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Abstract

In this paper, we construct integer programming formulations for the paired, twin paired,
paired restrained, and outer paired dominating set problems.

Let G be a multigraph. A set S ⊆ V (G) is called a paired dominating set (resp., an
outer paired dominating set) if it is a dominating set in G and ⟨S⟩ (resp., ⟨Sc⟩) contains
at least one perfect matching. The paired domination number γp(G) (resp., outer paired
domination number γop(G)) is defined to be the minimum cardinality of a paired (resp.,
an outer paired) dominating set S in G. Moreover, a set S ⊆ V (G) is called a twin paired
dominating set (resp., paired restrained dominating set) in G if S is a paired dominating set
and ⟨Sc⟩ contains a perfect matching (resp., contains no isolated vertex). The twin paired
domination number γtp(G) (resp., paired restrained domination number γpr(G)) is defined
to be the minimum cardinality of a twin paired (resp., paired restrained) dominating set S
in G.

1 Introduction and Preliminaries

Mathematical optimization is a branch of applied mathematics which is useful in different fields
like engineering, mechanics, networks, manufacturing, transportation, finance, etc. Optimiza-
tion comes from the same root as “optimal” which means best. But “best” can vary. If you’re
running a business, you would want to maximize your profit and minimize the cost. Both
maximizing and minimizing are types of optimization problems.

Graph theory is a field of mathematics that many researchers have taken interest of, because
of its diverse applications such as solving puzzles, describing physical network system, its use
to engineering, computer science, and many more.

The notion of domination is one of the fundamental concept of graph theory that is exten-
sively studied by many mathematicians. The concept of domination has historical roots as early
as 1850s, when European enthusiast studied the problem “dominating queens” as described in
[17]. A century later, mathematical study of dominating sets began in earnest, and since then,
dominating sets have been used for different applications.
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L. L. Butanas, M. Labendia, and K. Orge

We will discuss some concepts mentioned in [1], [5], [6], [7], [8], [10] [13], and [17] that is
needed in this study. A graph G = (V (G), E(G)) is a pair consisting of a finite nonempty
set V (G) of objects called vertices together with a (possible empty) set E(G) of unordered
pairs of distinct vertices of G called edges. The set V (G) and E(G) are called vertex set
and edge set, respectively. The order of a graph G is the number of vertices in G and is
denoted by |V (G)|, and its size is the number of edges in G and is denoted by |E(G)|. A
multigraph is a triple (V (G), E(G), fG) consisting of two disjoint sets V (G) and E(G), and a
map fG : E(G) −→ V (G) ∪ [V (G)]2, where [V (G)]2 := {{u, v} : u, v ∈ V (G), u ̸= v}, assigning
to every edge either one or two vertices, its ends. From now onward, we let G be a multigraph.
Let vi and vj be vertices in G. If vi and vj are joined by an edge e in G, then vi and vj are
said to be adjacent. Moreover, vi and vj are said to be incident with e, and e is said to be
incident with vi and vj . In this case, we write e ∼ vivj where vi, vj ∈ V (G). Two edges e1
and e2 of G are adjacent edges if e1 and e2 are incident to a common vertex in G. Two edges
in G are independent if they are not adjacent in G. If two or more edges join in the same
pair of distinct vertices, then these edges are called parallel edges or multiple edges. If an edge
e joins a vertex v to itself, then e is called a loop. Observe that a graph is thus essentially
the same as a multigraph without loops or multiple edges. The number of edges incident to
a vertex vi of G is called the degree of vi and is denoted by degG(vi). If degG(vi) = 0, then
vi is called an isolated vertex. The smallest and the largest degree among the vertices of G
is denoted by δ(G) or simply δ, and ∆(G) or simply ∆, respectively. For vertex v of G, the
open neighborhood NG(v) of the vertex v consists of the set of vertices adjacent to v, that is,
NG(v) = {w ∈ V (G) : vw ∈ E(G)}, and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}.
For a set S ⊆ V (G), the open neighborhood NG(S) is defined to be ∪v∈SNG(v), and the closed
neighborhood of S is NG[S] = NG(S)∪S. The multigraph whose vertex set is S and whose edge
set comprises exactly the edges in G which join vertices in S is termed an induced subgraph of
G and is denoted by ⟨S⟩. A set of pairwise independent edges in G is called a matching in G. If
M is a matching in G with the property that every vertex of G is incident with an edge of M ,
then M is a perfect matching in G. A matching M is said to be maximal if M is not properly
contained in any other matching. Formally, M ⊈ M ′ for any matching M ′ of G with M ′ ̸= M .
Intuitively, this is equivalent to saying that a matching is maximal if we cannot add any edge
to the existing set such that the resulting set is still a matching. A matching M is said to be
maximum if for any other matching M ′, |M | ≥ |M ′|. |M | is the maximum sized matching.

In 1998, Haynes and Slater [16] introduced a domination parameter called paired domina-
tion. In 2015, Wang et al. [2] introduced another domination parameter called outer paired
domination. A set S ⊆ V (G) is called a paired dominating set (resp., an outer paired dominating
set) if it is a dominating set in G and ⟨S⟩ (resp., ⟨Sc⟩) contains at least one perfect matching.
The paired domination number γp(G) (resp., outer paired domination number γop(G)) is defined
to be the minimum cardinality of a paired (resp., an outer paired) dominating set S in G. If
a paired (resp., an outer paired) dominating set S has |S| = γp(G) (resp., |S| = γop(G)), we
say that S is a minimum paired dominating set (resp., minimum outer paired dominating set).
Haynes and Slater suggests that the paired domination can be used to model situation in which
the dominating set is a set of guards and each guard is assigned to another adjacent guard and
they are designated as backups for each other. Also, the outer paired domination can be used
to model situation in which each nodes v ∈ V (G) are classified into two roles: job-tracker and
task-tracker, where each task-tracker is monitored by a job-tracker. And when a task-tracker
failed to do its task, the job-tracker then transfers the task to its backup task tracker.

In 2020, Mahadevan and Suganthi [9] defined a new variant of paired domination called
twin paired domination. The following year, Hung and Chiu [14] introduced another variant of
paired domination called the paired restrained domination. A set S ⊆ V (G) is called a twin

48



INLP Formulation

paired dominating set (resp., paired restrained dominating set) in G if S is a paired dominating
set and ⟨Sc⟩ contains a perfect matching (resp., contains no isolated vertex). The twin paired
domination number γtp(G) (resp., paired restrained domination number γpr(G)) is defined to be
the minimum cardinality of a twin paired (resp., paired restrained) dominating set S in G. If a
twin paired (resp., paired restrained) dominating set S has |S| = γtp(G) (resp. |S| = γpr(G)),
we say that S is a minimum twin paired dominating set (resp., minimum paired restrained
dominating set). The paired restrained domination has a possible application in the system
of prisoners and guards. Each nodes in V (G) represents the position of a guard or prisoner.
To maintain safety and support, each guard’s location is observed by exactly another guard’s
location, and each prisoner’s location is monitored by at least a guard’s location to maintain
security, and each prisoner’s location is seen by another prisoner’s location to protect the rights
of prisoners.

2 INLP Formulation

2.1 Paired Dominating Set (PDS) Problem

We will now present an INLP formulation for the PDS problem.
For a multigraphG of order n ≥ 2, without loops and isolated vertices, let V (G) := {v1, v2, . . . , vn}
and E(G) := {e1, e2, . . . , em}. Let S ⊆ V (G) and M ⊆ E(G), and for all vi ∈ V (G), let
xi ∈ {0, 1} be a decision variable defined by

xi :=

{
1, if vi ∈ S,
0, otherwise.

Also, for all ek ∈ E(G), let yk ∈ {0, 1} be another decision variable defined by

yk :=

{
1, if ek ∈ M,
0, otherwise.

An INLP formulation for the PDS problem can be given as follows:

min
n∑

i=1

xi (P1)

subject to

Ax ≥ 1⃗n (P2)∑
(j, k) :

vivj ∼ ek ∈ E(G)

xixjyk = xi ∀i ∈ {1, 2, . . . , n} (P3)

x ∈ {0, 1}n (P4)

y ∈ {0, 1}m (P5)

where A := [aij ] is an n× n matrix defined by

aij :=

{
1, if vi and vj are adjacent in G,
0, otherwise.

x =

x1...
xn

, y =

 y1
...
ym

, and 1⃗n =

1...
1

 with n rows.
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Theorem 2.1.

(i) If S is a paired dominating set in G and M is a perfect matching in ⟨S⟩, then (x,y) is a
solution to the INLP formulation for the PDS problem.

(ii) If (x,y) is a solution to the INLP formulation for the PDS problem, then S is a paired
dominating set in G and M contains a perfect matching in ⟨S⟩.

Moreover, the optimal solution value of the INLP formulation for the PDS problem is equal to
the paired domination number of G. Furthermore, M is a perfect matching in ⟨S⟩ if and only

if
m∑
k=1

yk is minimized for y ∈ {0, 1}m in a solution (x,y).

Proof. (i) Let S be a paired dominating set in G and let M be a perfect matching in ⟨S⟩. Let
i ∈ {1, 2, . . . , n} with its corresponding vertex vi ∈ V (G), and let k ∈ {1, 2, . . . ,m} with its
corresponding edge ek ∈ E(G). Note that constraints (P4) and (P5) are trivially satisfied by
the definition of decision variables xi’s and yk’s. Let vi ∈ v(G). Consider the following cases.
Case 1. vi ∈ V (G) \ S.
Then xi = 0. Since S is a paired-dominating set in G, there exists vj ∈ S such that vi and vj

are adjacent in G. Thus, xj = 1 = aij so that aijxj = 1. And so,
n∑

j=1
aijxj ≥ 1. Also,

∑
(j, k) :

vivj ∼ ek ∈ E(G)

xixjyk = 0 = xi.

Thus, constraints (P2) and (P3) are satisfied.
Case 2. vi ∈ S.
Since M is a perfect matching in ⟨S⟩, there exists vj ∈ S and ek ∈ M such that ek ∼ vivj . Thus,

xj = 1 = aij so that aijxj = 1. And so,
n∑

j=1
aijxj ≥ 1. Hence, constraint (P2) is satisfied. Next,

we show that constraint (P3) is also satisfied. Since ek ∈ M and vi, vj ∈ S, xi = xj = yk = 1.
And so xixjyk = 1. We will show that xixjyk is the only term in constraint (P3) in which
xixjyk = 1. Let (j∗, k∗) ̸= (j, k) with vivj∗ ∼ ek∗ . Consider the following subcases.
Subcase 1. j∗ ̸= j.
Then ek∗ is adjacent to ek. Since ek ∈ M , ek∗ /∈ M so that y∗k = 0. Hence, xixj∗yk∗ = 0.
Subcase 2. j∗ = j and k∗ ̸= k.
Then ek∗ ∼ vivj , ek∗ ̸= ek, and ek∗ is adjacent to ek. Since ek ∈ M , ek∗ /∈ M so that y∗k = 0.
Hence, xixjyk∗ = 0. And so, ∑

(j, k) :
vivj ∼ ek ∈ E(G)

xixjyk = xixjyk = 1 = xi.

Thus, in either case, constraints (P2) and (P3) are satisfied.
Since constraints (P2), (P3), (P4), and (P5) are satisfied, the pair (x,y) is a solution to the

INLP formulation for the PDS problem.

(ii) Suppose that the pair (x,y) is a solution to the INLP formulation for the PDS problem.
Then, (P2), (P3), (P4), and (P5) are satisfied. Let S := {vi ∈ V (G) : xi = 1} and M = {ek ∈
E(G) : yk = 1}. Let vi ∈ V (G). By constraint (P2),

Ax ≥ 1⃗,

50



INLP Formulation 2.1 Paired Dominating Set (PDS) Problem

In particular, corresponding to the ith row, we have

n∑
j=1

aijxj ≥ 1.

Hence, there exists j ∈ {1, 2, . . . , n} such that aijxj = 1 so that aij = 1 and xj = 1. Thus, vj
and vi are adjacent in G where vj ∈ S, so that S is a dominating set in G. In fact, S is a total
dominating set.

Since we have shown that for vi, vj ∈ S, vivj ∈ E(G), we have |S| ≥ 2 and ⟨S⟩ contains a
matching. Let vi ∈ S. Then xi = 1. By constraint (P3),∑

(j, k) :
vivj ∼ ek ∈ E(G)

xjyk =
∑
(j, k) :

vivj ∼ ek ∈ E(G)

xixjyk = xi = 1.

Hence, there exists a unique (j, k) ∈ {1, . . . , n} × {1, . . . ,m} such that ek ∼ vivj ∈ E(G) and
xjyk = 1. Thus, xj = yk = 1 so that vj ∈ S and ek ∈ M . This guarantees that there exists
ek ∼ vivj ∈ M with vi, vj ∈ S. Define M ′ = {ek ∈ M : ek ∼ vivj for some vi, vj ∈ S}. We are
left to show that M ′ is a perfect matching in ⟨S⟩ so that S is a paired dominating set in G.
Let ek1 ∈ M ′ so that ek1 ∼ vi1vj1 for some vi1 , vj1 ∈ S. Then, xi1 = xj1 = yk1 = 1. To show
that M ′ is a matching, suppose, on the contrary, that there exists ek′ ∈ M ′, ek′ ̸= ek1 such that
ek′ is adjacent to ek1 . Then yk′ = 1. Without loss of generality, assume that vi1 is incident to
ek′ .
Case 1. Suppose that ek′ ∼ vi1vl with vl ∈ S, vl ̸= vj1 . Then, xl = yk′ = 1 so that xlyk′ = 1.
Hence, xi1xj1yk1 + xi1xlyk′ = 1 + 1 = 2, a contradiction to constraint (P3).
Case 2. Suppose that ek′ ∼ vi1vj1 . Then, xi1 = xj1 = yk′ = 1. Hence, xi1xj1yk1 + xi1xj1yk′ =
1 + 1 = 2, a contradiction to constraint (P3).
Hence, M ′ is a matching in ⟨S⟩. M ′ is also a perfect matching in ⟨S⟩ since we have already
shown from above that for each vi ∈ S, there exists ek ∈ M ′ such that ek ∼ vivj for some
vj ∈ S. And so, S is a paired dominating set in G and M ′ ⊆ M is a perfect matching in ⟨S⟩.

For the next statement of the theorem, let S be a minimum paired dominating set in G and
M be a perfect matching in ⟨S⟩. Then γp(G) = |S| and the pair (x,y) is a feasible solution to
the objective function (P1). Thus,

n∑
i=1

xi = |S| = γp(G)

so that

min

n∑
i=1

xi ≤
n∑

i=1

xi = γp(G).

Conversely, let S = {vi ∈ V (G) : xi = 1} such that |S| is an optimal solution value to the
objective function (P1). Then S is a paired doiminating set in G. Since the paired domination
number of G is the minimum cardinality of paired dominating set in G, we have

γp(G) ≤ |S| = min

n∑
i=1

xi.

Accordingly, the optimal solution value of the INLP formulation for the PDS problem is equal
to the paired domination number of G.
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Finally, for the final statement of the theorem, suppose that M is a perfect matching in ⟨S⟩,
S is a paired dominating set in G. Then |S| = 2|M |. By (i), (x,y) is a solution to the INLP

formulation for the PDS problem. Suppose that for y ∈ {0, 1}m,
m∑
k=1

yk is not minimized. Then

there exists y∗ = (y∗1, . . . , y
∗
m) ∈ {0, 1}m such that (x,y∗) is a solution to the INLP formulation

for the PDS problem, and
m∑
k=1

y∗k <
m∑
k=1

yk. By (ii), the set M∗ = {ek ∈ E(G) : y∗k = 1} contains

a perfect matching M ′ = {ek ∈ M∗ : ek ∼ vivj for some vi, vj ∈ S} in ⟨S⟩. Thus,

|M ′| ≤ |M∗| =
m∑
k=1

y∗k <

m∑
k=1

yk = |M |.

Since M ′ is perfect matching in ⟨S⟩, |S| = 2|M ′|. Hence, we now have

|S| = 2|M ′| < 2|M | = |S|,

a contradiction. Thus, for y ∈ {0, 1}m,
m∑
k=1

yk is minimized.

Conversely, let (x,y) be a solution to the INLP formulation for the PDS problem. Assume

that for y ∈ {0, 1}m,
m∑
k=1

yk is minimized. Then
m∑
k=1

yk ≤
m∑
k=1

y∗k for all y∗ = (y∗1, . . . , y
∗
m) ∈

{0, 1}m where (x,y∗) is a solution to the INLP formulation for the PDS problem. By (ii), S =
{vi ∈ V (G) : xi = 1} is a paired dominating set in G and M = {ek ∈ E(G) : yk = 1} contains
a perfect matching M ′ = {ek ∈ M : ek ∼ vivj for some vi, vj ∈ S} in ⟨S⟩. Hence, by (i), (x,y′)
is a solution to the INLP formulation for the PDS problem, where y′ = (y′1, . . . , y

′
m) ∈ {0, 1}m

is the corresponding vector of M ′. Thus,

|M | =
m∑
k=1

yk ≤
m∑
k=1

y′k = |M ′|.

Since M ′ ⊆ M , |M ′| ≤ |M |. Hence, we have |M | = |M ′| so that M = M ′. Therefore, M is a
perfect matching in ⟨S⟩.

2.2 Twin Paired Dominating Set (TPDS) Problem

Theorem 2.2. Let G be a multigraph. Then G contains a twin paired dominating set S ̸=
V (G) if and only if G has a perfect matching M and there exists e ∼ uv ∈ M such that
|NG(u)|, |NG(v)| ≥ 2.

Proof. Assume that G contains a twin paired dominating set S ̸= V (G). Then S is a dominating
set such that ⟨S⟩ contains a perfect matching M ′ and ⟨Sc⟩ contains a perfect matching M ′′.
Let M := M ′ ∪M ′′. Since S ∩ Sc = ∅, M ′ ∩M ′′ = ∅. Hence, M is a set of independent edges
with vertex set S ∪ Sc = V (G). Thus, M is a perfect matching in G. Let e ∈ M ′′ ⊂ M . Then,
e ∼ uv for some u, v ∈ Sc. Also, since S is a dominating set, there exist u′, v′ ∈ S such that u′

and u are adjacent in G, and v′ and v are adjacent in G. Thus, v, u′ ∈ NG(u) and u, v′ ∈ NG(v)
so that |NG(u)|, |NG(v)| ≥ 2.

Conversely, suppose that G has a perfect matching M and there exists e ∼ uv ∈ M such
that |NG(u)|, |NG(v)| ≥ 2. Let S := V (G) \ {u, v}. Then S ̸= V (G).
Claim 1: S is a dominating set in G and S ̸= ∅.

Let a ∈ {u, v}. Without loss of generality, assume that a = u. Since |NG(u)| ≥ 2, there
exists v′ ∈ V (G), v′ ̸= v, such that v′ and u are adjacent in G. Also, v′ ̸= u since we do not
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INLP Formulation 2.2 Twin Paired Dominating Set (TPDS) Problem

allow loops here. Thus, v′ /∈ {u, v} so that v′ ∈ S. Hence, S is a dominating set in G and
S ̸= ∅.
Claim 2: The set M \ {e} is a perfect matching in ⟨S⟩.

Since M \ {e} ⊂ M and M is a perfect matching in G, it follows that M \ {e} is a set of
independent edges so that M \ {e} is a matching in G. Now, since M is a perfect matching in
G, for all v∗ ∈ V (G), there exist unique u∗ ∈ V (G) and ek∗ ∈ M such that ek∗ ∼ u∗v∗. Let
v′ ∈ S. Then, there exist unique u′ ∈ V (G) and ek′ ∈ M such that ek′ ∼ u′v′. Since e ∼ uv and
v′ /∈ {u, v}, this implies that ek′ ̸= e so that ek′ ∈ M \ {e}. Furthermore, since M is a perfect
matching in G, ek′ and e are independent edges so that u′ /∈ {u, v}. Thus, ek′ ∼ u′v′ ∈ M \ {e}
with u′, v′ ∈ S. And so, M \ {e} is a perfect matching in ⟨S⟩.
Also, since e ∼ uv, it follows that {e} is a perfect matching in ⟨{u, v}⟩ = ⟨Sc⟩. Therefore, S is
a twin paired dominating set in G.

We will now present an INLP formulation for the TPDS problem.
For a multigraphG of order n ≥ 2, without loops and isolated vertices, let V (G) := {v1, v2, . . . , vn}
and E(G) := {e1, e2, . . . , em}. Let S ⊆ V (G), M ⊆ E(G), M ′ ⊆ E(G), and for all vi ∈ V (G),
let xi ∈ {0, 1} be a decision variable defined by

xi :=

{
1, if vi ∈ S,
0, otherwise.

Also, for all ek ∈ E(G), let yk ∈ {0, 1} be another decision variable defined by

yk :=

{
1, if ek ∈ M,
0, otherwise.

Furthermore, for all ek ∈ E(G), let zk ∈ {0, 1} be another decision variable defined by

zk :=

{
1, if ek ∈ M ′,
0, otherwise.

An INLP formulation for the TPDS problem can be given as follows:

min
n∑

i=1

xi (TP1)

subject to

Ax ≥ 1⃗n (TP2)∑
(j, k) :

vivj ∼ ek ∈ E(G)

xixjyk = xi ∀i ∈ {1, 2, . . . , n} (TP3)

∑
(j, k) :

vivj ∼ ek ∈ E(G)

(1− xi)(1− xj)zk = 1− xi ∀i ∈ {1, 2, . . . , n} (TP4)

x ∈ {0, 1}n (TP5)

y ∈ {0, 1}m (TP6)

z ∈ {0, 1}m (TP7)

where A := [aij ] is an n× n matrix defined by

aij :=

{
1, if vi and vj are adjacent in G,
0, otherwise.
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x =

x1...
xn

, y =

 y1
...
ym

, z =

 z1
...
zm

, and 1⃗n =

1...
1

 with n rows.

Theorem 2.3.

(i) If S is a twin paired dominating set in G, M is a perfect matching in ⟨S⟩, and M ′ is
a perfect matching in ⟨Sc⟩, then (x,y, z) is a solution to the INLP formulation for the
TPDS problem.

(ii) If (x,y, z) is a solution to the INLP formulation for the TPDS problem, then S is a twin
paired dominating set in G, M contains a perfect matching in ⟨S⟩, and M ′ contains a
perfect matching in ⟨Sc⟩.

Moreover, the optimal solution value of the INLP formulation for the TPDS problem is equal to
the twin paired domination number of G. Furthermore, M is a perfect matching in ⟨S⟩ and M ′

is a perfect matching in ⟨Sc⟩ if and only if
m∑
k=1

yk and
m∑
k=1

zk are minimized for y, z ∈ {0, 1}m

in a solution (x,y, z).

Proof. (i) Let S be a twin paired dominating set in G, M be a perfect matching in ⟨S⟩, and M ′

be a perfect matching in ⟨Sc⟩. Let i ∈ {1, 2, . . . , n} with its corresponding vertex vi ∈ V (G), and
let k ∈ {1, 2, . . . ,m} with its corresponding edge ek ∈ E(G). The proof is similar to theorem 2.1
to show that constraints (TP2), (TP3), (TP5), and (TP6) are satisfied. Note that constraint
(TP7) is trivially satisfied by the definition of decision variable zk’s. Hence, we are left to show
that constraint (TP4) must be satisfied. Let vi ∈ V (G). Consider the following cases.
Case 1:vi ∈ S.
Then xi = 1. Hence, ∑

(j, k) :
vivj ∼ ek ∈ E(G)

(1− xi)(1− xj)zk = 0 = 1− xi.

Thus, constraint (TP4) is satisfied.
Case 2: vi /∈ S.
Since M ′ is a perfect matching in ⟨Sc⟩, there exists vj ∈ Sc and ek ∈ M ′ such that ek ∼ vivj .
Thus, xi = xj = 0 and zk = 1. And so (1−xi)(1−xj)zk = 1. We will show that (1−xi)(1−xj)zk
is the only term in constraint (TP4) in which (1− xi)(1− xj)zk = 1. Let (j∗, k∗) ̸= (j, k) with
vivj∗ ∼ ek∗ . Consider the following subcases.
Subcase 1: j∗ ̸= j.
Then ek∗ is adjacent to ek. Since ek ∈ M ′, ek∗ /∈ M ′ so that zk∗ = 0. Hence, (1−xi)(1−xj∗)zk∗ =
0.
Subcase 2: j∗ = j and k∗ ̸= k.
Then ek∗ ∼ vivj , ek∗ ̸= ek, and ek∗ is adjacent to ek. Since ek ∈ M ′, ek∗ /∈ M ′ so that z∗k = 0.
Hence, (1− xi)(1− xj)zk∗ = 0. And so,∑

(j, k) :
vivj ∼ ek ∈ E(G)

(1− xi)(1− xj)zk = (1− xi)(1− xj)zk = 1 = 1− xi.

Thus, in either case, (TP4) is satisfied.
Since constraints (TP2), (TP3), (TP4), (TP5), (TP6), and (TP7) are satisfied, the triple

(x,y, z) is a solution to the INLP formulation for the TPDS problem.

54



INLP Formulation 2.2 Twin Paired Dominating Set (TPDS) Problem

(ii) Suppose that the triple (x,y, z) is a solution to the INLP formulation for the TPDS problem.
Then, (TP2), (TP3), (TP4), (TP5), (TP6), and (TP7) are satisfied. Let S := {vi ∈ V (G) :
xi = 1}, M = {ek ∈ E(G) : yk = 1}, and M ′ = {ek ∈ E(G) : zk = 1}. The proof is similar
to theorem 2.1 for showing that S is a paired-dominating set in G and M contains a perfect
matching in ⟨S⟩. Let vi ∈ Sc. Then xi = 0. By constraint (TP4),∑

(j, k) :
vivj ∼ ek ∈ E(G)

(1− xj)zk = 1

Hence, there exists unique (j, k) ∈ {1, . . . , n} × {1, . . . ,m} such that ek ∼ vivj ∈ E(G) and
(1−xj)zk = 1. Thus, xj = 0 and zk = 1 so that vj ∈ Sc and ek ∈ M ′. This guarantees that there
exists ek ∼ vivj ∈ M ′ with vi, vj ∈ Sc. Define M∗ = {ek ∈ M ′ : ek ∼ vivj for some vi, vj ∈ Sc}.
We are left to show that M∗ is a perfect matching in ⟨Sc⟩ so that S is a twin paired dominating
set in G.
Let ek1 ∈ M∗ so that ek1 ∼ vi1vj1 for some vi1 , vj1 ∈ Sc. Then, xi1 = xj1 = 0 and zk1 = 1. To
show that M∗ is a matching, suppose, on the contrary, that there exists ek′ ∈ M∗, ek′ ̸= ek1
such that ek′ is adjacent to ek1 . Then, zk′ = 1. Without loss of generality, assume that vi1 is
incident to ek′ .
Case 1: Suppose that ek′ = vi1vl with vl ∈ Sc, vl ̸= vj1 . Then, xl = 0 so that (1− xl)zk′ = 1.
Hence, (1 − xi1)(1 − xj1)zk1 + (1 − xi1)(1 − xl)zk′ = 1 + 1 = 2, a contradiction to constraint
(TP4).
Case 2: Suppose that ek′ ∼ vi1vj1 . Then, xi1 = xj1 = 0. Hence, (1 − xi1)(1 − xj1)zk1 + (1 −
xi1)(1− xj1)zk′ = 1 + 1 = 2, a contradiction to constraint (TP4).
Hence, M∗ is a matching in ⟨Sc⟩. M∗ is also a perfect matching in ⟨Sc⟩ since we have already
shown from above that for each vi ∈ Sc, there exists ek ∈ M∗ such that ek ∼ vivj for some
vj ∈ Sc. And so, S is a twin paired dominating set in G, M contains a perfect matching in ⟨S⟩,
and M∗ ⊆ M ′ is a perfect matching in ⟨Sc⟩.

For the next statement of the theorem, let S be a minimum twin paired dominating set in
G, M be a perfect matching in ⟨S⟩, and M ′ be a perfect matching in ⟨Sc⟩. Then γtp(G) = |S|
and the triple (x,y, z) is a feasible solution to the objective function (TP1). Thus,

n∑
i=1

xi = |S| = γtp(G)

so that

min
n∑

i=1

xi ≤
n∑

i=1

xi = γtp(G).

Conversely, let S = {vi ∈ V (G) : xi = 1} such that |S| is an optimal solution value to the
objective function (TP1). Then S is a twin paired doiminating set in G. Since the twin paired
domination number of G is the minimum cardinality of twin paired dominating set in G, we
have

γtp(G) ≤ |S| = min

n∑
i=1

xi.

Accordingly, the optimal solution value of the INLP formulation for the TPDS problem is equal
to the twin paired domination number of G.

Finally, for the last statement of the theorem, suppose that M is a perfect matching in
⟨S⟩ and M ′ is a perfect matching in ⟨Sc⟩, where S is a twin paired dominating set in G. Then
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|S| = 2|M | and |Sc| = 2|M ′|. By (i), (x,y, z) is a solution to the INLP formulation of the TPDS

problem. Suppose that for y, z ∈ {0, 1}m,
m∑
k=1

yk is not minimized or
m∑
k=1

zk is not minimized.

Case 1:
m∑
k=1

yk is not minimized.

Then there exists y∗ = (y∗1, . . . , y
∗
m) ∈ {0, 1}m such that (x,y∗, z) is a solution to the INLP

formulation for the TPDS problem, and
m∑
k=1

y∗k <
m∑
k=1

yk. By (ii), the set M1∗ = {ek ∈ E(G) :

y∗k = 1} contains a perfect matching M1 = {ek ∈ M1∗ : ek ∼ vivj for some vi, vj ∈ S} in ⟨S⟩.
Thus,

|M1| ≤ |M1∗| =
m∑
k=1

y∗k <
m∑
k=1

yk = |M |.

Since M1 is perfect matching in ⟨S⟩, |S| = 2|M1|. Hence, we now have

|S| = 2|M1| < 2|M | = |S|,

a contradiction. Thus, for y ∈ {0, 1}m,
m∑
k=1

yk is minimized.

Case 2:
m∑
k=1

zk is not minimized.

Then there exists z∗ = (z∗1 , . . . , z
∗
m) ∈ {0, 1}m such that (x,y, z∗) is a solution to the INLP

formulation for the TPDS problem, and
m∑
k=1

z∗k <
m∑
k=1

zk. By (ii), the set M2∗ = {ek ∈ E(G) :

z∗k = 1} contains a perfect matching M2 = {ek ∈ M2∗ : ek ∼ vivj for some vi, vj ∈ Sc} in ⟨Sc⟩.
Thus,

|M2| ≤ |M2∗| =
m∑
k=1

z∗k <
m∑
k=1

zk = |M ′|.

Since M2 is perfect matching in ⟨Sc⟩, |Sc| = 2|M2|. Hence, we now have

|Sc| = 2|M2| < 2|M ′| = |Sc|,

a contradiction. Thus, for z ∈ {0, 1}m,
m∑
k=1

zk is minimized.

Therefore, for y, z ∈ {0, 1}m,
m∑
k=1

yk and
m∑
k=1

zk are minimized.

Conversely, let (x,y, z) be a solution to the INLP formulation for the TPDS problem.

Assume that for y, z ∈ {0, 1}m,
m∑
k=1

yk and
m∑
k=1

zk are minimized. Then
m∑
k=1

yk ≤
m∑
k=1

y∗k and

m∑
k=1

zk ≤
m∑
k=1

z∗k for all y
∗, z∗ ∈ {0, 1}m, y∗ = (y∗1, . . . , y

∗
m) and z∗ = (z∗1 , . . . , z

∗
m), where (x,y∗, z∗)

is a solution to the INLP formulation for the TPDS problem. By (ii), S = {vi ∈ V (G) : xi = 1}
is a twin paired dominating set in G, M = {ek ∈ E(G) : yk = 1} contains a perfect matching
M1 = {ek ∈ M1 : ek ∼ vivj for some vi, vj ∈ S} in ⟨S⟩, and M ′ = {ek ∈ E(G) : zk = 1}
contains a perfect matching M2 = {ek ∈ M2 : ek ∼ vivj for some vi, vj ∈ Sc} in ⟨Sc⟩. Hence,
by (i), (x,y′, z′) is a solution to the INLP formulation of the TPDS problem, where y′ =
(y′1, . . . , y

′
m) ∈ {0, 1}m and z′ = (z′1, . . . , z

′
m) ∈ {0, 1}m are the corresponding vectors of M1 and

M2 respectively. Thus,

|M | =
m∑
k=1

yk ≤
m∑
k=1

y′k = |M1|

56



INLP Formulation 2.3 Paired Restrained Dominating Set (PRDS) Problem

and

|M ′| =
m∑
k=1

zk ≤
m∑
k=1

z′k = |M2|.

Since M1 ⊆ M and M2 ⊆ M ′, |M1| ≤ |M | and |M2| ≤ |M ′|. Hence, we have |M | = |M1| and
|M ′| = |M2| so that M = M1 and M ′ = M2. Therefore, M is a perfect matching in ⟨S⟩ and
M ′ is a perfect matching in ⟨Sc⟩.

2.3 Paired Restrained Dominating Set (PRDS) Problem

For the next result, we denote by SM the set of vertices from M ⊆ E(G).

Theorem 2.4. Let G be a multigraph. Then G contains a paired restrained dominating set
S ̸= V (G) if and only if G contains a matching M such that for all w /∈ SM , 0 ̸= |NG(w)∩SM | <
|NG(w)|.

Proof. Assume that G contains a paired restrained dominating set S ̸= V (G). Then S is a
dominating set, ⟨S⟩ contains a perfect matching M , and for each a /∈ S, there exists b /∈ S such
that a and b are adjacent in G. Thus, G contains a matching M and S is the set of vertices
from M so that S = SM . Let w /∈ SM . Since SM is a dominating set, there exists u ∈ SM such
that u and w are adjacent in G. Thus, u ∈ NG(w) ∩ SM so that |NG(w) ∩ SM | ≠ 0. Note that
NG(w) ∩ SM ⊆ NG(w). Since SM is a paired restrained-dominating set, and w /∈ Sm, there
exists v /∈ SM such that v and w are adjacent in G. Thus, v ∈ NG(w) and v /∈ NG(w) ∩ SM so
that NG(w) ∩ SM ⊂ NG(w). Therefore, 0 ̸= |NG(w) ∩ SM | < |NG(w)|.

Conversely, suppose that G contains a matching M such that for all w /∈ SM , 0 ̸= |NG(w)∩
SM | < |NG(w)|. Thus, SM ̸= V (G) since |NG(w) ∩ SM | < |NG(w)| for all w /∈ SM . Let
S := SM . Then S ̸= V (G) and M is a perfect matching in ⟨S⟩. Let w′ ∈ V (G) \ S. By
assumption, 0 ̸= |NG(w

′) ∩ S| < |NG(w
′)|. Hence, there exist u ∈ S and v /∈ S such that u and

w′ are adjacent in G, and v and w′ are also adjacent in G. Therefore, S is a dominating set
and ⟨Sc⟩ contains no isolated vertex. Since M is a perfect matching in ⟨S⟩, it follows that S is
a paired restrained dominating set in G.

We will now present an INLP formulation for the PRDS problem.
For a multigraphG of order n ≥ 2, without loops and isolated vertices, let V (G) := {v1, v2, . . . , vn}
and E(G) := {e1, e2, . . . , em}. Let S ⊆ V (G) and M ⊆ E(G), and for all vi ∈ V (G), let
xi ∈ {0, 1} be a decision variable defined by

xi :=

{
1, if vi ∈ S,
0, otherwise.

Also, for all ek ∈ E(G), let yk ∈ {0, 1} be another decision variable defined by

yk :=

{
1, if ek ∈ M,
0, otherwise.

An INLP formulation for the PRDS problem can be given as follows:

min

n∑
i=1

xi (PR1)
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subject to

Ax ≥ 1⃗n (PR2)∑
(j, k) :

vivj ∼ ek ∈ E(G)

xixjyk = xi ∀i ∈ {1, 2, . . . , n} (PR3)

n∑
j=1

bijxj < |NG(vi)| ∀i ∈ {1, 2, . . . , n} (PR4)

x ∈ {0, 1}n (PR5)

y ∈ {0, 1}m (PR6)

where A := [aij ] is an n× n matrix defined by

aij :=

{
1, if vi and vj are adjacent in G,
0, otherwise.

and

bij :=


−1, if vi = vj ,
1, vi and vj are adjacent in G,
0, otherwise .

x =

x1...
xn

, y =

 y1
...
ym

, and 1⃗n =

1...
1

 with n rows.

Theorem 2.5.

(i) If S is a paired restrained dominating set in G and M is a perfect matching in ⟨S⟩, then
(x,y) is a solution to the INLP formulation for the PRDS problem.

(ii) If (x,y) is a solution to the INLP formulation for the PRDS problem, then S is a paired
restrained dominating set in G and M contains a perfect matching in ⟨S⟩.

Moreover, the optimal solution value of the INLP formulation for the PRDS problem is equal
to the paired restrained domination number of G. Furthermore, M is a perfect matching in ⟨S⟩
if and only if

m∑
k=1

yk is minimized for y ∈ {0, 1}m in a solution (x,y).

Proof. (i) Let S be a paired restrained dominating set in G and M be a perfect matching in
⟨S⟩. Let i ∈ {1, 2, . . . , n} with its corresponding vertex vi ∈ V (G), and let k ∈ {1, 2, . . . ,m}
with its corresponding edge ek ∈ E(G).
The proof is similar to theorem 2.1 to show that constraints (PR2), (PR3), (PR5), and (PR6)
are satisfied. Hence, we are left to show that constraint (PR4) must be satisfied. Let vi ∈ V (G).
Consider the following cases.
Case 1: vi ∈ S
Then xi = 1. Since S is a paired restrained dominating set in G, for all vj /∈ S such that vj and
vi are adjacent in G, bij = 1 and xj = 0 so that bijxj = 0.
Also, since S is a paired restrained dominating set in G, ⟨S⟩ contains no isolated vertex. Thus,
for all vj ∈ S such that vj and vi are adjacent in G, bij = 1 and xj = 1 so that bijxj = 1. Hence,

n∑
j=1,j ̸=i

bijxj = |NG(vi) ∩ S|.
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Since bii = −1 and xi = 1, biixi = −1. Thus,

n∑
j=1

bijxj = biixi +
n∑

j=1,j ̸=i

cijxj = −1 + |NG(vi) ∩ S| < |NG(vi)|.

Thus, constraint (PR4) is satisfied.
Case 2: vi /∈ S.
Then xi = 0. Since S is a paired restrained-dominating set in G, ⟨Sc⟩ contains no isolated
vertex. Thus, for all vj /∈ S such that vj and vi are adjacent in G, bij = 1 and xj = 0 so that
bijxj = 0.
Also, since S is a paired restrained-dominating set, ⟨S⟩ contains no isolated vertex. Thus, for
all vj ∈ S such that vj and vi are adjacent in G, bij = 1 and xj = 1 so that bijxj = 1. Hence,

n∑
j=1,j ̸=i

bijxj = |NG(vi) ∩ S|.

Since bii = −1 and xi = 0, biixi = 0. Thus,

n∑
j=1

bijxj = |NG(vi) ∩ S| < |NG(vi)|.

Thus, in either cases, constraint (PR4) is satisfied.
Since constraints (PR2), (PR3), (PR4), (PR5),and (PR6) are satisfied, the pair (x,y) is a

solution to the INLP formulation for the PRDS problem.

(ii) Suppose that the pair (x,y) is a solution to the INLP formulation for the PRDS problem.
Then, (PR2), (PR3), (PR4), (PR5),and (PR6) are satisfied. Let S := {vi ∈ V (G) : xi = 1} and
M = {ek ∈ E(G) : yk = 1}. The proof is similar to theorem 2.1 for showing that S is a paired
dominating set in G. We will show that ⟨Sc⟩ contains no isolated vertex. Let vi ∈ Sc. Then,
xi = 0 so that biixi = 0. By constraint (PR4),

n∑
j=1

bijxj < |NG(vi)|.

Observe that
n∑

j=1

bijxj = |NG(vi) ∩ S|

so that

|NG(vi) ∩ S| < |NG(vi)|.

This implies that there exists vj ∈ Sc such that vj and vi are adjacent in G. Hence, ⟨Sc⟩
contains no isolated vertex. And so, S is a paired restrained dominating set of G.

For the next statement of the theorem, let S be a minimum paired restrained dominating
set in G and M be a perfect matching in ⟨S⟩. Then γpr(G) = |S| and the pair (x,y) is a feasible
solution to the objective function (PR1). Thus,

n∑
i=1

xi = |S| = γpr(G)
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so that

min
n∑

i=1

xi ≤
n∑

i=1

xi = γpr(G).

Conversely, let S = {vi ∈ V (G) : xi = 1} such that |S| is an optimal solution value to the
objective function (PR1). Then S is a paired restrained doiminating set in G. Since the paired
restrained domination number of G is the minimum cardinality of paired restrained dominating
set in G, we have

γpr(G) ≤ |S| = min
n∑

i=1

xi.

Accordingly, the optimal solution value of the INLP formulation for the PRDS problem is equal
to the paired restrained domination number of G.

For the last statement of the theorem, the proof is similar to theorem 2.1 in showing that

M is a perfect matching in ⟨S⟩ if and only if y ∈ {0, 1}m such that
m∑
k=1

yk is minimized.

2.4 Outer Paired Dominating Set (OPDS) Problem

Theorem 2.6. Let G be a multigraph. Then G contains an outer paired dominating set
S ̸= V (G) if and only if there exists u, v ∈ V (G) such that u and v are adjacent in G and
|NG(u)|, |NG(v)| ≥ 2.

Proof. Assume that G contains an outer paired dominating set S ̸= V (G). Then S is a dom-
inating set in G and ⟨Sc⟩ contains a perfect matching M . Let e ∈ M . Then, there exist
u, v ∈ Sc ⊂ V (G) such that e ∼ uv, so that u and v are adjacent in G. Also, since S is a
dominating set, there exist u′, v′ ∈ S such that u′ and u are adjacent in G, and v′ and v are
adjacent in G. Thus, v, u′ ∈ NG(u) and u, v′ ∈ NG(v) so that |NG(u)|, |NG(v)| ≥ 2.

Conversely, suppose that there exists u, v ∈ V (G) such that u and v are adjacent in G and
|NG(u)|, |NG(v)| ≥ 2. Let S := V (G) \ {u, v}. Then S ̸= V (G).
Claim: S is a dominating set in G and S ̸= ∅.

Let a ∈ {u, v}. Without loss of generality, assume that a = u. Since |NG(u)| ≥ 2, there
exists v′ ∈ V (G), v′ ̸= v, such that v′ and u are adjacent in G. Also, v′ ̸= u since we do not
allow loops here. Thus, v′ /∈ {u, v} so that v′ ∈ S. Hence, S is a dominating set in G and
S ̸= ∅.
Now, since u and v are adjacent in G, there exists e ∈ E(G) such that e ∼ uv. Thus, {e} is a
perfect matching in ⟨{u, v}⟩ = ⟨Sc⟩. Therefore, S is an outer paired dominating set in G.

We will now present an INLP formulation for the OPDS problem.
For a multigraphG of order n ≥ 3, without loops and isolated vertices, let V (G) := {v1, v2, . . . , vn}
and E(G) := {e1, e2, . . . , em}. Let S ⊆ V (G) and M ′ ⊆ E(G), and for all vi ∈ V (G), let
xi ∈ {0, 1} be a decision variable defined by

xi :=

{
1, if vi ∈ S,
0, otherwise.

Also, for all ek ∈ E(G), let zk ∈ {0, 1} be another decision variable defined by

zk :=

{
1, if ek ∈ M ′,
0, otherwise.
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An INLP formulation for the OPDS problem can be given as follows:

min
n∑

i=1

xi (OP1)

subject to

Ax ≥ 1⃗n (OP2)∑
(j, k) :

vivj ∼ ek ∈ E(G)

(1− xi)(1− xj)zk = 1− xi ∀i ∈ {1, 2, . . . , n} (OP3)

x ∈ {0, 1}n (OP4)

z ∈ {0, 1}m (OP5)

where A := [aij ] is an n× n matrix defined by

aij :=

{
1, if vi = vj or vi and vj are adjacent in G,
0, otherwise.

x =

x1...
xn

, z =

 z1
...
zm

, and 1⃗n =

1...
1

 with n rows.

Theorem 2.7.

(i) If S is an outer paired dominating set in G and M ′ is a perfect matching in ⟨Sc⟩, then
(x, z) is a solution to the INLP formulation for the OPDS problem.

(ii) If (x, z) is a solution to the INLP formulation for the OPDS problem, then S is an outer
paired dominating set in G and M ′ contains a perfect matching in ⟨Sc⟩.

Moreover, the optimal solution value of the INLP formulation for the OPDS problem is equal
to the outer paired domination number of G. Furthermore, M ′ is a perfect matching in ⟨Sc⟩ if

and only if
m∑
k=1

zk is minimized for z ∈ {0, 1}m in a solution (x, z).

Proof. (i) Let S be an outer paired dominating set in G and let M ′ be a perfect matching in
⟨Sc⟩. Let i ∈ {1, 2, . . . , n} with its corresponding vertex vi ∈ V (G), and let k ∈ {1, 2, . . . ,m}
with its corresponding edge ek ∈ E(G). Note that (OP4) and (OP5) are trivially satisfied by
the definition of decision variables xi’s and zk’s. Let vi ∈ v(G). Consider the following cases.
Case 1. vi ∈ V (G) \ S.
Then xi = 0. Since S is an outer paired dominating set in G, there exists vh ∈ S such that vi

and vh are adjacent in G. Thus, xh = 1 = aih so that aihxh = 1. And so,
n∑

j=1
aijxj ≥ 1. Thus,

constraint (OP2) is satisfied. Since M ′ is a perfect matching in ⟨Sc⟩, there exists vj ∈ Sc and
ek ∈ M ′ such that ek ∼ vivj . Thus, xi = xj = 0 and zk = 1. And so, (1−xi)(1−xj)zk = 1. We
will show that (1−xi)(1−xj)zk is the only term in constraint (OP3) in which (1−xi)(1−xj)zk =
1. Let (j∗, k∗) ̸= (j, k) with vivj∗ ∼ ek∗ . Consider the following subcases.
Subcase 1: j∗ ̸= j.
Then ek∗ is adjacent to ek. Since ek ∈ M ′, ek∗ /∈ M ′ so that z∗k = 0. Hence, (1−xi)(1−xj∗)zk∗ =
0.
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Subcase 2: j∗ = j and k∗ ̸= k.
Then ek∗ ∼ vivj , ek∗ ̸= ek, and ek∗ is adjacent to ek. Since ek ∈ M ′, ek∗ /∈ M ′ so that z∗k = 0.
Hence, (1− xi)(1− xj)zk∗ = 0. And so,∑

(j, k) :
vivj ∼ ek ∈ E(G)

(1− xi)(1− xj)zk = (1− xi)(1− xj)zk = 1 = 1− xi.

Thus, constraint (OP3) is satisfied.
Case 2. vi ∈ S.

Then xi = 1. Take vj = vi. Thus, xj = 1 = aij so that aijxj = 1. And so,
n∑

j=1
aijxj ≥ 1. Also,

∑
(j, k) :

vivj ∼ ek ∈ E(G)

(1− xi)(1− xj)zk = 0 = 1− xi.

Thus, in either case, constraints (OP2) and (OP3) are satisfied.
Since constraints (OP2), (OP3), (OP4), and (OP5) are satisfied, the pair (x, z) is a solution to
the INLP formulation for the OPDS problem.

(ii) Suppose that the pair (x, z) is a solution to the INLP formulation for the OPDS problem.
Then, (OP2), (OP3), (OP4), and (OP5) are satisfied. Let S := {vi ∈ V (G) : xi = 1} and
M ′ = {ek ∈ E(G) : zk = 1}. Let vi ∈ V (G) \ S. By constraint (OP2),

Ax ≥ 1⃗,

In particular, corresponding to the ith row, we have

n∑
j=1

aijxj ≥ 1.

Hence, there exists h ∈ {1, 2, . . . , n} such that aihxh = 1 so that aih = 1 and xh = 1. Thus,
vh ∈ S so that vh ̸= vi. Furthermore, vh and vi are adjacent in G, so that S is a dominating
set in G.

Since vi ∈ Sc, xi = 0. By constraint (OP3),∑
(j, k) :

vivj ∼ ek ∈ E(G)

(1− xj)zk = 1

Hence, there exists unique (j, k) ∈ {1, . . . , n} × {1, . . . ,m} such that ek ∼ vivj ∈ E(G) and
(1−xj)zk = 1. Thus, xj = 0 and zk = 1 so that vj ∈ Sc and ek ∈ M ′. This guarantees that there
exists ek ∼ vivj ∈ M ′ with vi, vj ∈ Sc. Define M∗ = {ek ∈ M ′ : ek ∼ vivj for some vi, vj ∈ Sc}.
We are left to show that M∗ is a perfect matching in ⟨Sc⟩ so that S is an outer paired domi-
nating set in G.
Let ek1 ∈ M∗ so that ek1 ∼ vi1vj1 for some vi1 , vj1 ∈ Sc. Then, xi1 = xj1 = 0 and zk1 = 1. To
show that M∗ is a matching, suppose, on the contrary, that there exists ek′ ∈ M∗, ek′ ̸= ek1
such that ek′ is adjacent to ek1 . Then, zk′ = 1. Without loss of generality, assume that vi1 is
incident to ek′ .
Case 1: Suppose that ek′ = vi1vl with vl ∈ Sc, vl ̸= vj1 . Then, xl = 0 so that (1− xl)zk′ = 1.
Hence, (1 − xi1)(1 − xj1)zk1 + (1 − xi1)(1 − xl)zk′ = 1 + 1 = 2, a contradiction to constraint
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(6.4.3).
Case 2: Suppose that ek′ ∼ vi1vj1 . Then, xi1 = xj1 = 0. Hence, (1 − xi1)(1 − xj1)zk1 + (1 −
xi1)(1− xj1)zk′ = 1 + 1 = 2, a contradiction to constraint (6.4.3).
Hence, M∗ is a matching in ⟨Sc⟩. M∗ is also a perfect matching in ⟨Sc⟩ since we have already
shown from above that for each vi ∈ Sc, there exists ek ∈ M∗ such that ek ∼ vivj for some
vj ∈ Sc. And so, S is an outer paired dominating set in G and M∗ ⊆ M ′ is a perfect matching
in ⟨Sc⟩.

For the next statement of the theorem, let S be a minimum outer paired dominating set in
G and M ′ be a perfect matching in ⟨Sc⟩. Then γop(G) = |S| and the pair (x, z) is a feasible
solution to the objective function (OP1). Thus,

n∑
i=1

xi = |S| = γop(G)

so that

min
n∑

i=1

xi ≤
n∑

i=1

xi = γop(G).

Conversely, let S = {vi ∈ V (G) : xi = 1} such that |S| is an optimal solution value to the
objective function (OP1). Then S is an outer paired dominating set in G. Since the outer
paired domination number of G is the minimum cardinality of outer paired dominating set in
G, we have

γop(G) ≤ |S| = min
n∑

i=1

xi.

Accordingly, the optimal solution value of the INLP formulation for the OPDS problem is equal
to the outer paired domination number of G.

Finally, for the final statement of the theorem, suppose that M ′ is a perfect matching in
⟨Sc⟩, S is an outer-paired dominating set in G. Then |Sc| = 2|M ′|. By (i), (x, z) is a solution

to the INLP formulation for the OPDS problem. Suppose that for z ∈ {0, 1}m,
m∑
k=1

zk is not

minimized. Then there exists z∗ = (z∗1 , . . . , z
∗
m) ∈ {0, 1}m such that (x, z∗) is a solution to the

INLP formulation for the OPDS problem, and
m∑
k=1

z∗k <
m∑
k=1

zk. By (ii), the set M∗ = {ek ∈

E(G) : z∗k = 1} contains a perfect matching M1 = {ek ∈ M∗ : ek ∼ vivj for some vi, vj ∈ Sc} in
⟨Sc⟩. Thus,

|M1| ≤ |M∗| =
m∑
k=1

z∗k <

m∑
k=1

zk = |M ′|.

Since M1 is perfect matching in ⟨Sc⟩, |Sc| = 2|M1|. Hence, we now have

|Sc| = 2|M1| < 2|M ′| = |Sc|,

a contradiction. Thus, for z ∈ {0, 1}m,
m∑
k=1

zk is minimized.

Conversely, let (x, z) be a solution to the INLP formulation for the OPDS problem. Assume

that for z ∈ {0, 1}m,
m∑
k=1

zk is minimized. Then
m∑
k=1

zk ≤
m∑
k=1

z∗k for all z
∗ = (z∗1 , . . . , z

∗
m) ∈ {0, 1}m

where (x, z∗) is a solution to the INLP formulation for the OPDS problem. By (ii), S = {vi ∈
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V (G) : xi = 1} is an outer paired dominating set in G andM ′ = {ek ∈ E(G) : zk = 1} contains a
perfect matching M1 = {ek ∈ M ′ : ek ∼ vivj for some vi, vj ∈ Sc} in ⟨Sc⟩. Hence, by (i), (x, z′)
is a solution to the INLP formulation of the OPDS problem, where z′ = (z′1, . . . , z

′
m) ∈ {0, 1}m

is the corresponding vector of M1. Thus,

|M ′| =
m∑
k=1

zk ≤
m∑
k=1

z′k = |M1|.

Since M1 ⊆ M ′, |M1| ≤ |M ′|. Hence, we have |M ′| = |M1| so that M ′ = M1. Therefore, M ′ is
a perfect matching in ⟨Sc⟩.
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