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Abstract

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one of the
prominent methods that are efficient at uncovering clusters of various shapes, however, it
faces limitations when dealing with datasets containing clusters of varying densities. To
address this limitation, this study integrates kernel density estimation into the DBSCAN
algorithm to enhance its capacity to capture density variations and handle irregularly shaped
clusters. Specifically, we employ Kernel Density Estimation (KDE) using Epanechnikov as
the kernel function and the grid search method with cross-validation for the bandwidth
selection, along with the added density threshold. The simulation study shows that the
proposed procedures were able to specify the number of clusters even for varying densities
correctly. Moreover, empirical results show that the proposed clustering procedure enhanced
the DBSCAN algorithm and gave meaningful results.

1 Introduction

Big data may be characterized as a term for huge or complex data collection where traditional
data processing applications are insufficient. Due to the various features of big data, such as
its volume, variety, variability, value, velocity, and complexity, it is exceedingly challenging to
analyze data and extract information using conventional data mining approaches [39]. The dis-
covery of interesting characteristics and patterns in large spatial databases is known as spatial
data mining. It has many applications, some of which include seismology (clustering seismic
events that are concentrated along faults), minefield detection (grouping mines in a minefield),
and astronomy (grouping of stars in galaxies) [9]. In data analysis and data mining, cluster anal-
ysis is a technique used to classify objects or data points into groups called clusters. Clustering
algorithms are machine learning algorithms and may be divided into four broad classifications:
a) the partition-based algorithms or partitional clustering methods, b) density-based algorithms,
c) hierarchical-based algorithms, and d) grid-based algorithms [43]. One of the most well-known
clustering algorithms used in data mining is the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise). DBSCAN is a clustering algorithm designed to discover clusters
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of varying shapes and noise in a spatial database. The algorithm works based on the density of
objects, it requires two parameters to build a dense region: a) the epsilon (ϵ) which defines the
neighborhood around a data point, and b) the minimum number of neighbors (MinPts), which
defines the minimum number of data points required to form a distinct cluster [10]. DBSCAN
defines a cluster by starting with an arbitrary point p in the database then its surrounding
area is calculated using radius ϵ. If there are at least MinPts in the neighborhood, then p is
designated as the core point, and a cluster formation begins by retrieving all density-reachable
points from p with respect to ϵ and MinPts. If no points are density-reachable from p, then
p becomes a border point. If p is neither a core point nor a border point, p becomes a noise
point or an outlier and DBSCAN proceeds on to the next point of the database. This process is
repeated until all points have been visited and processed. DBSCAN has also been demonstrated
to work in practice, and received the SIGKDD test-of-time award in 2014 [37]. It is widely used
due to its efficiency and ability to discover clusters of arbitrary shapes. However, the original
algorithm has limitations when dealing with datasets that contain clusters of varying densities
[28];[24]. Since the DBSCAN algorithm relies on two key parameters, the ϵ and MinPts to
form a cluster it can assume that clusters are dense regions divided by areas of lesser density,
which may not necessarily be the case in real-world datasets with irregular shapes and densities.

Kernel Density Estimation (KDE) is a non-parametric approach used to estimate the prob-
ability density function (PDF) of a continuous random variable [4]; [35]; it is a powerful and
most widely-used non-parametric estimation technique of density-based spatial point patterns
[21]. The kernel function and the coefficient of smoothness or bandwidth are two fundamental
concepts in kernel estimation. Samiuddin and El-Sayyad in 1990 [36], introduced the idea of
inadmissible kernels. A kernel is inadmissible if another kernel gives uniformly a small mean
squared error (MSE). In their paper, they assume a large sample for the mean squared error
of kernel estimators, they show that some kernels are inadmissible in the sense that estimates
based on them can always be uniformly improved and that an Epanechnikov kernel is the only
kernel that is admissible. Scott in 2015 [38], developed a thorough analysis showing that the
Epanechnikov kernel is the most efficient when pdf estimation is at stake. The Epanechnikov
kernel function has the property of being optimal in the sense that it produces or minimizes
the mean square error (MSE) [42]; [6]. This means it tends to produce estimates with lower
overall error compared to other kernels and is not dependent on any type of data. The Grid-
SearchCV is a function in Scikit-learn (or SK-learn) model selection packages. It is a method
that methodically constructs and evaluates a model for each combination of algorithm param-
eters specified in a grid [32]. Due to its strength and exhaustive search [41], it will be utilized
for the identification and defining the coefficient of smoothness or bandwidth parameter.

This study proposed a spatial clustering algorithm called DBSCAN via Kernel Density Es-
timation (DBSCAN-KDE). This paper focuses on incorporating kernel density estimation into
the DBSCAN algorithm making it ideal for capturing density variations to handle datasets with
clusters of different densities and irregular shapes and to adapt it to seismic data by adding a
density threshold that can improve the algorithm in identifying areas of high seismic activity.
Specifically, we employ Epanechnikov as the kernel function. It is chosen because it has many
successful applications that produce better performance and results [45]; [15]; [27] and since it is
shown in [42]; [6]; [3] to give minimal mean square error (MSE) when being compared to other
kernels. Moreover, the GridSearchCV is used in this study to identify the optimal bandwidth.
The methodology and algorithms are designed to handle datasets that contain spatial attributes.

The structure of this paper is as follows: Section 2 presents the Related Literature, Section
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3 discusses the Methodology, Section 4 outlines the Results obtained and their discussions, and
finally, Section 5 concludes with the Summary and Recommendations of the proposed work.

2 Related Works

Density-Based Clustering

Density-based clustering is one of the areas that has been investigated by developing al-
gorithms that can be implemented and used to analyze real-world datasets. These algorithms
have evolved through time to become more efficient and effective clustering methods. Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) is a prominent density-based
clustering technique developed by Martin Ester, Hans-Peter Kriegel, Jöorg Sander and Xiaowei
Xu in 1996 [10]. It is one of the most widely used density-based clustering algorithms in data
mining. Several studies have been conducted to extend and enhance the DBSCAN algorithm,
[22], introduced a new algorithm called VDBSCAN (Varied Density Based Spatial Clustering
of Application with Noise) to handle varied-density datasets. The basic idea of VDBSCAN
is that it uses a k-dist plot to select suitable values of the ϵ parameter for different densities.
However, the k parameter in VDBSCAN is a user dependent and it can reduce the efficiency
of the permanent ϵ value. [11], presented in their study a method to enhance the DBSCAN
algorithm by automatically selecting the input parameters and finding density-variable clusters.
The key concept is that ϵ needs to be identified before using the traditional DBSCAN algorithm.
A k-dist graph needs to be created for every point to detect the various ranges of ϵ values auto-
matically and to identify the number of clusters of varying densities including noise. The goal
is to determine the “knees” for estimating the set of ϵ parameters. Then DBSCAN algorithm
is adopted for each ϵ value to ensure that all clusters with respect to corresponding density are
clustered. The same authors published an article that same year that reviewed the proposed
method and its implementation. They discovered that the value k still required a user to enter
its value and suggested that future research would determine the value of k internally, making
the entire process automatic [12]. In 2010, [31] proposed a density varied DBSCAN called DVB-
SCAN (Density Variation Based Spatial Clustering of Applications with Noise) which is capable
of handling local density variation within the cluster. The algorithm begins by selecting core
objects, which are points that have a minimum number of points within a specified ϵ. These
core objects are used to form clusters. Nevertheless, similar to any algorithm, DVBSCAN is
sensitive to parameter selection, therefore the choice of selecting appropriate values of these pa-
rameters can pose a challenge. In 2013, [5] and colleagues, presented a new clustering approach
for classifying focal mechanisms from large moment tensor catalogs, intending to automatically
detect families of earthquakes having comparable source geometry, identify the direction of most
active faults, and detect temporal variations of the rupture processes. Within their article, they
limit the discussion on the application of DBSCAN and integrate it with the definition of dif-
ferent metrics that can be applied to determine the distance between source models based on
various moment tensor representations. Furthermore, clustering techniques were primarily been
employed in seismology to uncover patterns in seismic events and distinguish foreshocks and
aftershocks based on their spatial location [29]; [18]; [20].
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Kernel Density Estimation and Its Application

Kernel density estimation or KDE is a nonparametric density estimator that does not re-
quire the underlying density function to be from a parametric family. KDE will automatically
learn the shape of the density from the data. Because of its nonparametric character, KDE
is a preferred technique for data obtained from a complicated distribution [7]. Several kernel
functions may be found in the relevant literature, including the Gaussian kernel, the Epanech-
nikov kernel, the Biweight kernel, the Triangular kernel, the Rectangular kernel, the Inverse
Gaussian kernel, and others. In the study of [44] in 2018, the two common methods used for
bandwidth selection are the Rule-of-thumb widely referred to as the Silverman rule-of-thumb,
and the Least Squares Cross-Validation (LSCV ) method. Silverman’s rule-of-thumb is used
when the Gaussian kernel function is chosen. It is based on the asymptotic mean integrated
square error, AMISE. [40] in 2018, obtain the values of the smoothing or bandwidth parameter

h as, h = 1.06 � σ̂ � n− 1
5 , where σ̂ is the standard deviation of a sample and n is the sample size

and applied interquartile range IQR and proposed a slightly reduced value of the bandwidth
parameter: h = 1.09 �min(σ̂, IQR

1.34 ) � n
− 1

5 . On the other hand, the least squares cross-validation
method can be used in any kernel function, it uses the integrated square error, ISE. LSCV is
also referred to as unbiased cross-validation with the form:

LSCV (h) =
1

n2

∑
i·j

∫ +∞

−∞
K(x, xi)K(x, x− j)dx

− 2

n(n− 1)

∑
i

∑
j ̸=i

K(xi, xj)

.
In the study conducted by [1] in 2015, an evaluation and comparison were performed on the

Gaussian Mixture Model (GMM) and Gaussian Kernel Density Estimator algorithms for detect-
ing anomalies in annotated datasets from the Maritime domain. Both algorithms have a large
number of false detections as well as anomalies that are not detected. In 2018, [26], presented
an algorithm for clustering based on univariate kernel density estimation called ClusterKDE. It
is an iterative technique in which a new cluster is obtained by minimizing a smooth kernel func-
tion or the bandwidth parameter at each stage. Although they employed a univariate Gaussian
kernel, any bandwidth parameter was utilized in their applications. The proposed technique
has the advantage of not requiring the number of clusters to be determined beforehand. In
a 2019 study by [46], a novel algorithm was introduced to adaptively determine parameters
in the DBSCAN method. The algorithm is structured into four components: disk generation,
density information estimation within disks, selection of high-quality disks, and parameter de-
termination through Gaussian kernel density estimation. The experimental findings indicate
that the proposed algorithm enhances the DBSCAN’s precision. In a 2020 study headed by
[23], the focus was on detecting abnormal movement speeds using a coastal surveillance radar.
They combined the KDE with a Gaussian kernel function and Silverman’s rule-of-thumb as
the bandwidth and DBSCAN algorithm to identify the usual movement speeds. The test re-
sults indicating a false alarm rate (FAR) equal to zero imply the effectiveness of the approach
in accurately identifying usual movement speeds. [27] in 2021, explore the application of the
Epanechnikov kernel for estimating the Probability Density Function (PDF) in equalization
and blind source separation tasks. The authors investigated the Epanechnikov kernel features,
they compared its performance to the common Gaussian (Normal) kernel on the estimation of
a standard normal distribution, and the results shall be measured in terms of Mean Integrated
Squared Error (MISE). MISE = E[

∫
(f̂X(z) − fX(z))2dz, where f̂X(z) is the estimated pdf

attained considering the samples of the X random variable. In their experiment, the kernel
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size varies from 0.05 to 2 in steps of 0.05, and 50 to 500 number of samples, MISE values
considering the optimal kernel size for the Epanechnikov and Gaussian kernels resulted that
Epanechnikov kernel can obtain lower MISE levels. The MISE performance superiority of the
Epanechnikov kernel was made clear in their experiment, it was also noted that for all cases
the Gaussian kernel MISE error is considerably higher than that of the Epanechnikov kernel.
Thus, they utilized the Epanechnikov kernel in their study and demonstrated that using the
Epanechnikov kernel for PDF estimation can improve the performance of equalization and blind
source separation tasks. [33] in 2023, investigates functions and kernels that can be used to cre-
ate a “smoother” local average of a function. The Fourier analysis is used to find a constant
for each kernel and then uses compactness to find a kernel that minimizes this constant. The
minimizing kernel is found to be remarkably close to the Epanechnikov kernel in statistics. They
consider functions f : Z → R and kernels u : {−n, · · · , n} → R normalized by

∑n
l=−n u(l) = 1,

that makes the convolution u ∗ f a ”smoother” locale average of a function f . They identified
which choice of kernels u that most effectively smooths the second derivative in the following
sense and there is a section in their study that they prove a Theorem offering which kernel is
closely optimal and easy to implement in practice. The optimal kernel un has a complicated
equation, but it resembles a parabola, and they discovered that selecting weights by sampling
from a parabola works exceptionally well for smoothing the Laplacian of a given function. This
choice of weights provides the discrete normalized Epanechnikov kernel En : {−n, · · · , n} → R
defined by: En(k) = 3

n(4n2−1
(n2 − k2). A theorem from their analysis demonstrates that the

Epanechnikov kernel is less than 2% worse than ideal in smoothing the Laplacian, providing
another incentive to utilize it in practice. [47] in 2023, studied which kernel function to select
for the Model Linear Regression (MLR) from two perspectives: first, ”Which kernel achieves
small error?” and second, ”Which kernel is computationally efficient?”. The first perspective
was investigated and the asymptotic mean squared error (AMSE) was adopted as a criterion of
an estimation error. Accordingly, the AMSE of θ̂n is given as a sum of the squared asymptotic

bias and the asymptotic variance, as E[∥θ̂n − θ̃∥2] ≈ h4
nU

2∥Ã−1b̃∥2
4 + V tr(Ã−1C̃Ã−1)

nh3
n

. The result

of the first investigation is that the optimal among the non-negative kernels that minimize the
AMSE is the Biweight kernel function. The second investigation is the perspective ”Which
kernel is computationally efficient?” they considered and used the iteratively reweighted least-
squares algorithm (IRLS) for the MLR and showed that the IRLS guarantee convergence for a
wide class of kernels. They then prove a theorem that states the IRLS with an Epanechnikov
kernel converges in a finite iteration process. Empirical simulation studies have confirmed that
using a biweight kernel offers good estimation accuracy, while the Epanechnikov kernel is noted
for its computational efficiency.

3 METHODOLOGY

Epanechnikov Kernel Density

Let X1, X2, . . . ,Xn in the set of R be a univariate random sample from a distribution with
density f we wish to estimate. The kernel estimator with kernel K as the smooth function was
defined by Silverman (2018) as,

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(1)
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where h is the bandwidth or the smoothing parameter and n is the sample size. The Epanech-
nikov kernel function is defined as:

K(u) =

{
3
4(1− u2), if | u |≤ 1,
0, otherwise.

}
(2)

where u = x−Xi
h . The Epanechnikov kernel function is selected because it possesses the lowest

mean square error (MSE) [42], [6], [15].

Bandwidth Parameter

In a work published in 2019, Rajan and colleagues [32] emphasized the Grid SearchCV, a
method that systematically constructs and assesses a model for every combination of algorithm
parameters specified in a grid. GridSearchCV is employed in the research paper by Veerala-
gan and Priya in 2022 [41] due to its strength and its exhaustive search. GridSearchCV is
the process of optimizing hyperparameters for a given model. The GridSearchCV is a function
in Scikit-learn (or SK-learn) a Python module that provides a collection of advanced machine
learning algorithms for handling medium-scale supervised and unsupervised tasks. [30].

In the context of Kernel Density Estimation, the GridSearchCV is employed because it can
systematically explore different bandwidth values, and the exhaustive search across possible
bandwidths ensures that the best-performing parameter is chosen. GridSearchCV will fit the
KDE model for each bandwidth value and then use cross-validation to estimate the model’s
performance. The optimal bandwidth is determined by selecting the bandwidth value that pro-
duces the best cross-validation performance.

Clustering Evaluation Metric

The Silhouette Index, developed by Peter J. Rousseeuw in 1987 [34], is a method used to
evaluate the quality of clusters for partitioning techniques. It is a measure of how similar an
object is to its cluster (tightness) in comparison to other clusters (separation). This silhouette
identifies which objects are well-contained within their cluster and which are spread out between
clusters. Silhouette index ranges from -1 to 1, the range of 0.71− 1.00 signifies excellent split of
clusters, the range of 0.51− 0.70 indicates a reasonable split of clusters, the range of 0.26− 0.5
suggests weak split of clusters and below this range implies bad split of clusters [25]. However, it
has a limitation: it prefers spherical cluster formations and similar sizes, which may not always
be the case in practical scenarios where clusters can have different shapes and sizes. Lengyel
and Botta-Dukat in 2019 [19] developed a generalization of the Silhouette width by applying a
generalized mean, allowing them to create a flexible formula that adjusts the sensitivity of the
index between connectedness and compactness, enabling higher values for non-spherical clus-
ters. It has a parameter p that determines the importance of connectedness and compactness.

Let W be a sample of positive real numbers w1, w2, . . . , wn and p an element of affinely
extended real numbers. The generalized mean of degree p is as follows:

Mp(w1, w2, . . . , wn) =

(
1

n

n∑
k=1

wp
k

) 1
p

(3)

For p = 0 and p = −∞ the following exceptions are to be made:
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M0(w1, w2, . . . , wn) = lim
p→0

Mp(w1, . . . , wn) =

(
n∏

k=1

Wk

) 1
n

(4)

M−∞(w1, w2, . . . , wn) = lim
p→−∞

Mp(w1, . . . , wn) = min(w1, . . . , wn) (5)

M∞(w1, w2, . . . , wn) = lim
p→∞

Mp(w1, . . . , wn) = max(w1, . . . , wn) (6)

The generalized mean incorporates the values of familiar summary statistics outlined in
Table 1.

Table 1: Special cases of the generalized mean

p Descriptive Statistic

−∞ Minimum

−1 Harmonic Mean

0 Geometric Mean

1 Arithmetic Mean

2 Quadratic Mean

∞ Maximum

The original Silhouette width is a specific instance where average distances within and be-
tween groups are computed with p = 1. By setting the value of parameter p in a lower value,
greater significance is assigned to objects in close proximity, diminishing the influence of distant
neighbors, including outliers. Conversely, when p is greater than 1, greater emphasis is placed
on the compactness criterion.
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Main Algorithm of DBSCAN-KDE

Algorithm 1 DBSCAN with Kernel Density Estimation (KDE)

Input: Database D with n spatial attributes .
1: Density Estimation with KDE:
2: Define Kernel Function:
3: Use the Epanechnikov as the kernel function.
4: Set the bandwidth h parameter using GridSearchCV.
5: Compute the Kernel Density Estimate:
6: for each data point x in D do
7: Calculate the kernel density estimate f̂(x) using the general formula:

f̂(x) =
1

nh

n∑
i=1

K
(x−Xi

h

)
8: Compute the kernel function K(u).
9: Sum the kernel function values for each data point xi in D.

10: Plot the kernel density estimates
11: Define Density Threshold:
12: After KDE, set a density threshold based on the estimated densities.
13: Identify Cluster Centers:
14: Using the density threshold, find points with a density higher than the threshold.
15: Set Parameters:
16: Set the Epsilon parameter (ϵ).
17: Set MinPts, the minimum number of neighbors a data point must have within the ϵ

parameter.
18: Apply DBSCAN Algorithm:
19: Apply DBSCAN on the identified cluster centers.
20: Use parameters ϵ and MinPts for defining cluster centers as core, border, and noise

points.
21: Point labels:
22: for each data point p in D do
23: find all data points within the ϵ.
24: if p has at least MinPts within ϵ then p is a core point.
25: if p has less than MinPts within ϵ then p is a border point.
26: otherwise p is a noise point.
27: Cluster Expansion:
28: for each core point c if not yet assigned to a cluster do
29: create a new cluster C and add c to C
30: if neighboring point q of c is also a core point
31: add it to C
32: if q is a border point but is within ϵ distance of c
33: add it to C
34: Border Points:
35: these points are added to C but are not used to expand the cluster any further.
36: Output: Collection of clusters and some noise points.
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Algorithm 1 outlines the steps to follow in executing the DBSCAN with KDE. Initially, the
algorithm requires an input of a dataset D with coordinates. Then, a KDE method will serve
as a pre-processing step in the DBSCAN process. This method is primarily initiated in each
data point x in D, the Epanechnikov kernel function is then defined and the GridSearchCV
is used for selecting the bandwidth h parameter. The kernel density estimates for each data
point x are calculated by summing up the kernel function K(u) values (see eq’n. 2) evaluated
at the distance between the data point and all other points which are then normalized by the
bandwidth h parameter and the total number of data points n (see eq’n. 1), the resulting esti-
mate represents the probability density at the given data point. The method iterates through
all data points in D, calculating the kernel density estimates for each x. Finally, the list of the
kernel density estimates for each data point is then plotted by the algorithm, displaying regions
of high and low density. The density threshold (dt) value is set based on the estimated kernel
densities of each point to be produced by the KDE method. It functions as a cut-off value to
distinguish high-density areas. The dt parameter will filter the data points and data points with
density estimates that exceed dt value will represent potential cluster centers, indicating areas
of high seismic activity.

In the DBSCAN process, the ϵ and the MinPts are then defined by the user. DBSCAN is
then applied to the identified cluster centers, and each cluster center is labeled as core, border,
and noise points or an outlier. This method is iterated until all cluster centers are labeled. The
algorithm proceeds to construct a cluster by picking an arbitrary point y. If y is a core point
and has not been assigned to a cluster, a new cluster C is initiated, and y is added to C. Then
the algorithm identifies all density-reachable points from y with respect to the ϵ and MinPts
parameters and adds it to C. If y is a border point, no points are density-reachable from y, then
y is added in C. The algorithm then moves on to the next point q of the database. Through
this iterative process, the algorithm expands clusters around core points, progressively adding
neighboring points until all reachable points within the ϵ neighborhood are included.

The result of the process is a collection of clusters, where each cluster stands for a different
seismic event. In assessing the clustering stability produced by the improved algorithm, the
Silhouette width using generalized mean will be used to ensure the reliability and reproducibil-
ity of the clustering solution. Furthermore, the performance of the improved DBSCAN-KDE
techniques will be compared against the traditional DBSCAN algorithm.

4 Results and Discussions

This section is structured into two sub-sections: a) Simulation results of the traditional DB-
SCAN algorithm and the DBSCAN-KDE algorithm over 100 repetitions; and b) the outcome
of applying DBSCAN-KDE in the recorded earthquake data of the Philippines from the year
1975 to December 5, 2023, to discover significant seismic events.

Simulation Results Comparing Traditional DBSCAN and DBSCAN-KDE algo-
rithms

A spatial distribution of 13 geographical clusters is simulated where each cluster represents
a different population center. These clusters are centered at specific coordinates: (40,−60),
(30,−120), (42,−100), (45,−125), (40,−81), (25,−65), (23,−90), (19,−107), (55,−74), (56,−96),
(7,−88), (60,−112), (10,−121) and the standard deviation SD within each cluster indicates
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how spread out the points are around each center.

The experiment aimed to evaluate four scenarios for all 13 clusters: (a) S1 consists of the
same values of SD(σ) ranging from 1.0 to 3.0 with a density threshold (dt) set to 0, (b) S2
consists of different values of SD ranging from 1.0 to 3.0 with a density threshold (dt) set to 0,
(c) S3 consists of the same values of SD ranging from 1.0 to 3.0 with a density threshold (dt)
set to 0.0005, (d) S4 consists of different values of SD ranging from 1.0 to 3.0, with a density
threshold (dt) set to 0.0005.

The first two scenarios (S1, S2) are intended to test the performance of both algorithms
when the dt is at 0, while the other two scenarios (S3, S4) are tested when the dt is at 0.0005.
This design aimed to evaluate the execution of both algorithms under varying conditions. The
Silhouette Width (SW) value with parameter p = 2 is the average SW computed across 100
replications with n = 22, 800 data points. The parameter p = 2 is used to put more importance
to objects in close proximity (compactness), consider the nonspherical shapes of clusters [19]
in the empirical application, and produce consistent results throughout the experiment. The
value used for theMinPts parameter is equivalent to ln(n) where n is the size of the database [2].

Scenario 1 (S1): Comparison of the DBSCAN and the DBSCAN-KDE algo-
rithms with Equal Standard Deviation (SD) within each cluster and a dt = 0

Below is a table that presents the summary results of the performance of DBSCAN and the
DBSCAN-KDE algorithms when dt is set to 0.

Table 2: Results of DBSCAN and DBSCAN-KDE Application on Synthetically Generated Data
Comprising 13 Unequal Clusters Sizes each with equal Standard Deviations (SD) and setting
the Density Threshold (dt)=0 where n = 22, 800.

DBSCAN DBSCAN-KDE

Cases MinPts Epsilon Silhouette
Width

MinPts Epsilon Silhouette
Width

Case 1: SD = 1.0 10 0.4 0.89437 10 0.4 0.89437

Case 2: SD = 1.3 10 0.7 0.85821 10 0.7 0.85821

Case 3: SD = 1.6 10 0.7 0.82804 10 0.7 0.82804

Case 4: SD = 1.9 10 0.8 0.79591 10 0.8 0.79591

Case 5: SD = 2.2 10 0.9 0.76377 10 0.9 0.76377

Case 6: SD = 2.5 10 1.0 0.73146 10 1.0 0.73146

Case 7: SD = 2.8 10 1.1 0.67465 10 1.1 0.67465

Case 8: SD = 3.0 10 1.1 0.55036 10 1.1 0.55036
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Table 2 illustrates the effectiveness of both algorithms in capturing the predetermined num-
ber of clusters. The resulting SW shows that, when dt is set to 0 and each case comprises
clusters with equal dispersion SD values, the DBSCAN and the DBSCAN-KDE algorithms
performed similarly. The SW values in cases 1 through 6 further suggest that the clusters
generated by both algorithms imply strong compactness and are separated from other clusters.
Conversely, in cases 7 and 8 where there is an increase in the dispersion SD of the data points
within each cluster, the SW is smaller. The reason for this decreased value is that it becomes
more challenging to identify natural cluster boundaries when a large value of dispersion SD is
uniformly present in each cluster. It makes data points from adjacent clusters appear to be
closer than they are. This can lead to overlapping regions where it becomes challenging for
the algorithm to decide whether a point belongs to one cluster or another based solely on two
parameters: the ϵ and MinPts to construct a cluster. Generally, both algorithms performed
effectively under low and moderate levels of dispersion in the data points within each cluster.
On the other hand, when cases where each cluster has a uniformly high level of dispersion, both
algorithms face the challenge of accurately distinguishing the predetermined clusters.

Scenario 2 (S2): Comparison of the DBSCAN and the DBSCAN-KDE with
Unequal Standard Deviation (SD) within each cluster and dt = 0

The table below displays the results of the performance of the DBSCAN and DBSCAN-KDE
algorithms under varying SD when the dt is set to 0.

Table 3: Results of DBSCAN and DBSCAN-KDE Application on Synthetically Generated Data
Comprising 13 Unequal Clusters Sizes each with Unequal Standard Deviations (SD) and setting
the Density Threshold (dt)=0 where n = 22, 800.

DBSCAN DBSCAN-KDE

Cases MinPts Epsilon Silhouette
Width

MinPts Epsilon Silhouette
Width

Case 1 (S2) 10 0.7 0.82746 10 0.7 0.82746

Case 2 (S2) 10 0.8 0.80721 10 0.8 0.80721

Case 3 (S2) 10 0.8 0.79553 10 0.8 0.79553

Case 4 (S2) 10 1.0 0.78016 10 1.0 0.78016

Case 5 (S2) 10 1.0 0.76945 10 1.0 0.76945

Table 3 suggests both the DBSCAN and DBSCAN-KDE algorithms perform comparably
when clusters are subjected to varying dispersion SD and the dt is set to 0. This is evident from
the SW values. Additionally, it can also be observed that under this scenario both algorithms
produced a high value of SW indicating that the objects are well-matched to their cluster and
are well-separated from other clusters. This implies that both algorithms were able to deter-
mine the predefined number of clusters highlighting their capabilities of handling datasets with
varying dispersion.
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In scenarios 3 and 4, a density threshold parameter is set according to the estimated density
value produced by the KDE.

Scenario 3 (S3): Comparison of the DBSCAN and the DBSCAN-KDE with
Equal Standard Deviation (SD) within each cluster and dt = 0.0005

Table 4: Results of DBSCAN and DBSCAN-KDE Application on Synthetically Generated Data
Comprising 13 Unequal Clusters Sizes each with equal Standard Deviations (SD) and setting
the Density Threshold (dt)=0.0005 where n = 22, 800.

DBSCAN DBSCAN-KDE

Cases MinPts Epsilon Silhouette
Width

MinPts Epsilon Silhouette
Width

Case 1: SD = 1.0 10 0.4 0.89437 10 0.4 0.89457

Case 2: SD = 1.3 10 0.7 0.85821 10 0.7 0.86621

Case 3: SD = 1.6 10 0.7 0.82804 10 0.7 0.84240

Case 4: SD = 1.9 10 0.8 0.79591 10 0.7 0.82131

Case 5: SD = 2.2 10 0.9 0.76377 10 0.7 0.80294

Case 6: SD = 2.5 10 1.0 0.73146 10 0.7 0.78784

Case 7: SD = 2.8 10 1.1 0.67465 10 0.7 0.77596

Case 8: SD = 3.0 10 1.1 0.55036 10 0.7 0.76988

Table 4 displays the results of both algorithms under the uniform condition of SD and
the dt parameter set to 0.0005. It further shows that the setting of the dt parameter influ-
ences the DBSCAN-KDE algorithm’s ability to detect the predefined clusters as observed in
the SW value. Though both algorithms produced high values it is noticeable that there is a
slight improvement in the performance of the DBSCAN-KDE algorithm particularly in cases 7
and 8. This discernible improvement demonstrates the effectiveness of incorporating KDE as a
pre-processing step. As a result, the DBSCAN-KDE approach improved clustering results by
maintaining high values of SW despite the high dispersion of data points within clusters.
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Scenario 4 (S4): Comparison of the DBSCAN and the DBSCAN-KDE with
Unequal Standard Deviation (SD) within each cluster and dt = 0.0005

Table 5: Results of DBSCAN and DBSCAN-KDE Application on Synthetically Generated Data
Comprising 13 Unequal Clusters Sizes each with Unequal Standard Deviations (SD) and setting
the Density Threshold (dt)=0.0005 where n = 22, 800.

DBSCAN DBSCAN-KDE

Cases MinPts Epsilon Silhouette
Width

MinPts Epsilon Silhouette
Width

Case 1 (S2) 10 0.7 0.82746 10 0.7 0.84377

Case 2 (S2) 10 0.8 0.80721 10 0.7 0.83136

Case 3 (S2) 10 0.8 0.79553 10 0.7 0.82246

Case 4 (S2) 10 1.0 0.78016 10 0.8 0.81606

Case 5 (S2) 10 1.0 0.76945 10 0.8 0.81304

Table 5 summarizes the performance of the DBSCAN and DBSCAN-KDE algorithms under
varying SD when the dt is set to 0.0005. Based on the presented outcomes, it can be observed
that both algorithms show commendable performance as reflected by their respective SW val-
ues. However, the DBSCAN-KDE algorithm consistently achieves higher SW values than the
DBSCAN algorithm. This discrepancy becomes particularly noticeable across a range of SD
values, demonstrating that the DBSCAN-KDE approach is adept at handling datasets with
varied degrees of dispersion. Adding KDE as a pre-processing step effectively enhanced the
DBSCAN-KDE algorithm’s capacity to capture the true number of clusters.

DBSCAN and the DBSCAN-KDE algorithms applied to Earthquake Dataset

Earthquakes are catastrophic natural events that can result in substantial harm to infras-
tructure, loss of life, and disruptions to socioeconomic systems. It has also been occurring at
an unprecedented rate in recent years, and many researchers have been studying their char-
acteristics. According to the Philippine Atmospheric, Geophysical, and Astronomical Services
Administration (PAG-ASA), the Philippine Area of Responsibility (PAR) refers to the most
confined monitoring zone, with its boundary closest to the Philippine Islands. Because of its
geographical location and physical environment, the Philippines is vulnerable to a variety of
natural hazards. In this research, the efficiency of the proposed clustering algorithm DBSCAN
with kernel density estimation is tested in producing meaningful clusters using the spatial lo-
cations (latitude and longitude) of the earthquake occurrences as key features to understand
the geographic patterns. The data used comes from the Earthquake Information (dost.gov.ph)
of the Philippine Institute of Volcanology and Seismology (PHIVOLCS) and spans the period
from the year 1975 to December 5, 2023. The primary focus is on earthquakes that have a
magnitude of M ≥ 4 and/or have the potential to cause damage.

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.530

125

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.530
https://msuiit.edu.ph


Mary Jean Eniola, Aljo Clair Pingal, and Catherine Caño

The DBSCAN algorithm

The DBSCAN algorithm was applied to the spatial component of the earthquake data of
the Philippines with an ϵ and MinPts value of 0.3 and 50, respectively. The resulting cluster
solutions are presented in Figure 1.

Figure 1: Earthquake Plot of the Philippines in the DBSCAN Algorithm

In the figure presented above, the DBSCAN algorithm identified 13 clusters and some noise
points. It can be observed that the algorithm displays its ability to detect clusters of arbitrary
shapes; however, the obtained SW of 0.46262 with p = 2 suggests a lower value. This value is
below the midpoint of the SW range, indicating weak separation between the clusters and the
background noise.

The DBSCAN-KDE algorithm

Kernel density estimation is primarily applied in the spatial component of the earthquake
data of the Philippines using Epanechnikov as a kernel function and the GridSearchCV method
for bandwidth selection. A smooth density distribution map across the dataset has resulted from
this process. Taking into account the estimated density value, the results in KDE highlight the
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regions with higher and lower seismic activity. Regions with higher density indicate potential
earthquake hotspots.

Figure 2: Earthquake Plot of the Philippines with Estimated Density

A density threshold value of 0.0024 was established to determine the regions of significant
seismic activity from the background noise. This threshold value is based on the estimated den-
sity and was instituted to distinguish areas with frequent occurrences of earthquakes, by using
this the cluster centers were defined as points with densities exceeding the threshold. These
remaining centers represented potential epicenters of earthquake clusters and are then fed into
the DBSCAN algorithm for final cluster identification.

The resulting clusters from the DBSCAN-KDE algorithm with an ϵ and MinPts value of
0.3 and 50, respectively, were verified by comparing them to the map of the active faults in the
Philippines, represented by red lines.
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(a) (b)

Figure 3: (a) DBSCAN-KDE Clustering of Earthquake Data Points and (b) Active Faults in
the Philippines.

Figure 3 shows (a) the results of the DBSCAN-KDE clustering and (b) the active faults in
the Philippines. This side-by-side visualization allows for a clear comparison of the identified
clusters and the actual locations of the seismic activity. A close alignment between the clusters
generated by DBSCAN-KDE and the known active faults in the Philippines can be observed.
It can be seen that regions in the Southeastern part of the Philippines are where earthquakes
frequently occur, followed by regions in the northern part of the Philippines. This visual valida-
tion step of the clustering results of the DBSCAN-KDE technique is crucial because it assesses
how well the DBSCAN-KDE algorithm performs in real-world applications.

In addition, the bandwidth value obtained is 5.9566 with Silhouette width, computed us-
ing the generalized mean with parameter p = 2, for the resulting clustering solutions of the
DBSCAN-KDE algorithm, is found to be 0.52846. In this context, a Silhouette width value
above 0.5 suggests a reasonable split of clusters. In contrast to the DBSCAN algorithm, since
the DBSCAN-KDE approach has a dt parameter that filters data points that are to be part
of the clustering solutions, it can be assumed that those data points that are more likely noise
points will not be included in the DBSCAN process, hence the reason why DBSCAN-KDE
approach obtained a high SD even though both algorithms produced the same clustering so-
lutions. Nonetheless, adjusting the algorithm’s parameters or exploring alternative approaches
could enhance the separation and cohesion of the identified clusters, leading to more meaningful
insights from the data.
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5 Summary And Recommendation

Summary

In both the simulation and empirical study, three main points were observed. First, the
DBSCAN algorithm is more parameter-sensitive than the DBSCAN-KDE algorithm, especially
if the dataset contains greater dispersion. Secondly, when the density threshold (dt) parameter
is selected accordingly, the DBSCAN-KDE approach consistently beats the DBSCAN algorithm
and is not particularly parameter-sensitive. Lastly, the integration of the kernel density estima-
tion method and dt parameter helps to enhance the performance of the DBSCAN algorithm.

In the simulation study, specific observations were made: a) Table 2 presents the summary of
the results obtained in Scenario 1 (S1) where a comparison of the DBSCAN and DBSCAN-KDE
algorithms with equal SD within each cluster and dt set to 0. Examining these results both
algorithms performed identically. However, when SD is equal to 2.8 and 3.0, both algorithms
gave a lower value of average SW across 100 iterations; b) When dt is set to 0 with SD equal
to 2.8 and 3.0 DBSCAN and DBSCAN-KDE failed to distinguish the predetermined number
of clusters correctly; c) Table 3 summarizes the results of DBSCAN and DBSCAN-KDE algo-
rithms in Scenario 2 (S2) where both algorithms are compared under varying SD within each
cluster and dt set to 0. Based on the acquired results both algorithms continuously performed
similarly; and d) Table 4 and Table 5 give the summary results of Scenario 3 (S3) and Scenario
4 (S4), respectively. It can be observed in the results that the benefits of integrating the kernel
density estimation method in the DBSCAN algorithm with dt parameter set to 0.0005 is satis-
factory. Generally, during the simulation, DBSCAN-KDE consistently gives higher SW values
under uniform and varying SD among data points within the cluster over 100 iterations.

In conclusion, the comparative analysis highlights the major advantages of employing the
DBSCAN-KDE algorithm over the traditional DBSCAN algorithm, particularly in scenarios
where data dispersion varies greatly. The incorporation of KDE as a pre-processing approach
additionally enhances the algorithm’s performance and also broadens its application to a wider
range of datasets, making it a more flexible and useful tool for cluster analysis. Additionally,
the DBSCAN-KDE algorithm was applied to real-world datasets in an empirical investigation,
resulting in clustering solutions that suggest a reasonable split of clusters, and a high SW value
was obtained than the traditional DBSCAN algorithm.

Recommendations

Interestingly, it should also be noted that although the DBSCAN-KDE algorithm demon-
strates good results in this particular case, the optimal density threshold, in any case, will
always depend on the dataset and the specific problem at hand. As a result, it should be se-
lected during in-depth analyses and comparisons. Here are a few potential areas of research:
(a) developing an approach for determining the optimal value of the density threshold can be
compelling to explore; (b) possible enhancements including methodically choosing the optimal
values for the ϵ and MinPts parameters; (c) adding new features or data types. For instance,
additional data related to geography or earthquake epicenters could enhance the algorithm re-
sulting in even more precise clustering results; (d) using different kernels or bandwidths; and (e)
comparing the performance of the DBSCAN-KDE algorithm with other clustering algorithms.
These areas could provide a more comprehensive understanding of the strengths and weaknesses
of the DBSCAN-KDE algorithm in different contexts.
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