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Abstract

In this study, the concept of θsw-open set is introduced and its relationship to the other
well-known concepts such as the classical open, θ-open, and ωθ-open sets is described. The
concepts of θsw-interior and θsw-closure of a set is also defined and investigated. Related
concepts such as θsw-open and θsw-closed functions, θsw-continuous function, θsw-connected,
and some versions of separation axioms are defined and characterized. Finally, the concept
of θsw-continuous function from an arbitrary topological space into the product space is
investigated further.

1 Introduction and Preliminaries

The first attempt to substitute concept in topology with concept possessing either weaker or
stronger property was done by N. Levine [24] when he introduced the concepts of semi-open
set, semi-closed set, and semi-continuity of a function. Several mathematicians then became
interested in introducing other topological concepts which can replace the concept of open set,
closed set, and continuity of a function.

In 1968, Velicko [27] introduced the concepts of θ-continuity between topological spaces and
subsequently defined the concepts of θ-closure and θ-interior of a subset of topological space.
The concept of θ-open set and its related topological concepts had been deeply studied and
investigated by numerous authors, see [1, 7, 8, 15, 16, 20, 21, 22, 25, 26].

Let (X,T) be a topological space and A ⊆ X. The θ-closure and θ-interior of A are,
respectively, denoted and defined by

Clθ(A) = {x ∈ X : Cl(U) ∩A 6= ∅ for every open set U containing x}

and
Intθ(A) = {x ∈ X : Cl(U) ⊆ A for some open set U containing x},

where Cl(U) is the closure of U in X. A subset A of X is θ-closed if Clθ(A) = A and θ-open if
Intθ(A) = A. Equivalently, A is θ-open if and only if X \A is θ-closed.

In 1971, Hoyle and Gentry [19] introduced the class of somewhat-continuous functions and
somewhat-open functions. The somewhat-continuous functions, which are generalization of
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continuity requiring nonempty inverse images of open sets to have nonempty interiors instead
of being open, have proved to be very useful in topology. Since then, the concepts of somewhat-
interior and somewhat-closure of a subset of a topological space have been subsequently defined
and the concept of somewhat-open and somewhat-closed sets have been used to characterize
somewhat-continuity, see [5, 6].

A subset U of a space X is said to be somewhat-open if U = ∅ or if there exists x ∈ U and an
open set V such that x ∈ V ⊆ U . A set is called somewhat-closed if its complement is somewhat-
open. Let A be a subset of a space X. The somewhat-closure and somewhat-interior of A are,
respectively, denoted and defined by swCl(A) = ∩{F : F is somewhat-closed and A ⊆ F} and
swInt(A) = ∪{U ⊆ A : U is somewhat-open}.

In 1982, Hdeib [18] introduced the concepts of ω-open and ω-closed sets and ω-closed map-
pings on a topological space. He showed that ω-closed mappings are strictly weaker than closed
mappings and also showed that the Lindelöf property is preserved by counter images of ω-closed
mappings with Lindelöf counter image of points. The concepts of ω-open sets and its correspond-
ing topological concepts had been studied in several papers, see [2, 3, 4, 9, 10, 11, 12, 13, 14, 23].

In 2010, Ekici et al. [17] introduced the concepts of ωθ-open and ωθ-closed sets on a topo-
logical space. They showed that the family of all ωθ-open sets in a topological space X forms
a topology on X. They also introduced the notions of ωθ-interior and ωθ-closure of a subset of
a topological space.

A point x of a topological space X is called a condensation point of A ⊆ X if for each open
set G containing x, G ∩ A is uncountable. A subset B of X is ω-closed if it contains all of its
condensation points. The complement of B is ω-open. Equivalently, a subset U of X is ω-open
(resp., ωθ-open) if and only if for each x ∈ U , there exists an open set O containing x such that
O \ U (resp., O \ Intθ(U)) is countable. A subset B of X is ωθ-closed if its complement X \B
is ωθ-open.

A topological space X is said to be somewhat-connected (resp., θ-connected, ω-connected,
ωθ-connected) if X cannot be written as the union of two nonempty disjoint somewhat-open
(resp., θ-open, ω-open, ωθ-open) sets.
Otherwise, X is somewhat-disconnected (resp., θ-disconnected, ω-disconnected, ωθ-disconnected).

Let A be an indexing set and {Yα : α ∈ A} be a family of topological spaces. For each
α ∈ A, let Tα be the topology on Yα. The Tychonoff topology on Π{Yα : α ∈ A} is the topology
generated by a subbase consisting of all sets p−1

α (Uα), where the projection map pα : Π{Yα :
α ∈ A} → Yα is defined by pα(〈yβ〉) = yα, Uα ranges over all members of Tα, and α ranges over
all elements of A. Corresponding to Uα ⊆ Yα, denote p−1

α (Uα) by 〈Uα〉. Similarly, for finitely
many indices α1, α2, . . . , αn, and sets Uα1 ⊆ Yα1 , Uα2 ⊆ Yα2 , . . . , Uαn ⊆ Yαn , the subset

〈Uα1〉 ∩ 〈Uα2〉 ∩ · · · ∩ 〈Uαn〉 = p−1
α1

(Uα1) ∩ p−1
α2

(Uα2) ∩ · · · ∩ p−1
αn

(Uαn)

is denoted by 〈Uα1 , Uα2 , . . . , Uαn〉. We note that for each open set Uα subset of Yα, 〈Uα〉 =
p−1
α (Uα) = Uα×Πβ 6=αYβ. Hence, a basis for the Tychonoff topology consists of sets of the form
〈Bα1 , Bα2 , ..., Bαk

〉, where Bαi is open in Yαi for every i ∈ K = {1, 2, ..., k}.
Now, the projection map pα : Π{Yα : α ∈ A} → Yα is defined by pα(〈yβ〉) = yα for each

α ∈ A. It is known that every projection map is a continuous open surjection. Also, it is well
known that a function f from an arbitrary space X into the Cartesian product Y of the family
of spaces {Yα : α ∈ A} with the Tychonoff topology is continuous if and only if each coordinate
function pα ◦ f is continuous, where pα is the α-th coordinate projection map.

In this paper, given a topology on X, we define a new type of topology on X which is finer
than the topology formed by the collection of θ-open sets, but coarser than the given topology
on X.
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2 θsw-Open and θsw-Closed Functions

In this section, we shall determine the connection of θsw-open set to the classical open, θ-open,
and ωθ-open sets. We shall also define and characterize the concepts of θsw-open and θsw-closed
functions.

Definition 2.1. Let X be a topological space. A subset A of X is said to be θsw-open if for
every x ∈ A, there exists an open set U containing x such that swCl(U) ⊆ A. A subset F of X
is called θsw-closed if X \ F is θsw-open.

Remark 2.2. The following diagram holds for a subset of a topological space.

ωθ-open ω-open

θ-open θsw-open open somewhat-open

We remark that the above diagram is also true for their respective closed sets.
The following examples show that the implications in the above diagram (with respect to

θsw-open set) are not reversible. We note that since ωθ-open and open are two independent
notions [17, Example 5], ωθ-open does not imply θsw-open.

Example 2.3. (i) Let X = {a, b, c, d, e} with topology T = {∅, X, {a}, {c}, {d}, {a, c},
{a, d}, {c, d}, {a, b, c}, {a, c, d}, {c, d, e}, {a, b, c, d}, {a, c, d, e}}. Then {a, b, c} is θsw-
open but not θ-open.

(ii) Let R be the real line with topology T = {∅,R,Q}. Then Q is open but not θsw-open.

(iii) Let R be the real line with topology T = {∅,R,R \ (1, 2), {1.5},R \ (1, 2) ∪ {1.5}}. Then
R \ (1, 2) is θsw-open but not ωθ-open.

Before showing that the collection of θsw-open sets forms a topology, we shall consider first
the following remark.

Remark 2.4. Let X be a topological space and A,B ⊆ X. Then

(i) swInt(A) is somewhat-open and swInt(A) ⊆ A;

(ii) swCl(A) is somewhat-closed and A ⊆ swCl(A);

(iii) swInt(A) is the largest somewhat-open set contained in A;

(iv) If A ⊆ B, then swInt(A) ⊆ swInt(B);

(v) x ∈ swInt(A) if and only if there exists a somewhat-open set U containing x such that
U ⊆ A;

(vi) A is somewhat-open if and only if A = swInt(A);

(vii) swInt(swInt(A)) = swInt(A);

(viii) swInt(A ∩B) ⊆ swInt(A) ∩ swInt(B);

(ix) swCl(A) is the smallest somewhat-closed set containing A;

(x) A ⊆ B implies that swCl(A) ⊆ swCl(B);

(xi) swCl(swCl(A)) = swCl(A);
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(xii) swCl(A) ∪ swCl(B) ⊆ swCl(A ∪B);

(xiii) swInt(X \A) = X \ swCl(A);

(xiv) A is somewhat-closed if and only if A = swCl(A); and

(xv) x ∈ swCl(A) if and only if for every somewhat-open set U containing x, U ∩A 6= ∅.

Theorem 2.5. Let Tθsw be a family of all θsw-open subsets of topological space X. Then, Tθsw
forms a topology on X.

Proof. It is not difficult to see that ∅, X ∈ Tθsw . Now, let {Ai : i ∈ A} be a family members

of Tθsw . Let x ∈
⋃
i∈A

Ai. Then x ∈ Aj for some j ∈ A. Since Aj is θsw-open, there exists an

open set U containing x such that swCl(U) ⊆ Aj ⊆
⋃
i∈A

Ai. Hence,
⋃
i∈A

Ai is θsw-open. Next,

let A1, A2 ∈ Tθsw . Let x ∈ A1 ∩ A2.Then there exist open sets U1 and U2, both containing
x, such that swCl(U1) ⊆ A1 and swCl(U2) ⊆ A2. Note that U1 ∩ U2 is open containing x.
Hence, swCl(U1 ∩ U2) ⊆ swCl(U1) ∩ swCl(U2) ⊆ A1 ∩ A2. Therefore, A1 ∩ A2 is θsw-open.
Consequently, Tθsw is a topology on X.

Definition 2.6. Let X be topological space and A ⊆ X. The θsw-interior of A is defined and
denoted by Intθsw(A) =

⋃
{U : U is an θsw-open set and U ⊆ A}. We note that by Theorem

2.5, Intθsw(A) is the largest θsw-open set contained in A. Moreover, x ∈ Intθsw(A) if and only
if there exists a θsw-open set U containing x such that U ⊆ A.

Definition 2.7. Let X be topological space and A ⊂ X. The θsw-closure of A is defined and
denoted by Clθsw(A) =

⋂
{F : F is an θsw-closed set and A ⊆ F}. We note that by Theorem

2.5, Clθsw(A) is the smallest θsw-closed set containing A.

Remark 2.8. Let X be a topological space and A,B ⊆ X. Then

(i) If A ⊆ B, then Intθsw(A) ⊆ Intθsw(B);

(ii) A is θsw-open if and only if A = Intθsw(A);

(iii) Intθsw(A ∩B) = Intθsw(A) ∩ Intθsw(B);

(iv) x ∈ Clθsw(A) if and only if for every θsw-open subset U containing x, U ∩A 6= ∅;

(v) A ⊆ B implies that Clθsw(A) ⊆ Clθsw(B);

(vi) A is θsw-closed if and only if Clθsw(A) = A;

(vii) Clθsw(Clθsw(A)) = Clθsw(A);

(viii) Clθsw(A) ∪ Clθsw(B) = Clθsw(A ∪B);

(ix) Intθsw(X \A) = X \ Clθsw(A);

(x) Clθsw(X \A) = X \ Intθsw(A);

(xi) A is θsw-open if and only if for every x ∈ A, there exists a basic open set B containing x
such that swCl(B) ⊆ A;

(xii) x ∈ Intθsw(A) if and only if there exists an open set O containing x, swCl(O) ⊆ A; and

(xiii) x ∈ Clθsw(A) if and only if for every open set U containing x, swCl(U) ∩A 6= ∅.
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Next, we introduce and characterize the concepts of θsw-open and θsw-closed functions.

Definition 2.9. Let X and Y be topological spaces. A function f : X → Y is θsw-open (resp.,
θsw-closed) if f(G) is θsw-open (resp., θsw-closed) for every open (resp., closed) set G in X.

In view of Remark 2.2, we have the following results.

Remark 2.10. Let f : X → Y be a function of topological spaces.

(i) If f is θsw-open (resp., θsw-closed) on X, then f is open (resp., closed) on X.

(ii) If f is θ-open (resp., θ-closed) on X, then f is θsw-open (resp., θsw-closed) on X.

Remark 2.11. The converse of Remark 2.10 (i) and (ii) do not necessarily hold.

(i) Consider R with topologies T1 = {∅,R,Q} and T2 = {∅,R,Q,Q \ {0}}. Define f :
(R,T1) → (R,T2) by f(x) = x for all x ∈ R. Obviously, f is open on (R,T1). Next, we
will show that there exists an open set in (R,T1) such that its image is not θsw-open in
(R,T2). Note that Qc is not somewhat open since for every x ∈ Qc the only open set in
(R,T2) containing x is R and R * Qc. Now, if swCl(Q) = Q, then Q is somewhat close,
a contradiction. Thus, Q ⊂ swCl(Q). Note also that swCl(R) = R * Q. Hence, Q is not
θsw-open in (R,T2). This means that f(Q) = Q is not θsw-open in (R,T2). Therefore, f
is not θsw-open on (R,T1). Since f is bijective, f is closed but not θsw-closed on (R,T1).

(ii) Consider the topological spaces X = Y = {a, b, c, d, e} with the corresponding topologies
Tx = {∅, X, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, b, c}, {a, c, d}, {a, b, c, d}} and Ty = T in
Example 2.3 (i). Let f : (X,Tx)→ (Y,Ty) be a function defined by f(x) = x for all x ∈ X.
By definition of f and θsw-open set, f is θsw-open on (X,Tx). Next, we will show that
there exists an open set in (X,Tx) such that its image is not θ-open in (X,Ty). Consider
the open set A = {a, b, c} in (X,Tx). Then f(A) = A. We claim that A is θsw-open but
not θ-open in (X,Ty). By Example 2.3 (i), A is θsw-open but not θ-open. Thus, f is not
θ-open on (X,Tx). Since f is bijective, f is θsw-closed but not θ-closed on (X,Tx).

Theorem 2.12. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is θsw-open on X.

(ii) f(Int(A)) ⊆ Intθsw(f(A)) for every A ⊆ X.

(iii) f(B) is θsw-open for every basic open set B in X.

(iv) For each x ∈ X and every open set U in X containing x, there exists an open set V in Y
containing f(x) such that swCl(V ) ⊆ f(U).

Proof. (i)⇒(ii): Let A ⊆ X. Note that f(Int(A)) ⊆ f(A) and f(Int(A)) is θsw-open. In view
of Definition 2.6, f(Int(A)) ⊆ Intθsw(f(A)).

(ii)⇒(iii): Let B be a basic open set in X. Then f(B) = f(Int(B)) ⊆ Intθsw(f(B)) ⊆ f(B).
By Remark 2.8 (ii), f(B) is θsw-open.

(iii)⇒(iv): Let x ∈ X and U be an open set containing x. Then there exists a basic open
set B containing x such that B ⊆ U , which implies f(x) ∈ f(B) ⊆ f(U). By assumption, there
exists an open set V containing f(x) such that swCl(V ) ⊆ f(B) ⊆ f(U).

(iv)⇒(i): Let U be an open set in X and let y ∈ f(U). Then there exists x ∈ U such that
f(x) = y. By assumption, there exists an open set V containing y such that swCl(V ) ⊆ f(U).
Hence, f(U) is θsw-open in Y . Therefore, f is θsw-open on X.
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Theorem 2.13. Let X and Y be topological spaces and f : X → Y be a function. Then the
following are equivalent:

(i) f is θsw-closed on X.

(ii) Clθsw(f(A)) ⊆ f(Cl(A)), for every A ⊆ X.

Proof. (i)⇒(ii): Let A ⊆ X. Note that f(A) ⊆ f(Cl(A)) and f(Cl(A)) is θsw-closed. In view
of Definition 2.7, Clθsw(f(A)) ⊆ f(Cl(A)).

(ii)⇒(i): Let F be closed in X. By assumption, f(F ) ⊆ Clθsw(f(F )) ⊆ f(Cl(F )) = f(F ).
By Remark 2.8 (vii), f is θsw-closed on X.

Remark 2.14. Let X and Y be topological spaces and f : X → Y be a bijective function.
Then f is θsw-open on X if and only if f is θsw-closed on X.

3 θsw-Continuity of Functions in the Product Space

In this section, we provide a definition of a θsw-continuous function and its characterization
from an arbitrary topological space into the product space.

Definition 3.1. A function f : X → Y is θsw-continuous if f−1(G) is θsw-open for every open
set G of Y .

In view of Remark 2.2, the following remark holds.

Remark 3.2. Let f : X → Y be a function of topological spaces. If f is θsw-continuous on X,
then f is continuous on X.

Remark 3.3. The converse of Remark 3.2 does not necessarily hold.

To see this, consider R with topology T = {∅,R,Q}. Define f : (R,T)→ (R,T) by f(x) = x
for all x ∈ R. Obviously, f is continuous on R. Next, we will show that there exists an open
set in (R,T) such that its inverse image is not θsw-open in (R,T). Consider the open set Q in
(R,T). We will show that it is not θsw-open in (R,T). By Example 2.3 (ii), Q is not θsw-open
in (R,T). That is, f−1(Q) = Q is not θsw-open in (R,T). Therefore, f is continuous but not
θsw-continuous on (R,T).

The proofs of the following results are standard, hence omitted.

Theorem 3.4. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is θsw-continuous on X.

(ii) f−1(F ) is θsw-closed in X for each closed subset F of Y .

(iii) f−1(B) is θsw-open in X for each (subbasic) basic open set B in Y .

(iv) For every p ∈ X and every open set V of Y containing f(p), there exists a θsw-open set
U of X containing p such that f(U) ⊆ V .

(v) f(Clθsw(A)) ⊆ Cl(f(A)) for each A ⊆ X.

(vi) Clθsw(f−1(B)) ⊆ f−1(Cl(B)) for each B ⊆ Y .

Theorem 3.5. Let X be any topological space and χA : X → D the characteristic function of
a subset A of X. Then χA is θsw-continuous if and only if A is both θsw-open and θsw-closed.
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In the following results, if Y = Π{Yα : α ∈ A} is a product space and Aα ⊆ Yα for each
α ∈ A, we denote Aα1×· · ·×Aαn×Π{Yi : α /∈ K} by 〈Aα1 , · · · , Aαn〉, where K = {α1, · · · , αn}.

If Y = Π{Yi : 1 ≤ i ≤ n} is a finite product, denote Aα1 × · · · ×Aαn by 〈Aα1 , · · · , Aαn〉.

Theorem 3.6. Let Y = Π{Yα : α ∈ A} be a product space. Let S = {α1, . . . , αn} be a finite
subset of A and ∅ 6= Oα ⊆ Yα for each α ∈ A. Then O = 〈Oα1 , . . . , Oαn〉 is somewhat-open in
Y if and only if each Oαi is somewhat-open in Yαi.

Theorem 3.7. Let Y = Π{Yα : α ∈ A} be a product space and Aα ⊆ Yα for each α ∈ A. Then
swCl(Π{Aα : α ∈ A}) ⊆ Π{swCl(Aα) : α ∈ A}.

Proof. Let x = 〈aα〉 /∈ Π{swCl(Aα) : α ∈ A}. Then aβ /∈ swCl(Aβ) for some β ∈ A. This
means that there exists a somewhat-open set Gβ containing aβ such that Gβ ∩ Aβ = ∅. By
Theorem 3.6, 〈Gβ〉 is somewhat-open containing x. Hence, 〈Gβ〉 ∩ Π{Aα : α ∈ A} = ∅. Thus,
x /∈ swCl(Π{Aα : α ∈ A}).

Theorem 3.8. Let Y = Π{Yα : α ∈ A} be a product space and Aα ⊆ Yα for each α ∈ A. Then
Clθsw(Π{Aα : α ∈ A}) ⊆ Π{Clθsw(Aα) : α ∈ A}.

Proof. Let x = 〈aα〉 ∈ Clθsw(Π{Aα : α ∈ A}). Then for every open set O containing x,
swCl(O) ∩ Π{Aα : α ∈ A} 6= ∅. Suppose that there exists β ∈ A such that aβ /∈ Clθsw(Aβ).
Then there exists an open set Uβ containing aβ such that swCl(Uβ)∩Aβ = ∅. By Theorem 3.7,
swCl(〈Uβ〉) ⊆ 〈swCl(Uβ)〉. It follows that x = 〈aα〉 ∈ 〈Uβ〉 and swCl(〈Uβ〉)∩Π{Aα : α ∈ A} =
∅, a contradiction. Thus, x ∈ Π{Clθsw(Aα) : α ∈ A}.

Theorem 3.9. Let Y = Π{Yi : 1 ≤ i ≤ n} be a (finite) product space and Ai ⊆ Yi for each
i = 1, 2, . . . , n. Then Π{Intθsw(Ai) : 1 ≤ i ≤ n} ⊆ Intθsw(Π{Ai : 1 ≤ i ≤ n}).

Proof. Let x = 〈a1, a2, . . . , an〉 ∈ Π{Intθsw(Ai) : 1 ≤ i ≤ n}. Then ai ∈ Intθsw(Ai) for all
i = 1, 2, . . . , n. This means that for all i = 1, 2, . . . , n, there exists an open set Oi containing ai
such that swCl(Oi) ⊆ Ai. Let O = 〈O1, O2, . . . , On〉, which is an open set in Y containing x. By
Theorem 3.7, swCl(O) = swCl(〈O1, O2, . . . , On〉) ⊆ 〈swCl(O1), swCl(O2), . . . , swCl(On)〉 ⊆
〈A1, A2, . . . , An〉. Hence, x ∈ Intθsw(Π{Ai : 1 ≤ i ≤ n}).

Theorem 3.10. Let X be a topological space and Y = Π{Yα : α ∈ A} a product space. A
function f : X → Y is θsw-continuous on X if and only if pα ◦ f is θsw-continuous on X for
every α ∈ A.

Proof. Suppose that f is θsw-continuous on X. Let α ∈ A and Uα be an open set in Yα. Since
pα is continuous, pα

−1(Uα) is open in Y . Hence, f−1(pα
−1(Uα)) = (pα ◦ f)−1(Uα) is θsw-open

set in X. Therefore, pα ◦ f is θsw-continuous for every α ∈ A.

Conversely, suppose that each coordinate function pα ◦ f is θsw-continuous. Let Gα be open
in Yα. Then, 〈Gα〉 is a subbasic open set in Y and (pα◦f)−1(Gα) = f−1(pα

−1(Gα)) = f−1(〈Gα〉)
is θsw-open in X. Therefore, f is θsw-continuous.

Corollary 3.11. Let X be a topological space, Y = Π{Yα : α ∈ A} a product space, and fα :
X → Yα a function for each α ∈ A. Let f : X → Y be the function defined by f(x) = 〈fα(x)〉.
Then f is θsw-continuous on X if and only if each fα is θsw-continuous on X for each α ∈ A.

Theorem 3.12. Let Y = Π{Yα : α ∈ A} be a product space, S = {α1, α2, . . . , αn} ⊆ A, and
∅ 6= Oαi ⊆ Yαi for each αi ∈ S. If each Oαi is θsw-open in Yαi, then O := 〈Oα1 , Oα2 , . . . , Oαn〉
is θsw-open in Y .
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Proof. Let x = 〈aα〉 ∈ O. Then aαi ∈ Oαi for every αi ∈ S. This means that for every
αi ∈ S, there exists an open set Uαi containing aαi such that swCl(Uαi) ⊆ Oαi . Let U =
〈Uαi , Uα2 , . . . , Uαn〉. Then x ∈ U and by Theorem 3.7,

swCl(U) ⊆ 〈swCl(Uα1), swCl(Uα2), . . . , swCl(Uαn)〉 ⊆ O.

Thus, O is θsw-open in Y .

Theorem 3.13. Let X = Π{Xα : α ∈ A} and Y = Π{Yα : α ∈ A} be product spaces and for
each α ∈ A, let fα : Xα → Yα be a function. If each fα is θsw-continuous on Xα, then the
function f : X → Y defined by f(〈xα〉) = 〈fα(xα)〉 is θsw-continuous on X.

Proof. Let 〈Vα〉 be a subbasic open set in Y . Then f−1(〈Vα〉) = 〈f−1
α (Vα)〉. Since each fα

is θsw-continuous, f−1
α (Vα) is θsw-open in Xα. Let x = 〈xβ〉 ∈ f−1(〈Vα〉) = 〈f−1

α (Vα)〉. Then
xα ∈ f−1

α (Vα). Hence, there exists an open set Uα containing xα such that swCl(Uα) ⊆ f−1
α (Vα).

Note that 〈Uα〉 is open in X contining x. By Theorem 3.7, swCl(〈Uα〉) ⊆ 〈swCl(Uα)〉 ⊆
〈f−1
α (Vα)〉 = f−1(〈Vα〉). This means that f−1(〈Vα〉) is θsw-open in X. Thus, f is θsw-continuous

on X.

4 θsw-Connectedness and Some Versions of Separation Axioms

In this section, we define and characterize the concepts of θsw-connected, θsw-Hausdorff, θsw-
regular, and θsw-normal spaces.

Definition 4.1. A topological space X is said to be θsw-connected if it is not the union of
two nonempty disjoint θsw-open sets. Otherwise, X is θsw-disconnected. A subset B of X is
θsw-connected if it is θsw-connected as a subspace of X.

Theorem 4.2. Let X be a topological space. Then the following statements are equivalent:

(i) X is θsw-connected.

(ii) The only subsets of X that are both θsw-open and θsw-closed are ∅ and X .

(iii) No θsw-continuous function from X to D is surjective.

Theorem 4.3. A topological space X is connected if and only if it is θ-connected.

Proof. In view of Remark 2.2, connectedness implies θ-connectedness.
Conversely, assume that X is θ-connected. If X were disconnected, then there exist disjoint

nonempty open sets G and H such that X = G∪H. This implies that G and H are also closed
sets, hence Cl(G) = G ⊆ G and Cl(H) = H ⊆ H. Thus, G and H are θ-open sets. Thus X is
θ-disconnected, contrary to our assumption.

In view of Remark 2.2 and Theorem 4.3, the following result holds.

Theorem 4.4. A topological space X is θsw-connected if and only if it is θ-connected.

Remark 4.5. The following diagram holds for a subset of a topological space.

ωθ-connected ω-connected

θ-connected θsw-connected connected somewhat-connected

Definition 4.6. A topological space X is said to be
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(i) θsw-Hausdorff if given any pair of distinct points p, q in X there exist disjoint θsw-open
sets U and V such that p ∈ U and q ∈ V ;

(ii) θsw-regular if for each closed set F and each point x /∈ F , there exist disjoint θsw-open
sets U and V such that x ∈ U and F ⊆ V ; and

(iii) θsw-normal if for every pair of disjoint closed sets E and F of X, there exist disjoint
θsw-open sets U and V such that E ⊆ U and F ⊆ V .

In view of Remark 2.2, every θsw-Hausdorff (resp., θsw-regular, θsw-normal) space is Haus-
dorff (resp., regular, normal).

Theorem 4.7. Let X be a topological space. Then the following are equivalent:

(i) X is θsw-Hausdorff.

(ii) Let x ∈ X. For y 6= x, there exists a θsw-open set U containing x such that y /∈ Clθsw(U).

(iii) For each x ∈ X, C := ∩{Clθsw(U) : U is an θsw-open set with x ∈ U} = {x}.

Proof. (i)⇒(ii): For every disjoint points x, y ∈ X, there exist disjoint θsw-open sets U and V
such that x ∈ U and y ∈ V . By Remark 2.8 (v), y /∈ Clθsw(U).

(ii)⇒(iii): Let x ∈ X. Then x ∈ C. Hence, for every y 6= x, there exists a θsw-open set U
containing x such that y /∈ Clθsw(U). Thus, y /∈ C. Since y is arbitrary, C = {x}.

(iii)⇒(i): Let x, y ∈ X such that x 6= y. By assumption, there exists a θsw-open set
U containing x such that y /∈ Clθsw(U). By Remark 2.8 (v), there exists a θsw-open set V
containing y such that U ∩ V = ∅. Hence, X is θsw-Hausdorff.

Theorem 4.8. Let X be a topological space. Then the following are equivalent:

(i) X is θsw-regular.

(ii) For each x ∈ X and open set U with x ∈ U , there exists a θsw-open set V with x ∈ V
such that V ⊆ Clθsw(V ) ⊆ U .

(iii) For each x ∈ X and closed set F with x /∈ F , there exists a θsw-open set V with x /∈ V
such that Clθsw(V ) ∩ F = ∅.

Proof. (i)⇒(ii): Let x ∈ X and U be an open set containing x. Then X \ U is closed and
x /∈ X \ U . By assumption, there exist disjoint θsw-open sets V and W such that x ∈ V
and X \ U ⊆ W . By Remark 2.8 (vi), (vii), Clθsw(V ) ⊆ Clθsw(X \W ) = X \W . Moreover,
Clθsw(V ) ∩X \ U ⊆ Clθsw(V ) ∩W = ∅ so that Clθsw(V ) ⊆ U . Thus, V ⊆ Clθsw(V ) ⊆ U .

(ii)⇒(iii): Let x ∈ X and F be a closed set with x /∈ F . Then X \ F is open containing x.
By assumption, there exists a θsw-open set V containing x such that V ⊆ Clθsw(V ) ⊆ X \ F .
This means that Clθsw(V ) ∩ F = ∅.

(iii)⇒(i): Let x ∈ X and F be a closed set with x /∈ F . By assumption, there exists a
θsw-open set V with x ∈ V such that Clθsw(V ) ∩ F = ∅. Note that X \ Clθsw(V ) is θsw-open
and F ⊆ X \ Clθsw(V ). Furthermore, V ∩X \ Clθsw(V ) = ∅. Hence, X is θsw-regular.

Theorem 4.9. Let X be a topological space. Then the following are equivalent:

(i) X is θsw-normal.

(ii) For each closed set A and each open set U containing A, there exists a θsw-open set V
containing A such that Clθsw(V ) ⊆ U .

9
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(iii) For each pair of disjoint closed sets A and B, there exists θsw-open set U containing A
such that Clθsw(U) ∩B = ∅.

Proof. (i)⇒(ii): Let A be closed and U be open containing A. Then A and X \ U are disjoint
closed sets in X. By assumption, there exist disjoint θsw-open sets V and W such that A ⊆ V
and X \U ⊆W or (X \W ⊆ U). By Remark 2.8 (vi), (vii), Clθsw(V ) ⊆ Clθsw(X \W ) = X \W
so that Clθsw(V ) ⊆ Clθsw(X \W ) = X \W ⊆ U .

(ii)⇒(iii): Let A and B be two disjoint closed sets. Then, A ⊆ X \ B and X \ B is open.
By assumption, there exists a θsw-open set U containing A such that Clθsw(U) ⊆ X \ B. This
means that Clθsw(V ) ∩B = ∅.

(iii)⇒(i): Let A and B be disjoint closed sets. By assumption, there exists a θsw-open set U
containing A such that Clθsw(U)∩B = ∅. Then B ⊆ X \Clθsw(U). Since U and X \Clθsw(U)
are disjoint θsw-opens, X is θsw-normal.

A topological space X is said to be a T1-space if for each p, q ∈ X with p 6= q, there exist
open sets U and V such that p ∈ U and q /∈ U , and q ∈ V and p /∈ V .

Theorem 4.10. Let X be a T1-space. Then

(i) If X is θsw-regular, then X is θsw-Hausdorff; and

(ii) If X is θsw-normal, then X is θsw-regular.

Proof. (i): Suppose that X is θsw-regular. For each x, y ∈ X with x 6= y, there exist disjoint
open sets U and V such that x ∈ U and y /∈ U , and y ∈ V and x /∈ V . This implies that
x /∈ X \U and y /∈ X \V . Note that X \U is closed. Since X is θsw-regular, there exists disjoint
θsw-open sets A and B such that x ∈ A and X \ U ⊆ B. Note that y ∈ X \ U . Hence, y ∈ B.
Thus, X is θsw-Hausdorff.

We can prove (ii) by following the same argument used in (i).

5 Conclusion and Recommendations

The paper has introduced the concept of θsw-open set and described its connection to the other
well-known concepts such as the classical open, θ-open, and ωθ-open sets. The paper has also
defined and characterized the concepts of θsw-open and θsw-closed functions, θsw-continuous
function, and θsw-connected, θsw-Hausdorff, θsw-regular, and θsw-normal spaces. Moreover, the
paper has formulated a necessary and sufficient condition for θsw-continuity of a function from
an arbitrary space into the product space. A worthwhile direction for further investigation is
to establish versions of Urysohn’s Lemma and Tietze Extension Theorem for θsw-open sets.
One may also try to investigate θsw-open and θsw-closed sets, and other related concepts in a
generalized topological space.
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