{c, d, e\}, \{a, b, c, d\}, \{a, c, d, e\}\}$. Then $\{a, b, c\}$ is θ_{sw} -open but not θ -open.
 - (ii) Let \mathbb{R} be the real line with topology $\mathcal{T} = \{ \emptyset, \mathbb{R}, \mathbb{Q} \}$. Then \mathbb{Q} is open but not θ_{sw} -open.
- (iii) Let \mathbb{R} be the real line with topology $\mathcal{T} = \{ \emptyset, \mathbb{R}, \mathbb{R} \setminus (1, 2), \{1.5\}, \mathbb{R} \setminus (1, 2) \cup \{1.5\} \}$. Then $\mathbb{R} \setminus (1, 2)$ is θ_{sw} -open but not ω_{θ} -open.

Before showing that the collection of θ_{sw} -open sets forms a topology, we shall consider first the following remark.

Remark 2.4. Let X be a topological space and $A, B \subseteq X$. Then

- (i) swInt(A) is somewhat-open and $swInt(A) \subseteq A$;
- (ii) swCl(A) is somewhat-closed and $A \subseteq swCl(A)$;
- (iii) swInt(A) is the largest somewhat-open set contained in A;
- (iv) If $A \subseteq B$, then $swInt(A) \subseteq swInt(B)$;
- (v) $x \in swInt(A)$ if and only if there exists a *somewhat*-open set U containing x such that $U \subseteq A$;
- (vi) A is somewhat-open if and only if A = swInt(A);
- (vii) swInt(swInt(A)) = swInt(A);
- (viii) $swInt(A \cap B) \subseteq swInt(A) \cap swInt(B);$
- (ix) swCl(A) is the smallest somewhat-closed set containing A;
- (x) $A \subseteq B$ implies that $swCl(A) \subseteq swCl(B)$;
- (xi) swCl(swCl(A)) = swCl(A);

(xii) $swCl(A) \cup swCl(B) \subseteq swCl(A \cup B);$

(xiii) $swInt(X \setminus A) = X \setminus swCl(A);$

- (xiv) A is somewhat-closed if and only if A = swCl(A); and
- (xv) $x \in swCl(A)$ if and only if for every somewhat-open set U containing $x, U \cap A \neq \emptyset$.

Theorem 2.5. Let $\mathcal{T}_{\theta_{sw}}$ be a family of all θ_{sw} -open subsets of topological space X. Then, $\mathcal{T}_{\theta_{sw}}$ forms a topology on X.

Proof. It is not difficult to see that $\emptyset, X \in \mathcal{T}_{\theta_{sw}}$. Now, let $\{A_i : i \in \mathcal{A}\}$ be a family members of $\mathcal{T}_{\theta_{sw}}$. Let $x \in \bigcup_{i \in \mathcal{A}} A_i$. Then $x \in A_j$ for some $j \in \mathcal{A}$. Since A_j is θ_{sw} -open, there exists an

open set U containing x such that $swCl(U) \subseteq A_j \subseteq \bigcup_{i \in \mathcal{A}} A_i$. Hence, $\bigcup_{i \in \mathcal{A}} A_i$ is θ_{sw} -open. Next,

let $A_1, A_2 \in \mathfrak{T}_{\theta_{sw}}$. Let $x \in A_1 \cap A_2$. Then there exist open sets U_1 and U_2 , both containing x, such that $swCl(U_1) \subseteq A_1$ and $swCl(U_2) \subseteq A_2$. Note that $U_1 \cap U_2$ is open containing x. Hence, $swCl(U_1 \cap U_2) \subseteq swCl(U_1) \cap swCl(U_2) \subseteq A_1 \cap A_2$. Therefore, $A_1 \cap A_2$ is θ_{sw} -open. Consequently, $\mathcal{T}_{\theta_{sw}}$ is a topology on X.

Definition 2.6. Let X be topological space and $A \subseteq X$. The θ_{sw} -interior of A is defined and denoted by $Int_{\theta_{sw}}(A) = \bigcup \{U : U \text{ is an } \theta_{sw}\text{-open set and } U \subseteq A\}$. We note that by Theorem 2.5, $Int_{\theta_{sw}}(A)$ is the largest $\theta_{sw}\text{-open set contained in } A$. Moreover, $x \in Int_{\theta_{sw}}(A)$ if and only if there exists a $\theta_{sw}\text{-open set } U$ containing x such that $U \subseteq A$.

Definition 2.7. Let X be topological space and $A \subset X$. The θ_{sw} -closure of A is defined and denoted by $Cl_{\theta_{sw}}(A) = \bigcap \{F : F \text{ is an } \theta_{sw}\text{-closed set and } A \subseteq F\}$. We note that by Theorem 2.5, $Cl_{\theta_{sw}}(A)$ is the smallest $\theta_{sw}\text{-closed set containing } A$.

Remark 2.8. Let X be a topological space and $A, B \subseteq X$. Then

- (i) If $A \subseteq B$, then $Int_{\theta_{sw}}(A) \subseteq Int_{\theta_{sw}}(B)$;
- (ii) A is θ_{sw} -open if and only if $A = Int_{\theta_{sw}}(A)$;
- (iii) $Int_{\theta_{sw}}(A \cap B) = Int_{\theta_{sw}}(A) \cap Int_{\theta_{sw}}(B);$
- (iv) $x \in Cl_{\theta_{sw}}(A)$ if and only if for every θ_{sw} -open subset U containing $x, U \cap A \neq \emptyset$;
- (v) $A \subseteq B$ implies that $Cl_{\theta_{sw}}(A) \subseteq Cl_{\theta_{sw}}(B)$;
- (vi) A is θ_{sw} -closed if and only if $Cl_{\theta_{sw}}(A) = A$;
- (vii) $Cl_{\theta_{sw}}(Cl_{\theta_{sw}}(A)) = Cl_{\theta_{sw}}(A);$
- (viii) $Cl_{\theta_{sw}}(A) \cup Cl_{\theta_{sw}}(B) = Cl_{\theta_{sw}}(A \cup B);$
- (ix) $Int_{\theta_{sw}}(X \setminus A) = X \setminus Cl_{\theta_{sw}}(A);$
- (x) $Cl_{\theta_{sw}}(X \setminus A) = X \setminus Int_{\theta_{sw}}(A);$
- (xi) A is θ_{sw} -open if and only if for every $x \in A$, there exists a basic open set B containing x such that $swCl(B) \subseteq A$;
- (xii) $x \in Int_{\theta_{sw}}(A)$ if and only if there exists an open set O containing x, $swCl(O) \subseteq A$; and
- (xiii) $x \in Cl_{\theta_{sw}}(A)$ if and only if for every open set U containing $x, swCl(U) \cap A \neq \emptyset$.

 θ_{sw} -Continuity of Maps in the Product Space and Some Versions of Separation Axioms

Next, we introduce and characterize the concepts of θ_{sw} -open and θ_{sw} -closed functions.

Definition 2.9. Let X and Y be topological spaces. A function $f : X \to Y$ is θ_{sw} -open (resp., θ_{sw} -closed) if f(G) is θ_{sw} -open (resp., θ_{sw} -closed) for every open (resp., closed) set G in X.

In view of Remark 2.2, we have the following results.

Remark 2.10. Let $f: X \to Y$ be a function of topological spaces.

- (i) If f is θ_{sw} -open (resp., θ_{sw} -closed) on X, then f is open (resp., closed) on X.
- (ii) If f is θ -open (resp., θ -closed) on X, then f is θ_{sw} -open (resp., θ_{sw} -closed) on X.

Remark 2.11. The converse of Remark 2.10 (i) and (ii) do not necessarily hold.

- (i) Consider \mathbb{R} with topologies $\mathfrak{T}_1 = \{\emptyset, \mathbb{R}, \mathbb{Q}\}$ and $\mathfrak{T}_2 = \{\emptyset, \mathbb{R}, \mathbb{Q}, \mathbb{Q} \setminus \{0\}\}$. Define $f : (\mathbb{R}, \mathfrak{T}_1) \to (\mathbb{R}, \mathfrak{T}_2)$ by f(x) = x for all $x \in \mathbb{R}$. Obviously, f is open on $(\mathbb{R}, \mathfrak{T}_1)$. Next, we will show that there exists an open set in $(\mathbb{R}, \mathfrak{T}_1)$ such that its image is not θ_{sw} -open in $(\mathbb{R}, \mathfrak{T}_2)$. Note that \mathbb{Q}^c is not somewhat open since for every $x \in \mathbb{Q}^c$ the only open set in $(\mathbb{R}, \mathfrak{T}_2)$ containing x is \mathbb{R} and $\mathbb{R} \not\subseteq \mathbb{Q}^c$. Now, if $swCl(\mathbb{Q}) = \mathbb{Q}$, then \mathbb{Q} is somewhat close, a contradiction. Thus, $\mathbb{Q} \subset swCl(\mathbb{Q})$. Note also that $swCl(\mathbb{R}) = \mathbb{R} \not\subseteq \mathbb{Q}$. Hence, \mathbb{Q} is not θ_{sw} -open in $(\mathbb{R}, \mathfrak{T}_2)$. This means that $f(\mathbb{Q}) = \mathbb{Q}$ is not θ_{sw} -open in $(\mathbb{R}, \mathfrak{T}_2)$. Therefore, f is not θ_{sw} -open on $(\mathbb{R}, \mathfrak{T}_1)$. Since f is bijective, f is closed but not θ_{sw} -closed on $(\mathbb{R}, \mathfrak{T}_1)$.
- (ii) Consider the topological spaces X = Y = {a, b, c, d, e} with the corresponding topologies T_x = {Ø, X, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, b, c}, {a, c, d}, {a, b, c, d}} and T_y = T in Example 2.3 (i). Let f: (X, T_x) → (Y, T_y) be a function defined by f(x) = x for all x ∈ X. By definition of f and θ_{sw}-open set, f is θ_{sw}-open on (X, T_x). Next, we will show that there exists an open set in (X, T_x) such that its image is not θ-open in (X, T_y). Consider the open set A = {a, b, c} in (X, T_x). Then f(A) = A. We claim that A is θ_{sw}-open but not θ-open in (X, T_y). By Example 2.3 (i), A is θ_{sw}-open but not θ-open. Thus, f is not θ-open on (X, T_x). Since f is bijective, f is θ_{sw}-closed but not θ-closed on (X, T_x).

Theorem 2.12. Let X and Y be topological spaces and $f : X \to Y$ be a function. Then the following statements are equivalent:

- (i) f is θ_{sw} -open on X.
- (ii) $f(Int(A)) \subseteq Int_{\theta_{sw}}(f(A))$ for every $A \subseteq X$.
- (iii) f(B) is θ_{sw} -open for every basic open set B in X.
- (iv) For each $x \in X$ and every open set U in X containing x, there exists an open set V in Y containing f(x) such that $swCl(V) \subseteq f(U)$.

Proof. (i) \Rightarrow (ii): Let $A \subseteq X$. Note that $f(Int(A)) \subseteq f(A)$ and f(Int(A)) is θ_{sw} -open. In view of Definition 2.6, $f(Int(A)) \subseteq Int_{\theta_{sw}}(f(A))$.

(ii) \Rightarrow (iii): Let *B* be a basic open set in *X*. Then $f(B) = f(Int(B)) \subseteq Int_{\theta_{sw}}(f(B)) \subseteq f(B)$. By Remark 2.8 (ii), f(B) is θ_{sw} -open.

(iii) \Rightarrow (iv): Let $x \in X$ and U be an open set containing x. Then there exists a basic open set B containing x such that $B \subseteq U$, which implies $f(x) \in f(B) \subseteq f(U)$. By assumption, there exists an open set V containing f(x) such that $swCl(V) \subseteq f(B) \subseteq f(U)$.

 $(iv) \Rightarrow (i)$: Let U be an open set in X and let $y \in f(U)$. Then there exists $x \in U$ such that f(x) = y. By assumption, there exists an open set V containing y such that $swCl(V) \subseteq f(U)$. Hence, f(U) is θ_{sw} -open in Y. Therefore, f is θ_{sw} -open on X.

Theorem 2.13. Let X and Y be topological spaces and $f : X \to Y$ be a function. Then the following are equivalent:

- (i) f is θ_{sw} -closed on X.
- (ii) $Cl_{\theta_{sw}}(f(A)) \subseteq f(Cl(A))$, for every $A \subseteq X$.

Proof. (i) \Rightarrow (ii): Let $A \subseteq X$. Note that $f(A) \subseteq f(Cl(A))$ and f(Cl(A)) is θ_{sw} -closed. In view of Definition 2.7, $Cl_{\theta_{sw}}(f(A)) \subseteq f(Cl(A))$.

(ii) \Rightarrow (i): Let F be closed in X. By assumption, $f(F) \subseteq Cl_{\theta_{sw}}(f(F)) \subseteq f(Cl(F)) = f(F)$. By Remark 2.8 (vii), f is θ_{sw} -closed on X.

Remark 2.14. Let X and Y be topological spaces and $f : X \to Y$ be a bijective function. Then f is θ_{sw} -open on X if and only if f is θ_{sw} -closed on X.

3 θ_{sw} -Continuity of Functions in the Product Space

In this section, we provide a definition of a θ_{sw} -continuous function and its characterization from an arbitrary topological space into the product space.

Definition 3.1. A function $f: X \to Y$ is θ_{sw} -continuous if $f^{-1}(G)$ is θ_{sw} -open for every open set G of Y.

In view of Remark 2.2, the following remark holds.

Remark 3.2. Let $f: X \to Y$ be a function of topological spaces. If f is θ_{sw} -continuous on X, then f is continuous on X.

Remark 3.3. The converse of Remark 3.2 does not necessarily hold.

To see this, consider \mathbb{R} with topology $\mathcal{T} = \{\emptyset, \mathbb{R}, \mathbb{Q}\}$. Define $f : (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T})$ by f(x) = xfor all $x \in \mathbb{R}$. Obviously, f is continuous on \mathbb{R} . Next, we will show that there exists an open set in $(\mathbb{R}, \mathcal{T})$ such that its inverse image is not θ_{sw} -open in $(\mathbb{R}, \mathcal{T})$. Consider the open set \mathbb{Q} in $(\mathbb{R}, \mathcal{T})$. We will show that it is not θ_{sw} -open in $(\mathbb{R}, \mathcal{T})$. By Example 2.3 (ii), \mathbb{Q} is not θ_{sw} -open in $(\mathbb{R}, \mathcal{T})$. That is, $f^{-1}(\mathbb{Q}) = \mathbb{Q}$ is not θ_{sw} -open in $(\mathbb{R}, \mathcal{T})$. Therefore, f is continuous but not θ_{sw} -continuous on $(\mathbb{R}, \mathcal{T})$.

The proofs of the following results are standard, hence omitted.

Theorem 3.4. Let X and Y be topological spaces and $f : X \to Y$ be a function. Then the following statements are equivalent:

- (i) f is θ_{sw} -continuous on X.
- (ii) $f^{-1}(F)$ is θ_{sw} -closed in X for each closed subset F of Y.
- (iii) $f^{-1}(B)$ is θ_{sw} -open in X for each (subbasic) basic open set B in Y.
- (iv) For every $p \in X$ and every open set V of Y containing f(p), there exists a θ_{sw} -open set U of X containing p such that $f(U) \subseteq V$.
- (v) $f(Cl_{\theta_{sw}}(A)) \subseteq Cl(f(A))$ for each $A \subseteq X$.
- (vi) $Cl_{\theta_{sw}}(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for each $B \subseteq Y$.

Theorem 3.5. Let X be any topological space and $\chi_A : X \to \mathcal{D}$ the characteristic function of a subset A of X. Then χ_A is θ_{sw} -continuous if and only if A is both θ_{sw} -open and θ_{sw} -closed.

 $\theta_{sw}\text{-}\mathrm{Continuity}$ of Maps in the Product Space and Some Versions of Separation Axioms

In the following results, if $Y = \Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ is a product space and $A_{\alpha} \subseteq Y_{\alpha}$ for each $\alpha \in \mathcal{A}$, we denote $A_{\alpha_1} \times \cdots \times A_{\alpha_n} \times \Pi\{Y_i : \alpha \notin K\}$ by $\langle A_{\alpha_1}, \cdots, A_{\alpha_n} \rangle$, where $K = \{\alpha_1, \cdots, \alpha_n\}$. If $Y = \Pi\{Y_i : 1 \le i \le n\}$ is a finite product, denote $A_{\alpha_1} \times \cdots \times A_{\alpha_n}$ by $\langle A_{\alpha_1}, \cdots, A_{\alpha_n} \rangle$.

Theorem 3.6. Let $Y = \Pi\{Y_{\alpha} : \alpha \in A\}$ be a product space. Let $S = \{\alpha_1, \ldots, \alpha_n\}$ be a finite subset of A and $\emptyset \neq O_{\alpha} \subseteq Y_{\alpha}$ for each $\alpha \in A$. Then $O = \langle O_{\alpha_1}, \ldots, O_{\alpha_n} \rangle$ is somewhat-open in Y if and only if each O_{α_i} is somewhat-open in Y_{α_i} .

Theorem 3.7. Let $Y = \Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ be a product space and $A_{\alpha} \subseteq Y_{\alpha}$ for each $\alpha \in \mathcal{A}$. Then $swCl(\Pi\{A_{\alpha} : \alpha \in \mathcal{A}\}) \subseteq \Pi\{swCl(A_{\alpha}) : \alpha \in \mathcal{A}\}.$

Proof. Let $x = \langle a_{\alpha} \rangle \notin \Pi\{swCl(A_{\alpha}) : \alpha \in \mathcal{A}\}$. Then $a_{\beta} \notin swCl(A_{\beta})$ for some $\beta \in \mathcal{A}$. This means that there exists a *somewhat*-open set G_{β} containing a_{β} such that $G_{\beta} \cap A_{\beta} = \emptyset$. By Theorem 3.6, $\langle G_{\beta} \rangle$ is *somewhat*-open containing x. Hence, $\langle G_{\beta} \rangle \cap \Pi\{A_{\alpha} : \alpha \in \mathcal{A}\} = \emptyset$. Thus, $x \notin swCl(\Pi\{A_{\alpha} : \alpha \in \mathcal{A}\})$.

Theorem 3.8. Let $Y = \Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ be a product space and $A_{\alpha} \subseteq Y_{\alpha}$ for each $\alpha \in \mathcal{A}$. Then $Cl_{\theta_{sw}}(\Pi\{A_{\alpha} : \alpha \in \mathcal{A}\}) \subseteq \Pi\{Cl_{\theta_{sw}}(A_{\alpha}) : \alpha \in \mathcal{A}\}.$

Proof. Let $x = \langle a_{\alpha} \rangle \in Cl_{\theta_{sw}}(\Pi\{A_{\alpha} : \alpha \in \mathcal{A}\})$. Then for every open set O containing x, $swCl(O) \cap \Pi\{A_{\alpha} : \alpha \in \mathcal{A}\} \neq \emptyset$. Suppose that there exists $\beta \in \mathcal{A}$ such that $a_{\beta} \notin Cl_{\theta_{sw}}(A_{\beta})$. Then there exists an open set U_{β} containing a_{β} such that $swCl(U_{\beta}) \cap A_{\beta} = \emptyset$. By Theorem 3.7, $swCl(\langle U_{\beta} \rangle) \subseteq \langle swCl(U_{\beta}) \rangle$. It follows that $x = \langle a_{\alpha} \rangle \in \langle U_{\beta} \rangle$ and $swCl(\langle U_{\beta} \rangle) \cap \Pi\{A_{\alpha} : \alpha \in \mathcal{A}\} = \emptyset$, a contradiction. Thus, $x \in \Pi\{Cl_{\theta_{sw}}(A_{\alpha}) : \alpha \in \mathcal{A}\}$.

Theorem 3.9. Let $Y = \Pi\{Y_i : 1 \le i \le n\}$ be a (finite) product space and $A_i \subseteq Y_i$ for each i = 1, 2, ..., n. Then $\Pi\{Int_{\theta_{sw}}(A_i) : 1 \le i \le n\} \subseteq Int_{\theta_{sw}}(\Pi\{A_i : 1 \le i \le n\})$.

Proof. Let $x = \langle a_1, a_2, \ldots, a_n \rangle \in \Pi\{Int_{\theta_{sw}}(A_i) : 1 \leq i \leq n\}$. Then $a_i \in Int_{\theta_{sw}}(A_i)$ for all $i = 1, 2, \ldots, n$. This means that for all $i = 1, 2, \ldots, n$, there exists an open set O_i containing a_i such that $swCl(O_i) \subseteq A_i$. Let $O = \langle O_1, O_2, \ldots, O_n \rangle$, which is an open set in Y containing x. By Theorem 3.7, $swCl(O) = swCl(\langle O_1, O_2, \ldots, O_n \rangle) \subseteq \langle swCl(O_1), swCl(O_2), \ldots, swCl(O_n) \rangle \subseteq \langle A_1, A_2, \ldots, A_n \rangle$. Hence, $x \in Int_{\theta_{sw}}(\Pi\{A_i : 1 \leq i \leq n\})$.

Theorem 3.10. Let X be a topological space and $Y = \Pi\{Y_{\alpha} : \alpha \in A\}$ a product space. A function $f : X \to Y$ is θ_{sw} -continuous on X if and only if $p_{\alpha} \circ f$ is θ_{sw} -continuous on X for every $\alpha \in A$.

Proof. Suppose that f is θ_{sw} -continuous on X. Let $\alpha \in \mathcal{A}$ and U_{α} be an open set in Y_{α} . Since p_{α} is continuous, $p_{\alpha}^{-1}(U_{\alpha})$ is open in Y. Hence, $f^{-1}(p_{\alpha}^{-1}(U_{\alpha})) = (p_{\alpha} \circ f)^{-1}(U_{\alpha})$ is θ_{sw} -open set in X. Therefore, $p_{\alpha} \circ f$ is θ_{sw} -continuous for every $\alpha \in \mathcal{A}$.

Conversely, suppose that each coordinate function $p_{\alpha} \circ f$ is θ_{sw} -continuous. Let G_{α} be open in Y_{α} . Then, $\langle G_{\alpha} \rangle$ is a subbasic open set in Y and $(p_{\alpha} \circ f)^{-1}(G_{\alpha}) = f^{-1}(p_{\alpha}^{-1}(G_{\alpha})) = f^{-1}(\langle G_{\alpha} \rangle)$ is θ_{sw} -open in X. Therefore, f is θ_{sw} -continuous.

Corollary 3.11. Let X be a topological space, $Y = \Pi\{Y_{\alpha} : \alpha \in \mathcal{A}\}$ a product space, and $f_{\alpha} : X \to Y_{\alpha}$ a function for each $\alpha \in \mathcal{A}$. Let $f : X \to Y$ be the function defined by $f(x) = \langle f_{\alpha}(x) \rangle$. Then f is θ_{sw} -continuous on X if and only if each f_{α} is θ_{sw} -continuous on X for each $\alpha \in \mathcal{A}$.

Theorem 3.12. Let $Y = \Pi\{Y_{\alpha} : \alpha \in A\}$ be a product space, $S = \{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subseteq A$, and $\emptyset \neq O_{\alpha_i} \subseteq Y_{\alpha_i}$ for each $\alpha_i \in S$. If each O_{α_i} is θ_{sw} -open in Y_{α_i} , then $O := \langle O_{\alpha_1}, O_{\alpha_2}, \ldots, O_{\alpha_n} \rangle$ is θ_{sw} -open in Y.

Proof. Let $x = \langle a_{\alpha} \rangle \in O$. Then $a_{\alpha_i} \in O_{\alpha_i}$ for every $\alpha_i \in S$. This means that for every $\alpha_i \in S$, there exists an open set U_{α_i} containing a_{α_i} such that $swCl(U_{\alpha_i}) \subseteq O_{\alpha_i}$. Let $U = \langle U_{\alpha_i}, U_{\alpha_2}, \dots, U_{\alpha_n} \rangle$. Then $x \in U$ and by Theorem 3.7,

$$swCl(U) \subseteq \langle swCl(U_{\alpha_1}), swCl(U_{\alpha_2}), \dots, swCl(U_{\alpha_n}) \rangle \subseteq O$$

Thus, O is θ_{sw} -open in Y.

Theorem 3.13. Let $X = \Pi\{X_{\alpha} : \alpha \in A\}$ and $Y = \Pi\{Y_{\alpha} : \alpha \in A\}$ be product spaces and for each $\alpha \in A$, let $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ be a function. If each f_{α} is θ_{sw} -continuous on X_{α} , then the function $f : X \to Y$ defined by $f(\langle x_{\alpha} \rangle) = \langle f_{\alpha}(x_{\alpha}) \rangle$ is θ_{sw} -continuous on X.

Proof. Let $\langle V_{\alpha} \rangle$ be a subbasic open set in Y. Then $f^{-1}(\langle V_{\alpha} \rangle) = \langle f_{\alpha}^{-1}(V_{\alpha}) \rangle$. Since each f_{α} is θ_{sw} -continuous, $f_{\alpha}^{-1}(V_{\alpha})$ is θ_{sw} -open in X_{α} . Let $x = \langle x_{\beta} \rangle \in f^{-1}(\langle V_{\alpha} \rangle) = \langle f_{\alpha}^{-1}(V_{\alpha}) \rangle$. Then $x_{\alpha} \in f_{\alpha}^{-1}(V_{\alpha})$. Hence, there exists an open set U_{α} containing x_{α} such that $swCl(U_{\alpha}) \subseteq f_{\alpha}^{-1}(V_{\alpha})$. Note that $\langle U_{\alpha} \rangle$ is open in X contining x. By Theorem 3.7, $swCl(\langle U_{\alpha} \rangle) \subseteq \langle swCl(U_{\alpha}) \rangle \subseteq \langle f_{\alpha}^{-1}(V_{\alpha}) \rangle = f^{-1}(\langle V_{\alpha} \rangle)$. This means that $f^{-1}(\langle V_{\alpha} \rangle)$ is θ_{sw} -open in X. Thus, f is θ_{sw} -continuous on X.

4 θ_{sw} -Connectedness and Some Versions of Separation Axioms

In this section, we define and characterize the concepts of θ_{sw} -connected, θ_{sw} -Hausdorff, θ_{sw} -regular, and θ_{sw} -normal spaces.

Definition 4.1. A topological space X is said to be θ_{sw} -connected if it is not the union of two nonempty disjoint θ_{sw} -open sets. Otherwise, X is θ_{sw} -disconnected. A subset B of X is θ_{sw} -connected if it is θ_{sw} -connected as a subspace of X.

Theorem 4.2. Let X be a topological space. Then the following statements are equivalent:

- (i) X is θ_{sw} -connected.
- (ii) The only subsets of X that are both θ_{sw} -open and θ_{sw} -closed are \emptyset and X.
- (iii) No θ_{sw} -continuous function from X to \mathcal{D} is surjective.

Theorem 4.3. A topological space X is connected if and only if it is θ -connected.

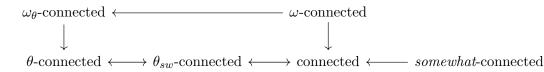
Proof. In view of Remark 2.2, connectedness implies θ -connectedness.

Conversely, assume that X is θ -connected. If X were disconnected, then there exist disjoint nonempty open sets G and H such that $X = G \cup H$. This implies that G and H are also closed sets, hence $Cl(G) = G \subseteq G$ and $Cl(H) = H \subseteq H$. Thus, G and H are θ -open sets. Thus X is θ -disconnected, contrary to our assumption.

In view of Remark 2.2 and Theorem 4.3, the following result holds.

Theorem 4.4. A topological space X is θ_{sw} -connected if and only if it is θ -connected.

Remark 4.5. The following diagram holds for a subset of a topological space.



Definition 4.6. A topological space X is said to be

 $\theta_{sw}\text{-}\mathrm{Continuity}$ of Maps in the Product Space and Some Versions of Separation Axioms

- (i) θ_{sw} -Hausdorff if given any pair of distinct points p, q in X there exist disjoint θ_{sw} -open sets U and V such that $p \in U$ and $q \in V$;
- (ii) θ_{sw} -regular if for each closed set F and each point $x \notin F$, there exist disjoint θ_{sw} -open sets U and V such that $x \in U$ and $F \subseteq V$; and
- (iii) θ_{sw} -normal if for every pair of disjoint closed sets E and F of X, there exist disjoint θ_{sw} -open sets U and V such that $E \subseteq U$ and $F \subseteq V$.

In view of Remark 2.2, every θ_{sw} -Hausdorff (resp., θ_{sw} -regular, θ_{sw} -normal) space is Hausdorff (resp., regular, normal).

Theorem 4.7. Let X be a topological space. Then the following are equivalent:

- (i) X is θ_{sw} -Hausdorff.
- (ii) Let $x \in X$. For $y \neq x$, there exists a θ_{sw} -open set U containing x such that $y \notin Cl_{\theta_{sw}}(U)$.
- (iii) For each $x \in X$, $C := \cap \{ Cl_{\theta_{sw}}(U) : U \text{ is an } \theta_{sw} \text{-open set with } x \in U \} = \{ x \}.$

Proof. (i) \Rightarrow (ii): For every disjoint points $x, y \in X$, there exist disjoint θ_{sw} -open sets U and V such that $x \in U$ and $y \in V$. By Remark 2.8 (v), $y \notin Cl_{\theta_{sw}}(U)$.

(ii) \Rightarrow (iii): Let $x \in X$. Then $x \in C$. Hence, for every $y \neq x$, there exists a θ_{sw} -open set U containing x such that $y \notin Cl_{\theta_{sw}}(U)$. Thus, $y \notin C$. Since y is arbitrary, $C = \{x\}$.

(iii) \Rightarrow (i): Let $x, y \in X$ such that $x \neq y$. By assumption, there exists a θ_{sw} -open set U containing x such that $y \notin Cl_{\theta_{sw}}(U)$. By Remark 2.8 (v), there exists a θ_{sw} -open set V containing y such that $U \cap V = \emptyset$. Hence, X is θ_{sw} -Hausdorff.

Theorem 4.8. Let X be a topological space. Then the following are equivalent:

- (i) X is θ_{sw} -regular.
- (ii) For each $x \in X$ and open set U with $x \in U$, there exists a θ_{sw} -open set V with $x \in V$ such that $V \subseteq Cl_{\theta_{sw}}(V) \subseteq U$.
- (iii) For each $x \in X$ and closed set F with $x \notin F$, there exists a θ_{sw} -open set V with $x \notin V$ such that $Cl_{\theta_{sw}}(V) \cap F = \emptyset$.

Proof. (i) \Rightarrow (ii): Let $x \in X$ and U be an open set containing x. Then $X \setminus U$ is closed and $x \notin X \setminus U$. By assumption, there exist disjoint θ_{sw} -open sets V and W such that $x \in V$ and $X \setminus U \subseteq W$. By Remark 2.8 (vi), (vii), $Cl_{\theta_{sw}}(V) \subseteq Cl_{\theta_{sw}}(X \setminus W) = X \setminus W$. Moreover, $Cl_{\theta_{sw}}(V) \cap X \setminus U \subseteq Cl_{\theta_{sw}}(V) \cap W = \emptyset$ so that $Cl_{\theta_{sw}}(V) \subseteq U$. Thus, $V \subseteq Cl_{\theta_{sw}}(V) \subseteq U$.

(ii) \Rightarrow (iii): Let $x \in X$ and F be a closed set with $x \notin F$. Then $X \setminus F$ is open containing x. By assumption, there exists a θ_{sw} -open set V containing x such that $V \subseteq Cl_{\theta_{sw}}(V) \subseteq X \setminus F$. This means that $Cl_{\theta_{sw}}(V) \cap F = \emptyset$.

(iii) \Rightarrow (i): Let $x \in X$ and F be a closed set with $x \notin F$. By assumption, there exists a θ_{sw} -open set V with $x \in V$ such that $Cl_{\theta_{sw}}(V) \cap F = \emptyset$. Note that $X \setminus Cl_{\theta_{sw}}(V)$ is θ_{sw} -open and $F \subseteq X \setminus Cl_{\theta_{sw}}(V)$. Furthermore, $V \cap X \setminus Cl_{\theta_{sw}}(V) = \emptyset$. Hence, X is θ_{sw} -regular. \Box

Theorem 4.9. Let X be a topological space. Then the following are equivalent:

- (i) X is θ_{sw} -normal.
- (ii) For each closed set A and each open set U containing A, there exists a θ_{sw} -open set V containing A such that $Cl_{\theta_{sw}}(V) \subseteq U$.

(iii) For each pair of disjoint closed sets A and B, there exists θ_{sw} -open set U containing A such that $Cl_{\theta_{sw}}(U) \cap B = \emptyset$.

Proof. (i) \Rightarrow (ii): Let A be closed and U be open containing A. Then A and $X \setminus U$ are disjoint closed sets in X. By assumption, there exist disjoint θ_{sw} -open sets V and W such that $A \subseteq V$ and $X \setminus U \subseteq W$ or $(X \setminus W \subseteq U)$. By Remark 2.8 (vi), (vii), $Cl_{\theta_{sw}}(V) \subseteq Cl_{\theta_{sw}}(X \setminus W) = X \setminus W$ so that $Cl_{\theta_{sw}}(V) \subseteq Cl_{\theta_{sw}}(X \setminus W) = X \setminus W \subseteq U$.

(ii) \Rightarrow (iii): Let A and B be two disjoint closed sets. Then, $A \subseteq X \setminus B$ and $X \setminus B$ is open. By assumption, there exists a θ_{sw} -open set U containing A such that $Cl_{\theta_{sw}}(U) \subseteq X \setminus B$. This means that $Cl_{\theta_{sw}}(V) \cap B = \emptyset$.

(iii) \Rightarrow (i): Let A and B be disjoint closed sets. By assumption, there exists a θ_{sw} -open set U containing A such that $Cl_{\theta_{sw}}(U) \cap B = \emptyset$. Then $B \subseteq X \setminus Cl_{\theta_{sw}}(U)$. Since U and $X \setminus Cl_{\theta_{sw}}(U)$ are disjoint θ_{sw} -opens, X is θ_{sw} -normal.

A topological space X is said to be a T_1 -space if for each $p, q \in X$ with $p \neq q$, there exist open sets U and V such that $p \in U$ and $q \notin U$, and $q \in V$ and $p \notin V$.

Theorem 4.10. Let X be a T_1 -space. Then

- (i) If X is θ_{sw} -regular, then X is θ_{sw} -Hausdorff; and
- (ii) If X is θ_{sw} -normal, then X is θ_{sw} -regular.

Proof. (i): Suppose that X is θ_{sw} -regular. For each $x, y \in X$ with $x \neq y$, there exist disjoint open sets U and V such that $x \in U$ and $y \notin U$, and $y \in V$ and $x \notin V$. This implies that $x \notin X \setminus U$ and $y \notin X \setminus V$. Note that $X \setminus U$ is closed. Since X is θ_{sw} -regular, there exists disjoint θ_{sw} -open sets A and B such that $x \in A$ and $X \setminus U \subseteq B$. Note that $y \in X \setminus U$. Hence, $y \in B$. Thus, X is θ_{sw} -Hausdorff.

We can prove (ii) by following the same argument used in (i).

The paper has introduced the concept of θ_{sw} -open set and described its connection to the other well-known concepts such as the classical open, θ -open, and ω_{θ} -open sets. The paper has also defined and characterized the concepts of θ_{sw} -open and θ_{sw} -closed functions, θ_{sw} -continuous function, and θ_{sw} -connected, θ_{sw} -Hausdorff, θ_{sw} -regular, and θ_{sw} -normal spaces. Moreover, the paper has formulated a necessary and sufficient condition for θ_{sw} -continuity of a function from an arbitrary space into the product space. A worthwhile direction for further investigation is to establish versions of Urysohn's Lemma and Tietze Extension Theorem for θ_{sw} -open sets. One may also try to investigate θ_{sw} -open and θ_{sw} -closed sets, and other related concepts in a generalized topological space.

Acknowledgement

The authors would like to thank the anonymous referee for his valuable comments for the improvement of this paper.

References

 T.A. Al-Hawary, On supper continuity of topological spaces, MATEMATIKA, 21 (2005), 43-49, doi:10.11113/matematika.v21.n.513.

- [2] K. Al-Zoubi and K. Al-Nashef, The topology of ω -open subsets, Al-Manarah Journal, **9** (2003), 169-179.
- [3] H. Aljarrah, M. Md Noorani, and T. Noiri, *Contra ωβ-continuity*, Bol. Soc. Parana. Mat., 32 (2014), 9-22, doi:10.5269/bspm.v32i2.20059.
- [4] H. Aljarrah, M. Md Noorani, and T. Noiri, On generalized $\omega\beta$ -closed sets, Missouri J. Math. Sci., **26** (2014), 70-87, doi:10.35834/mjms/1404997111.
- [5] C.W. Baker, An alternate form of somewhat continuity, International Journal of Contemporary Mathematical Sciences, 10 (2015), 57-64, doi:10.12988/ijcms.2015.412123.
- [6] C.W. Baker, Somewhat open sets, Gen. Math. Notes, **34** (2016), 29-36.
- [7] M. Caldas, S. Jafari, and M.M. Kovar, Some properties of θ-open sets, Divulg. Mat., 12 (2004), 161-169, Zb1:1099.54501.
- [8] M. Caldas, S. Jafari, and R.M. Latif, Sobriety via θ-open sets, An. Stiint. Univ. Al. I. Cuza Iąsi. Mat. (N.S.), 56 (2010), 163-167, doi:10.2478/v10157-010-0011-y.
- [9] C. Carpintero, N. Rajesh, E. Rosas, and S. Saranyasri, Properties of almost ω-continuous functions, J. Adv. Stud. Topol. 4,3 (2013), 29-38, Zb1:1338.54079.
- [10] C. Carpintero, N. Rajesh, E. Rosas, and S. Saranyasri, Some properties of upperlower ω -continuous multifunctions, Sci. Stud. Res. Ser. Math. Inform., **23** (2013), 35-55, Zb1: 1313.54044.
- [11] C. Carpintero, N. Rajesh, E. Rosas, and S. Saranyasri, On upper and lower almost contra-ωcontinuous multifunctions, Ital. J. Pure Appl. Math., 32 (2014), 445-460, Zbl:1330.54030.
- [12] C. Carpintero, N. Rajesh, E. Rosas, and S. Saranyasri, Somewhat ω-continuous functions, Sarajevo J. Math., 11 (2015), 131-137, doi:10.5644/SJM.11.1.11.
- [13] C. Carpintero, N. Rajesh, E. Rosas, and S. Saranyasri, Upper and lower (δ, ω) -continuous multifunctions, Afr. Mat., **26** (2015), 399-405, Zbl:1320.54013.
- [14] H. Darwesh, Between preopen and open sets in topological spaces, Thai J. Math., 11 (2013), 143-155, Zbl: 1276.54003.
- [15] R.F. Dickman Jr. and J.R. Porter, θ-closed subsets of Hausdorff spaces, Pacific J. Math., 59 (1975), 407-415, doi:10.2140/pjm.1975.59.407.
- [16] R.F. Dickman Jr. and J.R. Porter, θ-perfect and θ-absolutely closed functions, Illinois J. Math., 21 (1977), 42-60, doi:10.1215/ijm/1256049499.
- [17] E. Ekici, S. Jafari, and R. M. Latif, On a finer topological space than τ_{θ} and some maps, Ital. J. Pure Appl. Math., **27** (2010), 293-304, Zbl:1238.54001.
- [18] H.Z. Hdeib, ω -closed mappings, Rev. Colombiana Mat., **1-2** (1982), 65-78, Zb1:0574. 54008.
- [19] H.B. Hoyle and K.R. Gentry, Somewhat continuous functions, Czech. Math. Journal, 21 (1971), 5-12, doi:10.21136/CMJ.1971.100999.
- [20] D.S. Jankovic, θ-regular spaces, Internat. J. Math. & Math. Sci., 8 (1986), 615-619, doi: 10.1155/S0161171285000667.

- [21] J.E. Joseph, θ-closure and θ-subclosed graphs, Math. Chronicle, 8 (1979), 99-117, Zb1: 0441.54001.
- [22] M.M. Kovar, On θ-regular spaces, Internat. J. Math. & Math. Sci., 17 (1994), 687-692, doi:10.1155/S0161171294000979.
- [23] M. Labendia and J.A. Sasam, On ω-connectedness and ω-continuity in the product space, Eur. J. of Pure & Appl. Math., 11 (2018), 834-843, Zbl:1413.54056.
- [24] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Month., 70 (1963), 36-41, doi:10.2307/2312781.
- [25] P.E. Long and L.L. Herrington, The τ_{θ} -topology and faintly continuous functions, Kyungpook Math. J., **22** (1982), 7-14, Zbl:0486.54009.
- [26] T. Noiri and S. Jafari, Properties of (θ, s) -continuous functions, Topology Appl., **123** (2002), 167-179, doi:10.1016/S0166-8641(01)00180-8.
- [27] N. Velicko, *H-closed topological spaces*, Trans. AMS., **78** (1968), 103-118, Zbl:0178.56503.

