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Abstract

In this study, we establish some properties of Pell and Pell-Lucas sequences with negative
subcripts by using nth power of a special matrix. Some of the properties for these sequences
are obtained by matrix algebra.

1 Introduction

Pell and Pell-Lucas numbers offer opportunities for experimentation, conjecture, and problem-
solving techniques, connecting the fields of analysis, geometry, trigonometry, and various areas of
discrete mathematics, number theory, graph theory, linear algebra, and combinatorics. Pell and
Pell-Lucas numbers have extracting numerous interesting properties. Therefore, there are many
papers about Pell and Pell-Lucas numbers in the last decade years. As with Pell’s equation, the
name of the Pell numbers stems from Leonhard Euler’s mistaken attribution of the equation
and the numbers derived from it to John Pell. The Pell-Lucas numbers are also named after
Édouard Lucas, who studied sequences defined by recurrences of this type.

Matrix algebra has very important use for the theory of special integer sequences. Hence, in
[5], Williams studied any power of a matrix of the type 2×2. Bergum and Hoggatt investigated
the sums and products for recurring sequences in [3]. Laughlin denoted some combinatorial
features obtained by any power of some matrices in [3, 4]. Then, Belbachir found linear recurrent
sequences and powers of a square matrix in [6]. The authors demonstrated some combinatorial
properties by determinant and trace of any power of a given matrix whose entries are generalized
Fibonacci and Lucas numbers in [10]. Halici, Akyuz studied Fibonacci and Lucas sequences
at negative indices in [8]. Dasdemir investigated Mersenne, Jacobsthal and Jacobsthal-Lucas
sequences with negative indices in [14]. Uygun examined some properties of the Jacobsthal
sequence at negative subcripts in [15].

The Pell numbers ρn are terms of the sequence {1, 2, 5, 12, 29, 70, ...} denoted by the
following recurrence relation

ρn+2 = 2ρn+1 + ρn
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for any natural numbers beginning with the values ρ0 = 0, ρ1 = 1. Similarly, the Pell-Lucas
numbers σn are terms of the sequence {2, 2, 6, 14, 34, 82, 198, ...} denoted by the following
recurrence relation

σn+2 = 2σn+1 + σn

for any natural numbers beginning by the values σ0 = 2, σ1 = 2 in [1]. We can learn more
information about Pell and Pell-Lucas numbers and their generalizations in [1, 2, 7-9, 11, 13,
14]. The relation between these sequences are given as

σn = ρn−1 + ρn+1,

8ρn = σn−1 + σn+1.

Binet formula enables us to state Pell and Pell-Lucas numbers easily. It can be clearly obtained
from the roots r1 = 1+

√
2 and r2 = 1−

√
2 of characteristic equation of the recurrence relation

as the form x2 = x+ 2. The Pell and Pell-Lucas numbers have the Binet formulas as

ρn =
rn1 − rn2
r1 − r2

,

σn = rn1 + rn2 .

Pell and Pell-Lucas numbers at negative indices are defined by using the following equalities:

ρ−n = (−1)n+1ρn, (1)

σ−n = (−1)nσn. (2)

The first Pell numbers at negative indices are ρ−1 = 1, ρ−2 = −2, ρ−3 = 5, ρ−4 = −12,
ρ−5 = 29, ρ−6 = −70. Similarly, the first Pell-Lucas numbers at negative indices are σ−1 = −2,
σ−2 = 6, σ−3 = −14, σ−4 = 34, σ−5 = −82, σ−6 = 198. The relation between the sequences
with negative indices are given as

ρ−(n+1) + ρ−(n−1) = σ−n, (3)

σ−(n+1) + σ−(n−1) = 8ρ−n. (4)

In [5], Williams gave a well-known formula that if A =

[
a b
c d

]
, then

An =

{
xn
1−xn

2
x1−x2

A− xn−1
1 −xn−1

2
x1−x2

I2, x1 ̸= x2
nxn−1A− (n− 1) det(A)xn−2I2, x1 = x2 = x

where x1, x2 are the eigenvalues of the characteristic equation of the matrix A

r2 − (a+ d)r + det(A) = 0.

Laughlin, in [3, 4] gave that if A is a 2× 2 matrix as A =

[
a b
c d

]
, then the nth power of A

is given by

An =

[
xn − dxn−1 bxn−1

cxn−1 xn − axn−1

]
(5)

where xn =
⌊n

2 ⌋∑
i=0

(
n− i
i

)
Tn−2i(−D)i, T =trace of A, D =determinant of A.
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Proposition 1.1. (Catalan’s identity)
The following properties for the Pell and Pell-Lucas numbers at negative indices are valid:

ρ−(n+r)ρ−(n−r) − ρ2−n = (−1)n−r+1,

σ−(n+r)σ−(n−r) − σ2
−n = 8(−1)n−rρ2r .

Proposition 1.2. (Simpson Property)
The properties for the Pell and Pell-Lucas numbers at negative indices are obtained by the

above proposition:

ρ−(n+1)ρ−(n−1) − ρ2−n = (−1)n, (6)

σ−(n+1)σ−(n−1) − σ2
−n = 8(−1)n−1. (7)

Proposition 1.3. (D’Ocagne Property)
The following properties for the Pell and Pell-Lucas numbers at negative indices are valid:

ρ−(m+1)ρ−n − ρ−mρ−(n+1) = (−1)n+1ρ−(m−n), (8)

σ−(m+1)σ−n − σ−mσ−(n+1) = 8(−1)nρ−(m−n), (9)

σ−mρ−(n−1) − σ−(m−1)ρ−n = (−1)nσ−(m−n), (10)

ρ−mσ−(n−1) − ρ−(m−1)σ−n = (−1)n+1σ−(n−m). (11)

Proof. The proofs are similar so we only investigate one of them. For example, for (1), we use
(1, 2) and we have

ρ−mσ−(n−1) − ρ−(m−1)σ−n = (−1)m+n
(
ρmσ(n−1) − ρ(m−1)σn

)
.

By the Binet formulas of the Pell and Pell-Lucas numbers, we have

(−1)m+n
(
ρmσ(n−1) − ρ(m−1)σn

)
=

rm1 − rm2
r1 − r2

(
rn−1
1 + rn−1

2

)
− rm−1

1 − rm−1
2

r1 − r2
(rn1 + rn2 )

=
rm1 rn−1

2 − rm2 rn−1
1 − rm−1

1 rn2 + rn1 r
m−1
2

r1 − r2

=
−rm1 rn2

(
1
r1

− 1
r2

)
− rn1 r

m
2

(
1
r1

− 1
r2

)
r1 − r2

= −rm1 rn2 − rn1 r
m
2

= (−1)n+1
(
rm−n
1 + rm−n

2

)
= (−1)n+1σm−n

Proposition 1.4. (Tagiuri’s identitiy)
Pell and Pell-Lucas numbers at negative indices have the following features:

ρ−(m+k)ρ−(n−k) − ρ−mρ−n = (−1)n+k−1ρ−kρ−(m−n+k),

σ−(m+k)σ−(n−k) − σ−mσ−n = 2
√
2(−1)n+k−1σ−(m−n+k).

Proposition 1.5. (Honsberger’s identity)
Pell and Pell-Lucas numbers at negative indices hold the identities:

ρ−(m+1)ρ−(n+1) + ρ−mρ−n = (−1)m+n(σ−(m+n+2) + σ−(m+n))/8,

σ−(m+1)σ−(n+1) + σ−mσ−n = (−1)m+n(σ−(m+n+2) + σ−(m+n)).
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2 Main Results

Theorem 2.1. Let us consider a special matrix as

P =

[
6 −2
−2 2

]
. (12)

The nth power of P is calculated by using the Pell sequence and the Pell-Lucas sequence at
negative indices as

Pn =


8

n
2

[
ρ−(n+1) ρ−n

ρ−n ρ−(n−1)

]
, if n is even

8
n−1
2

[
σ−(n+1) σ−n

σ−n σ−(n−1)

]
, if n is odd

(13)

Proof. For n = 1, 2 the statement is valid. Let us it is true for all k ≤ n, and n is even. Then
for n = k + 1, we investigate the validity of the claim.

Pn+1 = PnP = 8
n
2

[
ρ−(n+1) ρ−n

ρ−n ρ−(n−1)

] [
6 −2
−2 2

]
.

For the (1,1)-th element of Pn+1, by (1, 2, 4), we get

8
n
2 [6(−1)n+2ρn+1 − 2(−1)n+1ρn] = 8

n
2 [(−1)n+2(6ρn+1 + 2ρn)]

= 8
n
2 [(−1)n+2σn+2]

= 8
n
2 (σ−(n+2)).

The other elements are obtained similarly. Assume that n is odd, then we get

Pn+1 = 8
n−1
2

[
σ−(n+1) σ−n

σ−n σ−(n−1)

] [
6 −2
−2 2

]
.

For the (1,1)-th element of Pn+1, by (1, 2, 5), we get

8
n−1
2 [6(−1)n+1σn+1 − 2(−1)nσn] = 8

n−1
2 [(−1)n+1(6σn+1 + 2σn)]

= 8
n+1
2 [(−1)n+1ρn+2].

The other elements are also obtained similarly.

Theorem 2.2. For positive integers n, the explicit closed form expressions for the Pell and
Pell-Lucas sequences at negative indices are evaluated as

ρ−n =

⌊n−1
2 ⌋∑

i=0

(
n− 1− i

i

)
(−1)i+1 8

n
2
−i

4
, if n is even

σ−n = 2

⌊n−1
2 ⌋∑

i=0

(
n− 1− i

i

)
(−1)i+18

n−1
2

−i, if n is odd.

Proof. By using (3-7), the nth power of P is

Pn =

[
xn − 2xn−1 −2xn−1

−2xn−1 xn − 6xn−1

]
4
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where xn =
⌊n

2 ⌋∑
i=0

(
n− i
i

)
8n−2i(−8)i =

⌊n
2 ⌋∑

i=0

(
n− i
i

)
8n−i(−1)i. We get the result by the

equality of corresponding entries of (1,2)-th. Firstly, if n is an even number,

−2xn−1 = −2

⌊n−1
2 ⌋∑

i=0

(
n− 1− i

i

)
8n−1−i(−1)i = 8

n
2 ρ−n,

and if n is an odd number

−2xn−1 = −2

⌊n−1
2 ⌋∑

i=0

(
n− 1− i

i

)
8n−1−i(−1)i = 8

n−1
2 σ−n.

Note that, for n = 4 we can write ρ−4 =
2∑

i=0

(
3−i
i

)
(−1)i+1 82−i

4 = −16 + 4− 0 = −12.

Theorem 2.3. For n, k positive numbers, we have

ρ−nk = ρ−nσ
k−1
−n

⌊ k−1
2 ⌋∑

i=0

(
k − 1− i

i

)
(−1)i(n+1)σ−2i

−n , if n is even,

σ−nk = ρk−1
−n σ−n8

k−1

⌊ k−1
2 ⌋∑

i=0

(
k − 1− i

i

)
(−1)ni8−iρ−2i

−n , if n, k are odd .

Proof. If n is an even number, the kth power of the matrix Pn is demonstrated by (5) as

Pnk =

[
xk − 8

n
2 ρ−(n−1)xk−1 8

n
2 ρ−nxk−1

8
n
2 ρ−nxk−1 xk − 8

n
2 ρ−(n+1)xk−1

]

where xk =
⌊ k

2⌋∑
i=0

(
k − i
i

)
(8

n
2 σ−n)

k−2i(−(−8)n)i, since by (3), (6) as

det(Pn) = 8n
(
ρ−(n+1)ρ−(n−1) − ρ2−n

)
= (−8)n and tr(Pn) = 8

n
2 (ρ−(n+1) + ρ−(n−1)) = 8

n
2 σ−n.

If we substitute for n → nk, it gives us the nk.th power of P as the following

Pnk = 8
nk
2

[
ρ−(nk+1) ρ−nk

ρ−nk ρ−(nk−1)

]
.

By the equality of corresponding entries of the matrices, the desired result is obtained as

8
n
2 ρ−nxk−1 = 8

n
2 ρ−n

⌊ k−1
2 ⌋∑

i=0

(
k − 1− i

i

)
(8

n
2 σ−n)

k−1−2i(−(−8)n)i

= 8
nk
2 ρ−nk.

If n, k are odd numbers, we have

Pnk =

[
xk − 8

n−1
2 σ−(n−1)xk−1 8

n−1
2 σ−nxk−1

8
n−1
2 σ−nxk−1 xk − 8

n−1
2 σ−(n+1)xk−1

]
5



Sukran Uygun

where xk =
⌊ k

2⌋∑
i=0

(
k − i
i

)
(8

n+1
2 ρ−n)

k−2i((−1)n8n)i because of (5), (7) , det(Pn) = 8n−1
(
σ−(n+1)σ−(n−1) − σ2

−n

)
=

(−1)n−18n and tr(Pn) = 8
n−1
2 (σ−(n+1) + σ−(n−1)) = 8

n+1
2 ρ−n. The result is obtained by the

equality of the matrices as

8
n−1
2 σ−nxk−1 = 8

n−1
2 σ−n

⌊ k−1
2 ⌋∑

i=0

(
k − 1− i

i

)
(8

n+1
2 ρ−n)

k−1−2i(−8)ni

= 8
nk−1

2 σ−nk.

Note that, for n = 2, k = 3 we get

ρ−6 = ρ−2σ
2
−2

1∑
i=0

(
2− i
i

)
(−1)3iσ−2i

−2 = −2(36)(1− 1
36) = −70.

Corollary 2.4. By matrix product, the following identities are established

ρ−(n+1)ρ−m + ρ−nρ−(m−1) = ρ−(n+m), if m,n even,

σ−(n+1)σ−m + σ−nσ−(m−1) = 8ρ−(n+m), if m,n odd,

ρ−(n+1)σ−m + ρ−nσ−(m−1) = σ−(n+m), if n even, m odd,

ρ−(m+1)σ−n + ρ−mσ−(n−1) = σ−(n+m), if m even, n odd.

Proof. If m, n are even numbers, then m+n is also even number. By Theorem 2.3 it is satisfied
that

PmPn = 8
m+n

2

[
ρ−(m+1) ρ−m

ρ−m ρ−(m−1)

] [
ρ−(n+1) ρ−n

ρ−n ρ−(n−1)

]
= Pm+n = 8

m+n
2

[
ρ−(m+n+1) ρ−(m+n)

ρ−(m+n) ρ−(m+n−1)

]
.

By the equality of (2,1)-th elements of matrices, the result is obtained. The other results are
also found by similar way.

Corollary 2.5. By matrix product, we get

σ−(m+1)ρ−n + σ−mρ−(n+1) = σ−(m−n), or

−ρ−mρ−(n−1) + ρ−(m−1)ρ−n = ρ−(m−n), if m,n even,

−σ−mσ−(n−1) + σ−(m−1)σ−n = 8ρ−(m−n), if m,n odd,

−ρ−mσ−(n−1) + ρ−(m−1)σ−n = σ−(m−n), if m even, n odd,

−σ−mρ−(n−1) + σ−(m−1)ρ−n = σ−(m−n), if m odd, n even.

Proof. If m, n are even numbers, then m + n is also even number. By Theorem 2.3, it is
satisfied:

PmP−n = 8
m
2

[
ρ−(m+1) ρ−m

ρ−m ρ−(m−1)

]
.8

n
2

[
ρ−(n−1) −ρ−n

−ρ−n ρ−(n+1)

]
(

1

(−8)n
)

= Pm−n = 8
m−n

2

[
ρ−(m−n+1) ρ−(m−n)

ρ−(m−n) ρ−(m−n−1)

]
.

By the equality of (2,1)-th elements of matrices, the result is obtained. The other results are
also found similarly.
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Note that, for n = 2, m = 3 we get

−σ−(m+1)ρ−n + σ−mρ−(n+1) = σ−(m−n)

−σ−4ρ−2 + σ−3ρ−3 = σ−1

−34(−2) + 5(−14) = −2

Theorem 2.6. Let us assume that n, r, k are positive integers, the following identities are
satisfied:

For k, n, r even,

ρ−(nk+r) = σk
−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
σ−2i
−n (−1)i

[
ρ−r −

k − 2i

k − i

ρ−(r−n)

σ−n

]
.

For k, n, r odd,

ρ−(nk+r) = 8
k−1
2 ρk−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
ρ−2i
−n (−8)−i

[
σ−r +

k − 2i

k − i

ρ−(r−n)

ρ−n

]
.

For n odd, k, r even,

ρ−(nk+r) = 8
k
2 ρk−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
ρ−2i
−n (−8)−i

[
ρ−r +

k − 2i

k − i

σ−(n−r)

8ρ−n

]
.

For n, r even, k odd,

ρ−(nk+r) = σk
−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
σ−2i
−n (−1)i

[
ρ−r −

k − 2i

k − i

ρ−(r−n)

σ−n

]
.

For n, r odd, k even,

σ−(nk+r) = 8
k
2 ρk−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
ρ−2i
−n (−8)−i

[
σ−r +

k − 2i

k − i

ρ−(n−r)

ρ−n

]
.

For k, r odd, n even,

σ−(nk+r) = σk
−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
σ−2i
−n (−1)i

[
σ−r +

k − 2i

k − i

σ−(n−r)

σ−n

]
.

For k, n odd, r even,

σ−(nk+r) = ρk−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
ρ−2i
−n (−8)−i

[
ρ−r −

k − 2i

k − i

σ−(n−r)

8ρ−n

]
.

For k, n even, r odd,

σ−(nk+r) = σk
−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
σ−2i
−n (−1)i

[
σ−r +

k − 2i

k − i

σ−(n−r)

σ−n

]
.

7
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Proof. Assume that k, n, r even integers, then nk + r is even. By using Theorem 2.1 , it is
obtained that

Pnk+r = 8
nk+r

2

[
ρ−(nk+r+1) ρ−(nk+r)

ρ−(nk+r) ρ−(nk+r−1)

]
.

Then by (5), it is obtained that

Pnk+r = (Pn)kP r = 8
r
2

[
yk − 8

n
2 ρ−(n−1)yk−1 8

n
2 ρ−nyk−1

8
n
2 ρ−nyk−1 yk − 8

n
2 ρ−(n+1)yk−1

]
.

[
ρ−(r+1) ρ−r

ρ−r ρ−(r−1)

]

where yk =
⌊ k

2⌋∑
i=0

(
k − i
i

)
(8

n
2 σ−n)

k−2i(−(−8)n)i. By the equality of matrices, it is obtained

that

8
r
2 [
(
yk − 8

n
2 ρ−(n−1)yk−1

)
ρ−r + 8

n
2 ρ−nyk−1ρ−(r−1)] = 8

nk+r
2 ρ−(nk+r).

After some algebraic operation, we get

8
nk
2 ρ−(nk+r) = ρ−r

⌊ k
2⌋∑

i=0

(
k − i
i

)
(8

n
2 σ−n)

k−2i(−(−8)n)i

−8
n
2 ρ−rρ−(n−1)

⌊ k−1
2 ⌋∑

i=0

(
k − 1− i

i

)
(8

n
2 σ−n)

k−1−2i(−(−8)n)i

+8
n
2 ρ−nρ−(r−1)

⌊ k−1
2 ⌋∑

i=0

(
k − 1− i

i

)
(8

n
2 σ−n)

k−1−2i(−(−8)n)i.

= 8
nk
2 ρ−rσ

k
−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
σ−2i
−n (−1)ni+i

+8
nk
2 σk−1

−n ρ−(r−n)

⌊ k−1
2 ⌋∑

i=0

(
k − 1− i

i

)
σ−2i
−n (−1)ni+i+n−1

= 8
nk
2 σk

−n

⌊ k
2⌋∑

i=0

(
k − i
i

)
σ−2i
−n (−1)i

[
ρ−r −

k − 2i

k − i

ρ−(r−n)

σ−n

]
.

= ρ−r

⌊ k
2⌋∑

i=0

(
k − i
i

)
(8

n
2 σ−n)

k−2i(−(−8)n)i

+

⌊ k−1
2 ⌋∑

i=0

(
k − 1− i

i

)(
(8

n
2 σ−n)

k−1−2i(−(−8)n)i8
n
2

.(−ρ−rρ−(n−1) + ρ−nρ−(r−1))

)
.

For the other proofs, a similar way is used.
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