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Abstract

The Complier Average Causal Effect (CACE ) is a methodology that is popular in esti-
mating the impact of an intervention among treatment even when there is noncompliance.
Treatment noncompliance is a common issue in RCTs that may plague the randomization
settings and may produce treatment effect estimates that are biased. Yue Ma in 2018 intro-
duced the Multivariate CACE (MCACE ) analysis and showed that the methodology out-
performed the classical CACE methodology via the maximum likelihood estimation (MLE )
approach [9].

This paper explores the behavior of the model treatment estimates for MCACE model
via a Bayesian Estimation (BayesE ) approach. The proposed BayesE methodology explores
impact on the treatment effect parameters when varied values of compliance rates ρc are
imposed. Here, ρc ∈ {20%, 50%, 80%} and a ρc of 20% implies an 80% noncompliance. The
derived MCACE models are then compared to the derived MCACE models using MLE.

Simulation study shows that as ρc increases from 20% to 80%, the derived treatment
effect estimates of the MCACE model via BayesE gave more accurate and more precise
values than the treatment effect estimates derived via MLE. Comparison of the two models
is based on its corresponding variances of the estimates and its mean squared error (MSE )
values.

1 Introduction

Noncompliance is an important issue in the design and conduct of randomized controlled trials
(RCTs) - a type of study in which subjects are randomly assigned to either a treatment group
receiving some clinical intervention or a control group. Treatment noncompliance arises when
participants do not receive the treatment or the intervention to which they were randomly
assigned or allocated [5]. Most often, noncompliance occurs when human subjects are involved
in the randomized experiments, say for example, participants may refuse to take the treatment
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due to side effects or because of inconvenience of the compliance procedure. To this effect,
noncompliance turns out to be an important issue as it may lead to biased estimates of the
actual treatment effect when doing parameter estimation of a model [6].

Two traditional approaches in estimating the treatment effect parameter are the inten-
tion–to–treat (ITT ) analysis and the as–treated (AT ) analysis [4]. However, both analyses
tend to offer conservative estimate of the actual treatment effect under noncompliance, thus is
biased for method effectiveness. In [8], the Complier Average Causal Effect (CACE ) Analysis
was introduced as an alternative methodology for estimating the method effectiveness. The
CACE is a particular form of the ITT analysis or the AT analysis where inference concerns on
the average treatment effect within the subgroup of compliers.

In the effort to better evaluate the treatment efficacy in RCT studies, many researchers
take multiple measurements, thus producing multivariate outcomes. Thus, the univariate CACE
(uCACE ) model evolved to a procedure called the multiple univariate CACE (muCACE ) model
to cater the case of dataset with multivariate outcomes to evaluate the treatment effect. But
when the muCACE analysis is performed on k-dimensional outcomes separately, muCACE
models fail to capture the potential correlations among multivariate outcomes. For a given
population, however, the compliance behavior depends on baseline variables rather than the
type of outcomes; that is, there should be only one compliance rate for one population.

To this effect, the MCACE model was studied by [9] and found out that the methodology
will outperform the muCACE models in three ways. Firstly, the CACE model considers the
compliance mechanism of the data set. In general, the compliance rate is not fully observable in
RCTs, thus needs to be estimated from the observed outcomes and baseline covariates. Secondly,
the muCACE model fails to capture the potential correlations among multivariate outcomes.
In many situations, we are not sure about the underlying correlations among outcomes, thus
performing multiple univariate analysis may risk losing information about the given data. Lastly,
the significance of treatment effect is of great interest to researchers in many, if not all, RCT
studies. Multiple univariate tests inflate both the experiment-wise type I error rate and the
experiment-wise type II error rate when there are more than one dependent measurements.

In [3], the muCACE model is used to analyze multivariate outcomes and showed that mu-
CACE estimates provide greater difference in change scores from baseline compared to the
conservative ITT approach. Both procedures arrived at the same conclusion that the treat-
ment effect was statistically significant. However, it was observed that the dataset has some
noncompliance issues. For example, nearly half of the participants in the treatment group failed
to adhere to their original assignment. In this scenario, the muCACE models failed to capture
the noncompliance effect and its potential correlations among multivariate outcomes.

In the attempt to overcome the disadvantages of the muCACE model, [9] introduced the
Multivariate CACE (MCACE ) analysis and showed that the procedure can capture the po-
tential correlations among multivariate outcomes, generate interpretable results, and boost the
confidence of the test results. In this research work, estimates were derived via the Maximum
Likelihood Estimation (MLE ). However, [7] clarified that statistical issues in conducting ran-
domized trials includes the choice of a sample size. The sample size is determined whenever a
trial is stopped early, and the appropriate analysis and interpretation of the trial is conducted.
In this regard, having a prior information can contribute to the efficiency of the derived estimates
and thus, using a Bayesian estimation approach may be an advantage. It was pointed out in
[7] that the Bayesian estimation approach allows a formal basis for using external evidence and
in addition provides a rational way for dealing with issues such as the ethics of randomization,
trials to show treatment equivalence, the monitoring of accumulating data and the prediction
of the consequences of continuing a study.
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No attempt has been made to consider the Bayesian approach in estimating the treatment
effect parameter using the MCACE models which may be practical in real-world situation. It
is in this direction that this paper aims to explore. Thus, this paper mainly focuses on the
MCACE analysis via Bayesian estimation approach labeled as BayesE. Investigation centers in
estimating the treatment effect parameter for multivariate outcomes at a fixed sample size n
and effect size δc while varying the compliance rate (say, ρc ∈ {20%, 50%, 80%}). Accuracy and
precision of the derived treatment effect estimates using both BayesE and MLE procedures are
then compared.

2 The Proposed Methodology

2.1 Multivariate CACE Procedure

The CACE procedure is also known as the Local Average Treatment Effect (LATE ) procedure
in Economics literature [9]. The Complier Average Causal Effect (CACE ) is a particular form
of the ITT analysis or the AT analysis where inference concerns the average treatment effect
within the subgroup of compliers. The Complier Average Causal Effect (CACE ) model is de-
fined as follows:

Let D be a new treatment on some health outcome Y in a population of N participants.
The initial assignment of participants is stored in the variable X where,

Xi =

{
1 if the ith participant is assigned to the treatment
0 if the ith participant is assigned to the control.

The actual receipt of the treatment is denoted by Z where,

Zi =

{
1 if the ith participant receives the treatment
0 if the ith participant does not receive the treatment.

For clinical trials involving human subjects, the value of the binary variable Z is not under
researchers’ control due to a number of ethical problems. Thus, Z is written as a function of
X, that is, Zi(X) is an indicator function of whether the ith participant takes the treatment
given assignment X or not, that is,

Zi(X) =

{
1 if the ith participant receives the treatment given assignment X
0 if the ith participant does not receive the treatment given assignment X.

In the case of perfect compliance, Zi(X) = X for all participants. Unfortunately, Zi(X)
differs from Xi for various reasons in practice. Similarly, Yi(X,Zi(X)) can be defined as
the outcome of the ith participant given the random assignment X and the actual receipt
Z. For multivariate analysis, Y (X,Z) is an N × k matrix. Define Zi = (Zi(0), Zi(1)) and
Yi = (Yi(0, Zi(0)), Yi(1, Zi(1))) to be the potential outcomes, which can be partially observed in
the experiment. Hence, the compliance type can take four possible values given by:

Zi(X) =


c (complier) if Zi(X) = X for X = 0, 1
n (never-taker) if Zi(X) = 0 for X = 0, 1
a (always-taker) if Zi(X) = 1 for X = 0, 1
d (defier) if Zi(X) = 1−X for X = 0, 1.
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Next, let C be a vector with N elements and Nt be the number of participants of type t,
where t ∈ {c, n, a, d} with c as complier, n as never-taker, a as always-taker and d as defier.
The ITT effect on Y can be written as:

IITY =
∑

t∈{c,n,a,d}

Nt ITT
(t)
Y

N

and for t ∈ {c, n, a, d}, the ITT effect on Y for each compliance type can be written as:

ITT
(t)
Y =

∑
{i|Ci=t}

Yi(1, Zi(1))− Yi(0, Zi(0))

Nt
. (1)

Next, define the CACE of Z on Y to be ITT
(C)
Y . For compliers, Zi(1) = 1 and Zi(0) = 0

and by the weak exclusion restriction assumption, Equation (1) can be simplified as:

CACE = ITT
(t)
Y =

∑
{i|Ci=C}

Yi(1)− Yi(0)

NC
(2)

where, NC is the total number of compliers in treatment group and control group. Under the
weak exclusion restriction assumption, the subgroup of never-takers does not address the causal
effect of receiving the new treatment since both Yi(1, Zi(1)) and Yi(0, Zi(0)) represent outcomes

without taking any treatment. Therefore, ITT
(n)
Y = 0.

To extend the uCACE model to multivariate cases, assume that the health outcome Y
follows a multivariate normal distribution, that is, for compliers in the treatment group, let

Y(t) ∼MVNk(µk + δc,Σc),

for compliers in the control group,

Y(c) ∼MVNk(µc,Σc);

and for noncompliers,
Y(n) ∼MVNk(µn,Σn);

where MVKk denotes the k-dimensional normal distribution and Y is the multivariate response
or outcome. In the multivariate case, µc, δc and Σc denote the mean, the treatment effect size
and the variance-covariance matrix for the compliers, respectively, and µn, δn and Σn are the
mean, the treatment effect size and the variance-covariance matrix for the noncompliers. With
the assumption that the response or outcome Y follows a multivariate normal distribution,
Equation (2) becomes,

MCACE = ITT
(C)
Y1,Y2,...,Yn

=
∑

{i|Ci=C}

Yi(1)− Yi(0)

NC
. (3)

2.2 Bayesian Estimation

In Bayesian statistics, the conjugate prior of the mean vector is another multivariate normal
distribution [2]. Also, assumptions are specified mathematically as prior distributions. Data
are represented through a likelihood model. Bayes‘ Rule combines prior distribution and data
likelihood into a posterior distribution. A formal expression of the Bayes‘ Rule is as follows;

p(θ|y, x) =
p(θ)p(y|θ, x)

p(y)
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where θ is the estimated parameter. In the context of an RCT, θ is the effect of the treatment x
on dependent variable y. Moreover, p(θ) is the prior distribution of the treatment effect, which
captures the researcher’s beliefs about the model parameter prior to any analysis. Also, p(y|θ, x)
is the likelihood function and is the probability of the observed data given the parameter.
Further, p(y) is a normalizing constant with respect to θ that ensures the left-hand side p(θ|y, x)
is a proper probability distribution that integrates to 1.

For some purposes and simplicity, the denominator can be ignored and one can rewrite the
expression for the posterior p(θ|y, x) as;

p(θ|y, x) = p(θ)p(y|θ, x).

The posterior distribution is then proportional to the product of the prior and the likelihood.
Ultimately, the goal of modeling is to learn the posterior distribution p(θ|y, x) and summarize
it accurately [1].

Figure 1 shows how the proposed methodology in this study is applied with multivariate
simulated data. The MCACE model building with specified parameters, both via Maximum
Likelihood Estimation (MLE ) and Bayesian Estimation (BayesE ) are generated using the mvn-
mle and MVNBayesian packages in the R software, respectively.

Figure 1. The Proposed Simulation Procedure

In this simulation study, we assume that the response or outcome Y follows a multivariate
normal distribution, that is, Y(t) ∼ MVNk(µc + δc,Σc) for the treatment group and Y(c) ∼
MVNk(µc,Σc) for the control group. For simplicity, compliance rate pc is assumed to be
unaffected by the baseline covariates and set to 20%, 50% and 80%. Also, the chosen sample
size n for this study is 60 and the chosen treatment effect size δc is set to 0.5 because based
on prior investigations, the combination n = 60 and δc = 0.5 will produce precise estimates
using the MCACE model via MLE [9]. Using this set-up, this paper will then investigate and
compare the estimates derived via BayesE. Moreover, the limit number of iterations for the
maximum likelihood estimation is set to 700 and the number of random vectors to be generated
using Gibbs Sampling under the MVNBayesian package in R is set to 7000.
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3 Results and Discussions

This section presents the derived MCACE estimates for both Maximum Likelihood Estimation
(MLE ) and Bayesian Estimation (BayesE ). Let µ̂T be the treatment effect estimate derived
via MLE and µ̂?T be the treatment effect estimate derived via BayesE. In this study, the sample
size n is fixed at 60 and the effect size δc is fixed at 0.5. Comparison at varied values of the
compliance rate ρc ∈ {20%, 50%, 80%} are investigated.

Table 1 gives the derived estimates µ̂T for the compliers in the treatment group via the MLE
approach. Setting µc = (Y1, Y2, Y3, Y4, Y5, Y6)′ = (1, 1, 1, 2, 2, 2)′ as the true treatment effect
before the start of the simulation process, we are interested in verifying the null hypothesis H0

that µc is equal to the derived treatment effect estimate µ̂T , that is,

H0 : µc = µ̂T

at fixed n = 60 and δc = 0.5 with different values of ρc ∈ {20%, 50%, 80%}. This null hypothesis
is rejected if F > Fαdf at a given level of significance α (say, α = 0.05) and degrees of freedom
df in favor of the alternative hypothesis written as:

H1 : µc 6= µ̂T .

In particular, at ρ = 50%, we see that

µ̂T = (0.8038707, 0.9230134, 0.6898140, 1.2513369, 1.3259502, 1.2046297)′

and we want to know if this vector is significant different from µc = (1, 1, 1, 2, 2, 2)′. The
verification is assessed by performing the Hotelling’s T 2 test by deriving an F -statistic. The
computation is done by the R software and is summarized in Table 1.

Table 1. µ̂T , estimates for µT derived via MLE

ρc
µ̂T values with fixed δc = 0.5 and n = 60 Hotelling‘s T 2

Y1 Y2 Y3 Y4 Y5 Y6 Test (F -value)

20% 0.3049891 0.3095034 0.2925930 0.5193231 0.5334954 0.5593947 83.2028?

50% 0.8038707 0.9230134 0.6898140 1.2513369 1.3259502 1.2046297 10.8974?

80% 1.1641140 1.1769440 1.3644730 2.0181650 2.0981650 1.9477520 3.41035?

Fcrit=2.1750 (n = 60), ‘?‘ significant, ‘ns‘ not significant

For a given methodology to be efficient, the true parameter value should be close to the
estimated value. Hence, in this analysis we want that the H0 to be accepted. However, the
Hotelling’s T 2 test results show that when fixing n to 60, δc to 0.5, and varying ρc to 20%, 50%,
and 60%, all the µ̂T are significantly different from µc = (1, 1, 1, 2, 2, 2)′ so that H0 : µc = µ̂T
is rejected. Therefore, there is a significant difference between the true treatment effect µc
and µ̂T , the estimated treatment effect derived via MLE, even at varying rates of compliance
ρc. Nevertheless, it is worth noting that as ρc increases from 20% to 80%, the F -value of the
Hotelling’s T 2 test decreases at fixed n = 60 and δc = 0.5. This means that the behavior of the
derived µ̂T using MLE is possibly affected by the selection of the value of the compliance rate
ρc. It may imply that at a larger value of ρc, the greater the chance H0 will be accepted.

Similarly, we want to test that H0 : µc = µ̂?T versus H1 : µc 6= µ̂?T when deriving estimates
via BayesE. Table 2 shows the derived values of µ̂?T at fixed n = 60 and δc = 0.5. In particular,
at ρ = 80% we see that

µ̂?T = (1.1623530, 1.1673780, 1.3628940, 2.0037680, 2.0832860, 1.9612110)′
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and we want to verify if this vector is not significantly different from µc = (1, 1, 1, 2, 2, 2)′.
However, results show that H0 : µc = µ̂?T is rejected in favor of H1 : µc 6= µ̂?T . Similar conclusion
and trend are observed for the estimates derived using BayesE as with estimates via MLE with
respect to the values of the F -statistic when the compliance rate ρc increases from 20% to 80%
at fixed sample size 60 and effect size 0.5.

Table 2. µ̂?T , estimates for µT derived using BayesE

ρc
µ̂?T values with fixed δc = 0.5 and n = 60 Hotelling‘s T 2

Y1 Y2 Y3 Y4 Y5 Y6 Test (F -value)

20% 0.3057378 0.3100779 0.2892077 0.5301085 0.5445906 0.5675145 86.3412?

50% 0.8022573 0.9181712 0.6835685 1.2801860 1.3443367 1.2354521 13.3799?

80% 1.1623530 1.1673780 1.3628940 2.0037680 2.0832860 1.9612110 5.41676?

Fcrit=2.1750 (n=60), ‘?‘ significant, ‘ns‘ not significant

Table 3. Comparison between µ̂T and µ̂?T , estimates for µT

ρc Estimates
µ̂T versus µ̂?T with fixed δc = 0.5 and n = 60 F -test

valueY1 Y2 Y3 Y4 Y5 Y6

20%
MLE
BayesE

0.3049891 0.3095034 0.2925930 0.5193231 0.5334954 0.5593947
0.0004ns

0.3057378 0.3100779 0.2892077 0.5301085 0.5445906 0.5675145

50%
MLE
BayesE

0.8038707 0.9230134 0.6898140 1.2513369 1.3259502 1.2046297
0.0025ns

0.8022573 0.9181712 0.6835685 1.2801860 1.3443367 1.2354521

80%
MLE
BayesE

1.1641140 1.1769440 1.3644730 2.0181650 2.0981650 1.9477520
0.0004ns

1.1623530 1.1673780 1.3628940 2.0037680 2.0832860 1.9612110

Fcrit=2.1750 (n=60), ‘?‘ significant, ‘ns‘ not significant

Next, we test whether the derived estimates via MLE, µ̂T is significantly different from µ̂?T ,
estimates derived via BayesE. That is, we want to test the hypotheses H0 : µ̂T = µ̂?T versus
H1 : µ̂T 6= µ̂?T . Table 3 shows the result of the Hotelling’s T 2 test with its corresponding F -
values in comparing the estimates. Test result shows that H0 is not rejected when fixing n to
60, δc to 0.5, and even if we vary the values of ρc. Nevertheless, it is observable that fixing ρc
to 50%, the F -value for the Hotelling’s T 2 test seems to be larger than the other values of the
ρc. This means that the difference between the estimates is greatly affected by the compliance
rate selection.

To show the advantage of the BayesE methodology over the MLE procedure, further test is
conducted in this study. Figure 2 shows the plot of the estimated variances σ̂2

T and σ̂2?
T derived

from MLE and BayesE, respectively, when fixing n to 60, δc to 0.5, and varying ρc to 20%, 50%,
and 80%. The variance (or precision) measures how close estimates from different samples are
close to each other. The figure shows that the BayesE gave smaller estimated variance than
when using the MLE. To further assess this claim, the Friedman’s two-way analysis of variance
is performed to see whether H0 : σ̂2

T = σ̂2?
T is rejected in favor of H1 : σ̂2

T 6= σ̂2?
T .
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Figure 2. Plot of the Variance Estimates Derived Using MLE and BayesE

Table 4. Comparison Between σ̂2
T = V ar(µ̂T ) and σ̂2?

T = V ar(µ̂?T )

ρc Estimates
σ̂2
T versus σ̂2?

T with fixed δc = 0.5 and n = 60 Fried-

man’sY1 Y2 Y3 Y4 Y5 Y6

20%
MLE
BayesE

0.0343015 0.0753319 0.0627598 0.3379417 0.2873491 0.3198210
0.0143?

0.0005282 0.0011979 0.0009985 0.0056671 0.0047312 0.0050955

50%
MLE
BayesE

0.2406664 0.4901848 0.4555062 1.8260157 1.2612716 2.2233802
0.0143?

0.0038647 0.0079181 0.0073015 0.0301057 0.0208570 0.0371463

80%
MLE
BayesE

0.6881509 1.5361308 1.4173610 4.7430452 4.1664471 3.7489259
0.0143?

0.0107163 0.0242434 0.0237186 0.0748502 0.0660305 0.0585237

significance codes ‘? ? ??‘ 0; ‘? ? ?‘ 0.001; ‘??‘ 0.01; ‘?‘ 0.05

Table 4 shows the result of the Friedman’s Two-way ANOVA test for the comparisons
between σ̂2

T using MLE and σ̂2?
T using BayesE at n = 60, δc = 0.5, and varying the values of

ρc. The test result shows that there is enough evidence to reject H0 : σ̂2
T = σ̂2?

T and conclude
that there is a significant difference between the variances of the estimates, σ̂2

T and σ̂2?
T .

Further, doing a one-sided test, that is, with an alternative hypothesis H2 : σ̂2
T > σ̂2?

T , the
result shows that, on the average, σ̂2?

T has significantly smaller values than that of σ̂2
T at a

level of significance of α = 0.05. In conclusion, the MCACE analysis using BayesE produced
smaller variances of the estimates and thus, estimates produced by the said methodology are
more precise than those estimates produced by MCACE via MLE at fixed n = 60 and δc = 0.5
with varying values of ρc.

Further analysis is done to check the accuracy of the estimates. Table 5 shows the comparison
of the Mean Squared Error (MSE) values for the estimates derived from both MLE and BayesE
methodologies. The MSE measures the accuracy of an estimator, that is, it measures how close
the estimate is to the true treatment effect value. It can be observed from Table 5 that the
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derived MCACE estimates using BayesE gave smaller MSE values than those derived using
MLE regardless of the compliance rate values at fixed sample size n = 60 and effect size δc = 0.5.
Also, we see that as the compliance rate increases, the MSE values also increases. This means
that the proposed MCACE models using BayesE gave more accurate and consistent treatment
effect estimates than the existing MCACE models using MLE.

Table 5. Comparison Between the MSE of µ̂T and µ̂?T , estimates of µT

ρc Estimates
MSE values with fixed δc = 0.5 and n = 60 Ave.

MSEY1 Y2 Y3 Y4 Y5 Y6

20%
MLE
BayesE

0.0343015 0.0753319 0.0627598 0.3379417 0.2873491 0.3198211 0.1862508

0.0005390 0.0012013 0.0010122 0.0056749 0.0047923 0.0050958 0.0030525

50%
MLE
BayesE

0.2406664 0.4901848 0.4555062 1.8260157 1.2612716 2.2233802 1.0828374

0.0038873 0.0079267 0.0073139 0.0302766 0.0208688 0.0371633 0.0179061

80%
MLE
BayesE

0.6881509 1.5361308 1.4173610 4.7430452 4.1664471 3.7489259 2.7166768

0.0107240 0.0243162 0.0237218 0.0781854 0.0675934 0.0585465 0.0438478

4 Conclusions and Recommendations

For this study, with the assumption that the response Y follows a multivariate normal distri-
bution, it is shown that for n = 60, δc = 0.5 and ρc ∈ {20%, 50%, 80%}, the MCACE analysis
using BayesE gave more precise treatment effect estimates than the existing MCACE analysis
using MLE based on their respective variance values of the estimate. Furthermore, the pro-
posed MCACE models via Bayesian estimation gave smaller MSE values than the MCACE
models derived via MLE. It is more likely that the proposed MCACE analysis using BayesE
outperformed the existing MCACE analysis using MLE when it comes to giving more accurate
and consistent estimates subject to the conditions set for the simulation study.

The Multivariate CACE (MCACE ) model proposed in this paper is rather a basic one, for
it ignores the effects of the baseline covariates on the response or outcome variable. Further
improvements could be made to the MCACE model to provide the most accurate and precise
analysis results by considering the baseline characteristics. We assumed the outcome Y to
follow a multivariate normal distribution. In fact, in a RCT set-up, outcome does not always
follow an exact multivariate normal distribution, which may violate the assumptions of the
likelihood function. For future studies in this research direction, the researchers recommend
a nonparametric model to deal with the non-normal outcomes. Also, it is recommended that
research be done with real or raw randomized controlled trial datasets and methodologies on
how to to go about with the analysis using MCACE models when there are possible outliers
and missing observations in the dataset.
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