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Abstract

This study investigated the status of rice stocks in the Philippines by analyzing data
obtained from the Philippines Statistics Authority (PSA) spanning from January 2000 to
March 2023. The exponential smoothing and Box-Jenkins methods were used to build
a forecasting model for the rice stock in the Philippines. The different models for each
method were evaluated in the training dataset using Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Akaike’s Information
Criterion (AIC). The Holt-Winters(A,A,A) model and the ARIMA(0, 1, 0) × (0, 1, 1)12
model were the candidate models for the exponential smoothing method and Box-Jenkin
method, respectively. The two candidate models performed closely during the training stage.
However, the Holt-Winters(A,A,A) had smaller forecasting errors in the testing set. Thus,
the final forecasting model was Holt-Winters(A,A,A). The forecast from the model suggests
that Philippine rice stock may be enough to supply the country if there is no increase in the
demand for rice until March 2024.

1 Introduction

Rice holds a special significance in the lives of Filipinos and other Asian countries. Despite
the availability of essential foods like bread and noodles, rice remains the most preferred and
cherished staple in the Philippines. It goes beyond being just a source of sustenance; locally
known as ”Palay” when unmilled, ”Bigas” when milled, and ”Kanin” when cooked, rice is deeply
intertwined with the historical and cultural fabric of the nation. Throughout various regions in
Luzon, Visayas, and Mindanao, it has become integral to traditions, ceremonies, and cultural
activities [13]. Considering its immense importance to Filipino culture, nutrition, consumption,
and economy, we should preserve its value and express gratitude to the hardworking farmers
who toil to bring this essential grain to our tables.
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With its extensive importance to the Filipino diet, it is also important to ensure its supply
stability to cater to the growing demand for more rice. According to PSA (Philippine Statistics
Authority) data, a typical Filipino consumes 118.81 kilograms (kg) of rice each year [4]. This
is equivalent to consuming around 325.5 grams of milled rice every day. Considering the total
population of the Philippines at approximately 114, 189, 499 people [1], the total annual rice
consumption in the Philippines would be approximately more than 12.3 million metric tons
(MMT).

A time series is a sequence of observations arranged according to the time of their outcome
[20]. Simply, it pertains to a series of data points ordered in time. A time series can be
decomposed into four major components: trend T , season S, cycle C, and irregular pattern I.
Trend T refers to the long-term upward or downward movement that characterizes a time series
over a period of time. A seasonal variation S is a regular periodic fluctuation within a year. In
contrast, cycle C refers to the up and down fluctuations that are observable over an extended
period of time. Lastly, the irregular pattern I is an unpredictable random variation in the time
series that the other three components (trend, cycle, seasonality) fail to account for.

Two common statistical methods exist in time series data: the exponential smoothing models
[19] and the Box-Jenkins methods [8]. Through these methods, the study will build a forecasting
model to estimate the monthly rice stock in the Philippines. This model will forecast rice stock
inventory from April 2023 to March 2024.

This study thoroughly assesses the forecasting accuracy of both models by examining their
performance on the given Philippine rice stock [16] data set. The evaluation will be based on
how closely the model’s forecast aligns with the observed values. The Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) will be
used to measure the accuracy of the model during model building and final evaluation [20]. The
Akaike’s Information Criterion (AIC) [11] will also be used for model comparison, especially
for models with different numbers of parameters. By adopting this evaluation strategy, the
research seeks to identify the model that exhibits the least error and demonstrates superior
forecasting capabilities for the Philippine Rice Stock, aiding policymakers and stakeholders in
making informed decisions about the nation’s rice supply and demand dynamics.

2 Methodology

The monthly total stock inventory of rice in the Philippines from January 2000 to March
2023, expressed in kilo-metric tons (KMT), was used to produce a forecasting model using
Exponential Smoothing [19] and Box-Jenkins models [8]. The data is then partitioned into
training and testing sets. The training set is from January 2000 to July 2018, while the testing
set is from August 2018 to March 2023. The trend, cycles, seasonality, and irregularities, as
well as normality and variance assumptions, were determined to improve the accuracy of models
further.

2.1 Exponential Smoothing Model

The exponential smoothing model forecasts the future by utilizing previous data as input. The
essential idea of exponential smoothing is to give more weight to recent data and gradually
reduce the weight when observations are made further in the past. As a result, the technique
is more adaptable and sensitive to current data changes. Three basic variations of exponential
smoothing are commonly used: simple exponential smoothing [18], trend-corrected exponential
smoothing [2], and Holt–Winters’ method [2, 14].
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Forecasting Monthly Rice Stock 2.1 Exponential Smoothing Model

Simple exponential smoothing is suitable for forecasting data with no clear trend or seasonal
pattern. The smoothing equation is given by

lt = αyt + (1− α)lt−1 (1)

where lt is the level at time t and 0 ≤ α ≤ 1 is the smoothing parameter. The h-ahead
forecast is given by

yt+h|t = lt. (2)

Holt’s linear trend method [2] is an extended simple exponential smoothing to allow data
forecasting with a trend. This method has equations for level and trend. The level and trend
are given by

lt = αyt + (1− α)(lt−1 + bt−1), (3)

and
bt = β∗(lt − lt−1) + (1− β∗)bt−1, (4)

where bt denotes an estimate of the trend (slope) of the series at time t, 0 ≤ β∗ ≤ 1 is the
smoothing parameter for trend. The h-ahead forecast is then

yt+h|t = lt + hbt. (5)

This method may include a damping parameter 0 ≤ ϕ ≤ 1. In effect, equations (5),(3) and
(4) are now in the form of

yt+h|t = lt + (ϕ+ ϕ2 + · · ·+ ϕh)bt, (6)

lt = αyt + (1− α)(lt−1 + ϕbt−1), (7)

and
bt = β∗(lt − lt−1) + (1− β∗)ϕbt−1. (8)

Holt [2] and Winters [14] extended Holt’s method to capture seasonality. The Holt-Winters
seasonal method comprises the forecast equation and three smoothing equations, one for the
level lt, one for the trend bt, and one for the seasonal component st with corresponding smoothing
parameters α, β∗ and γ. Furthermore, it can be in the form of an additive or multiplicative
model. The three smoothing equations in the additive model and its forecasting equation are
given by

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1), (9)

bt = β∗(lt − lt−1) + (1− β∗)bt−1, (10)

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m, (11)

and
yt+h|t = lt + hbt + st+h−m(k+1), (12)

respectively, where m is the seasonal frequency and k = int((h−1)/m). On the other hand, the
three smoothing equations in the multiplicative model and its forecasting equation are given by

lt = α

(
yt

st−m

)
+ (1− α)(lt−1 + bt−1), (13)
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bt = β∗(lt − lt−1) + (1− β∗)bt−1, (14)

st = γ

(
yt

lt−1 + bt−1

)
+ (1− γ)st−m, (15)

and

yt+h|t = (lt + hbt)st+h−m(k+1), (16)

respectively. According to Hyndman and Athanasopoulos (2021) [20], a method that often
provides accurate and robust forecasts for seasonal data is the Holt-Winters method with a
damped trend. The three smoothing equations in the damped multiplicative model and its
forecasting equation are given by

lt = α

(
yt

st−m

)
+ (1− α)(lt−1 + ϕbt−1), (17)

bt = β∗(lt − lt−1) + (1− β∗)ϕbt−1, (18)

st = γ

(
yt

lt−1 + ϕbt−1

)
+ (1− γ)st−m, (19)

and

yt+h|t = [lt + (ϕ+ ϕ2 + · · ·+ ϕh)bt]st+h−m(k+1), (20)

respectively.

The classification of the different exponential smoothing methods can be summarized using
Table 1. Depending on the presence and type of components, one can use the entries in Table 1
as shorthand notation of these methods, e.g., simple exponential smoothing can be written as
(N,N).

Table 1: Exponential smoothing methods classification based on trend and seasonal components.

Trend Component
Seasonal Component

N (None A (Additive) M (Multiplicative)

N (None) (N,N) (N,A) (N,M)

A (Additive) (A,N) (A,A) A,M

Ad (Additive dumped) (Ad, N) (Ad, A) (Ad,M)

M (Multiplicative) (M,N) (M,A) (M,M)

Md (Multiplicative Dumped) (Md, N) (Md, A) (Md,M)

Exponential smoothing methods that were presented before generate only a point forecast.
However, it can also generate interval forecasts by introducing errors in each method. Hence,
each method can be extended into two models with either additive A or multiplicative M
errors. ETS(Error, Trend, Seasonal) [19] is used as shorthand notation in distinguishing these
models. For example, a simple exponential smoothing with additive errors can be written as
ETS(A,N,N).
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2.2 Autoregressive Integrated Moving Average Model

An Autoregressive Integrated Moving Average (ARIMA) model is a form of regression analysis
that gauges the strength of one dependent variable relative to other changing variables [25]. An
ARIMA model has three components: Autoregression (AR) which refers to a model that shows
a changing variable that regresses on its own lagged or prior values; Integrated (I) represents the
differencing of raw observations to allow the time series to become stationary where data values
are replaced by the difference between the data values and the previous values; and Moving
average (MA) which incorporates the dependency between an observation and a residual error
from a moving average model applied to lagged observations [7]. For ARIMA models, a standard
notation would be ARIMA(p, d, q), where p, d, and q represents the order of autoregressive,
differencing, and moving average, respectively. The model can be expressed as

ϕp(B)(1−B)dzt = θq(B)at (21)

where
zt = yt − µy,

ϕp(B) = (1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p),

θp(B) = (1− θ1B − θ2B
2 − · · · − θqB

q),

Bjzt = zt−j ,

and at is from a white noise process, i.e.

at ∼ WN(0, σ2
a).

2.3 Modelling Procedure

Modeling time series data using ARIMA follows the Box-Jenkins methodology [8, 7]. The
modeling approach involves checking stationarity conditions, order selection, estimation, and
checking assumptions.

A stationary time series is one whose statistical features, such as mean and variance, are
unaffected by the time the series is seen, and the correlation between observations is determined
only by their temporal difference rather than by time itself [25]. Time series with trends or
seasonality are not stationary since the trend and seasonality will affect the value of the time
series. The study used Augmented Dickey-Fuller (ADF) test [3] to test the stationarity of the
time series. ADF test tests the null hypothesis that the time series is not stationary. If the data
is not stationary, the differencing technique is applied. The k−order differencing is the value
from computing

(yt − yt−1)
k.

The lowest k at which the differenced series becomes stationary will be the order of the differ-
encing in the ARIMA model, i.e., d = k.

The autocorrelations and the partial-autocorrelations give the general idea of how to select
the order of the AR and MA part in ARIMA model [25]. The nature of the autocorrelation
function (ACF) and partial-autocorrelation function (PACF) of the difference times series with
order d is summarized in Table 2. Once the order of the different parts of the ARIMA is iden-
tified, the parameters ϕ1, · · · , ϕp, θ1, · · · , θq are estimated. The common method of estimating
these parameters is using maximum likelihood estimation (MLE). MLE finds the parameters’
values that maximize the data’s likelihood function. The MLE estimates are similar to least
square estimates, obtained by minimizing the sum of squares of the residuals.

Residuals are useful in checking whether a model has adequately captured the information
in the data. A good model will yield residuals with the following properties [20]:
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Table 2: Exponential smoothing methods classification based on trend and seasonal components.

Model ACF PACf

ARIMA(p, d, 0) Decaying exponentially and/or dumped sinusoid Cuts off after lag p

ARIMA(0, d, q) Cuts off after lag q Decaying exponentially and/or dumped sinusoid

ARIMA(p, d, q) Decaying exponentially and/or dumped sinusoid Decaying exponentially and/or dumped sinusoid

1. The residuals are uncorrelated. If there are correlations between residuals, then informa-
tion is left in the residuals that should be used in computing forecasts.

2. The residuals have zero mean. The forecasts are biased if the residuals have a mean other
than zero.

3. The residuals have constant variance.

All these properties must be satisfied so the model will meet the assumption of white noise
errors. To check the non-autocorrelated property of the residuals, the study used Ljung-Box
test [9]. Ljung-Box test tests the null hypothesis that the errors are uncorrelated.

2.4 Seasonal ARIMA Model

SARIMA or Seasonal ARIMA is an extended algorithm that has a seasonal component along
with the Autoregressive Integrated Moving Average method. The model has additional param-
eters and is written as ARIMA(p, d, q) × (P,D,Q)m, where m is the seasonal period, while
P,D, and Q are the seasonal autoregressive, seasonal differencing and seasonal moving average
orders, respectively [6]. The model is expressed as

ΦP (B)ϕp(B)(1−B)d(1−Bm)Dzt = ΘQ(B)θq(B)at (22)

where

ΦP (B) = (1− Φ1B
m − Φ2B

2m − · · · − ΦPB
Pm)

and

Θp(B) = (1−Θ1B −Θ2B
2m − · · · −ΘqB

Qm).

The SARIMA modeling procedure is not very different from the (non-seasonal) ARIMA; only
that the seasonal parts are identified separately.

The K-order seasonal differencing of a series y for time t is given by

(yt − yt−m)K .

The order of the seasonal differencing D in equation (22) can be identified in the combination
of the non-seasonal differencing order d. The lowest K and k at which the differenced series
becomes stationary will be the seasonal and non-seasonal differencing order, i.e., D = K and
d = k. Meanwhile, the seasonal lags of PACF and ACF will be used to determine the order of
the seasonal autoregressive and seasonal moving average parts of the SARIMA.

2.5 Model Comparison and Selection

The general modeling procedure uses the ACF and PACF to identify the orders of the autore-
gressive and moving average parts in both ARIMA and SARIMA. However, there are times
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when it is not straightforward to identify the orders by just inspecting the ACF and PACF.
Another way to select the order of the model is through a criterion. This study used Akaike’s
Information Criterion (AIC) [11] to choose the better model in the training phase. AIC both
consider the likelihood and number of the parameters in the model. The AIC is given by

AIC = −2 log(L) + 2N, (23)

where L is the likelihood value and N is the total number of unknown parameters in the
model. A model with a larger likelihood value is preferable when assessing two models with the
same number of parameters. Furthermore, a model with fewer parameters is preferable when
comparing two models with the same likelihood value. Thus, a model with a lesser AIC value
is preferable. The study also utilized Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and (Root Mean Square Error (RMSE) in selecting the better model.

The study’s main objective is to build a forecasting model for the rice stock of the Philippines.
Hence, the forecasting performance of the model needs to be measured. The test set is utilized
to evaluate the forecasting performance of the model. The study used Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and (Root Mean Square Error (RMSE) to
assess the performance of the model in forecasting.

All the results are generated from R programming language [17]. The package used in
generating the results is forecast [21, 22].

3 Results and Discussion

3.1 Philippine Rice Stock

Figure 1: Plot of the monthly total number of rice stock (per kilo metric tonne) in the Philippines
from January 2000 to March 2023

Figure 1 shows the monthly total number of rice stocks in the Philippines obtained from
the OpenStat website utilized as the time series data [16]. The Philippine rice stock shows an
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overall gradual increasing trend. This trend is more apparent from 2016 to 2020. The study
used the Mann-Kendall Trend test [12] to test formally whether the series has no monotonic
trend. The test yielded τ = 0.264 with p− value < 0.0001, implying evidence of a trend in the
Philippine rice stock. The historical plot also suggests a cycle component in the series. The
first cycle is from 2000-2008, and the second is from 2009 to 2022.

Figure 2: Seasonal factor of each month in the Philippine rice stock.

Regarding seasonality, the peak of the seasonality is constant and does not change much as
it moves along with time. Figure 2 shows the seasonal effect of each month in the Philippine
rice stock. From Figure 2, it can be observed that the Philippine rice stock seems higher every
January, May, and December compared to other months of the year. In contrast, the months
where the stock seems lower are from August to October. Furthermore, this seasonal effect
seems unaffected by the trend since no apparent behavior shows that the increasing trend over
time amplifies this pattern.

3.2 Exponential Smoothing Methods

The Philippine rice stock exhibits both trend and seasonality patterns. Hence, only Holt-
Winters smoothing models will be considered candidates for exponential smoothing methods
since they have a smoothing parameter for trend and seasonality. The study sets the trend
component as an additive state since according to [20], it is better not to consider a multiplicative
trend because it produces a poor forecast. Meanwhile, the seasonal component is also set to an
additive state since the seasonal pattern’s behavior seems unaffected by the trend, as shown in
Figure 1.

There are four possible models of Holt-Winters smoothing with an additive trend and addi-
tive seasonality. Table 3 shows the training performance of these four models.

Upon assessing the Holt-Winters smoothing models, Holt-Winters with additive error per-
formed better compared to those models with multiplicative errors in the training set since they
have smaller values of RMSE, MAE, MAPE, and AIC. On the other hand, the performance of
those models with additive errors is very close. Holt-Winters(A,A,A) has smaller AIC. This
means that among the Holt-Winters models, Holt-Winters(A,A,A) is the better choice.
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Table 3: ETS model performance comparison based on the training data.

Training Performance
Model

RMSE MAE MAPE AIC

Holt-Winters(A,A,A) 98.77 74.72 5.4 3288.18

Holt-Winters(A,Ad,A) 98.58 74.67 5.39 3289.33

Holt-Winters(M,A,A) 105.30 81..42 5.89 3333.77

Holt-Winters(M,Ad,A) 102.71 78.8 5.69 3330.93

3.3 Box-Jenkins Methods

Before the model development process begins, the determination of the stationarity of the data
is essential. As discussed, the Philippine rice stock has trend and seasonal components. These
characteristics are indicative of non-stationary time series data. Observing also the ACF in
Figure 3, the ACF is decaying quite slowly and also exhibiting a periodic pattern. This slow
decaying pattern suggests non-stationary that may be attributed to either trend or seasonal
components.

Meanwhile, PACF doesn’t exhibit slow decay, but the periodic pattern is still apparent, as
shown in Figure 3. This suggests that the non-stationarity of the data may be attributed greatly
to seasonal components. The ADF test result in Table 4 for d = 0 and D = 1 confirms that the
series is not stationary since the null hypothesis that the data is non-stationary is not rejected.

0.0

0.5

0 12 24 36 48
Lag

AC
F

−0.5

0.0

0.5

0 12 24 36 48
Lag

PA
CF

Figure 3: The autocorrelations and partial-autocorrelations of the training set.

The study tested the stationarity condition of the differenced series when (i) d = 1 but
D = 0, (ii) d = 0 but D = 1, and (iii) both d = 1 and D = 1. From Table 4, the differenced
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Table 4: Augmented Dickey-Fuller Test results for different lags.

Dickey-Fuller Statistics Non-seasonal Dif-
ferencing Order d

Seasonal Dif-
ferencing
Order D

-1.5683 0 0

-14.8244∗ 1 0

-3.3205∗ 0 1

-11.1356∗ 1 1
∗Significant at 5% level of significance

series satisfy the stationary condition for each combination of non-seasonal and seasonal order
of differencing.

−0.4

0.0
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0 12 24 36 48
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F

−0.4

−0.2

0.0

0.2
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0 12 24 36 48
Lag

PA
CF

Figure 4: The autocorrelations and partial-autocorrelations of the first difference (d = 1) train-
ing set.

To gain insights into the possible order of non-seasonal and seasonal parts of the ARIMA, the
correlograms of cases d = 1, D = 0, d = 0, D = 1, and d = 1, D = 1 presented in the Figure 4,
Figure 5, and Figure 6, respectively, were investigated. Based on Figure 4, there is no sign that
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Figure 5: The autocorrelations and partial-autocorrelations of the first seasonal difference (D =
1) training set.

the ACF cuts off at a particular lag. Meanwhile, the PACF shows significant values only within
two seasons. The significant PACF value at lag 12 suggests that the seasonal AR order is P = 1.
Significant values can be observed within a season for different lags, such as at lags 1, 2, 3, or
even at lags 8 to 11. This observation may suggest non-seasonal AR orders p = 1, 2, 3 or higher
orders such as p = 8, 9, 10, 11. However, higher non-seasonal AR orders may lead to complex
models and, hence, less desirable. Thus, based on these observations, the first-order difference
series may follow models such as ARIMA(1, 1, 0)× (1, 0, 0)12, ARIMA(2, 1, 0)× (1, 0, 0)12, or
ARIMA(3, 1, 0)× (1, 0, 0)12.

The ACF decays in a sign-wave fashion for the first-order seasonally difference series, sug-
gesting a possible zero-order MA in both non-seasonal and seasonal components (see Figure 5).
Meanwhile, significant PACF values can be observed for up to three seasons. The spikes at lags
13, 25, and 37 may suggest a seasonal AR order P = 3. In addition, the largest spike at lag
one may be a signal for non-seasonal AR order p = 1. The presence of some significant PACF
values, such as at lags 5, 14, or 20, may also suggest higher non-seasonal AR orders but are
less desirable since they lead to very complex models. Thus, the first-order seasonally difference
series may follow a ARIMA(3, 0, 0)× (1, 1, 0)12 model.

In the case of the series, which has undergone both first-order and first-order seasonal
differencing, only ACF values at lag 12 and lag 33 are significant at a 5% significance level (see
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Figure 6). This suggests a possible non-seasonal MA order of q = 0 and seasonal MA order
of Q = 1. Meanwhile, significant PACF values can be observed for every 12 lags until lag 48.
This suggests a possible seasonal AR order of P = 4. Thus, a possible model for the series with
d = 1 and D = 1 is ARIMA(0, 1, 0)× (4, 1, 1)12.

−0.4

−0.2

0.0

0 12 24 36 48
Lag

AC
F
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−0.2

0.0

0 12 24 36 48
Lag
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CF

Figure 6: The autocorrelations and partial-autocorrelations of the first seasonal (D = 1) and
non-sesaonal (d = 1) difference training set.

Based on the investigation on the ACF and PACF of different cases for differencing, the study
considered ARIMA(p, d, q) × (P,D,Q)12 models with d = {0, 1}, D = {0, 1}, p = {0, 1, 2, 3},
q = {0, 1}, P = {0, 1, 2, 3, 4}, and Q = {0, 1}. The inclusion of lower-order models is due to the
rule of parsimony in modelling. The rule of parsimony in modelling states that an adequate
model with fewer parameters is expected to generalize better than another adequate but more
complex model. Each time series model has undergone diagnostic checking and checking the
stationarity and invertibility conditions. The summary of the training performance of the top
five SARIMA models according to AIC that satisfy the assumptions is presented in Table 5.

Upon comparing different SARIMA models, ARIMA(0, 1, 0)×(0, 1, 1)12 performed the best
based on AIC. It also has a very close value of MAE, MAPE, and RSME with other mod-
els. From Table 3 and Table 5, the ARIMA(0, 1, 0) × (0, 1, 1)12 generally outperformed the
Holt-Winters(A,A,A) on training performance based on the AIC values. However, the Holt-
Winters(A,A,A) exhibits slightly lower RMSE, MAE, and MAPE values.
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Table 5: Performance comparison based on the training data of the SARIMA models.

Training Performance
Model

RMSE MAE MAPE AIC

ARIMA(0, 1, 0)× (0, 1, 1)12 102.3535 76.5844 5.5266 2571.58

ARIMA(3, 1, 0)× (2, 1, 1)12 100.1835 75.9157 5.5228 2572.74

ARIMA(3, 1, 0)× (0, 1, 1)12 100.9787 76.2664 5.5270 2573.10

ARIMA(0, 1, 0)× (1, 1, 1)12 102.3668 76.6074 5.5338 2573.42

ARIMA(0, 1, 1)× (0, 1, 1)12 102.3579 76.5921 5.5298 2573.56

3.4 Forecasting Model

The main objective of this study is to build a forecasting model for the Philippine rice stock.
Between ARIMA(0, 1, 0) × (0, 1, 1)12 and Holt-Winters(A,A,A) , the latter shows better per-
formance in the testing phase as shown in Table 6. It has lower RMSE, MAE, and MAPE than
the ARIMA(0, 1, 0)× (0, 1, 1)12.

Table 6: Test performance of Holt-Winters(A,A,A) and ARIMA(0, 1, 0)× (0, 1, 1)12 .

Testing Performance
Model

RMSE MAE MAPE

Holt-Winters(A,A,A) 264.1482 216.6350 11.0792

ARIMA(0, 1, 0)× (0, 1, 1)12 308.7103 252.2658 13.9021

The description of the errors of Holt-Winters(A,A,A) is shown in Figure 7. The residuals
fluctuate around 0 based on its line plot and the histogram. This suggests that the residuals
may have zero mean. To formally check this, the study tested the null hypothesis that the mean
residual is zero using t-test. The t-test yielded a t = 0.19082 with p-value = 0.8488. This means
the null hypothesis is not rejected at a 5% significance level. Furthermore, the ACF plot of
the residuals shows very minimal significant lags. This suggests a possible non-autocorrelations
of the residuals and is further supported by the Ljung-Box test, which yielded a Q∗ = 34.94
with p-value = 0.07958. Thus, the hypothesis of having unautocorrelated residuals cannot be
rejected at a 5% level of significance. These observations imply that it is safe to assume that
the residuals of Holt-Winters(A,A,A) do not deviate from a white noise process.

After inspection, the final forecasting model for Philippine rice stock is the Holt-Winters(A,A,A).
Its estimated parameters are shown in Table 7. The large value of α suggests that the current
value has more weight than the past values in forecasting the future level of rice stock. In
addition, the small values of β∗ and γ imply that the slope of the trend component and seasonal
components’ slopes hardly change over time, respectively.
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Figure 7: The residuals line plot (upper panel), autocorrelations (lower left), and histogram
(lower right) if the Holt-Winters(A,A,A).

Table 7: Parameters of Holt-Winters(A,A,A).

Parameter Value

α 0.9908

β∗ 0.0002

γ 0.0003

3.5 Philippine Rice Stock Forecast

As Figure 8 shows, the Holt-Winters(A,A,A) forecasted a minimal decrease in rice stock from
April 2023 to March 2024. Despite the gradually decreasing trend, a visible annual seasonal
pattern was observed. Based on the forecasts, rice stock is expected to be highest in December
2023 with 2469.521 KMT and lowest in September 2003 with 1706.940 KMT. Furthermore, the
total forecast for April 2023 to March 2024 is 25669.86 KMT or 25.66986 MMT. The historical
rice consumption for 108.66 million Filipinos as of 2022 is around 12.9 MMT annually. If the
rice consumption of the Filipinos will not drastically increase, then it is safe to say that there
will be enough supply to demand in rice based on the forecasted values.

4 Conclusion

This study compares exponential smoothing and Box-Jenkins to forecast the Philippine monthly
rice stocks (per kilo metric tonne) from January 2000 to March 2023. Among the exponential
smoothing models, Holt-Winters(A,A,A) had a better overall performance in the training stage.
Meanwhile, ARIMA(0, 1, 0)× (0, 1, 1)12 was the best among the trained SARIMA models. Be-
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Figure 8: Historical plot with the one-year forecast (blue line) of monthly rice stock from April
2023 to March 2024 (blue line) using Holt-Winters(A,A,A).

tween the Holt-Winters(A,A,A) and ARIMA(0, 1, 0)× (0, 1, 1)12, the former had lower RMSE,
MAE, and MAPE. However, the difference in these metrics was small, especially in the MAPE,
where the difference was less than 0.2%. Using the AIC, the ARIMA(0, 1, 0)× (0, 1, 1)12 had a
lower value suggesting a better fit in the training set.

The study evaluated the two candidate models using the forecasting errors to choose the final
forecasting model. The data used as a testing set was the values from August 2018 to March
2023. Upon comparison, the Holt-Winters(A,A,A) was selected as the forecasting model for
Philippine rice stock since it had lower forecasting errors.

Based on the Holt-Winters(A,A,A) forecasts, the Philippine rice stock may be enough to
supply the country if there is no increase in the demand for rice until March 2024. However, it
does not guarantee the rice stock stability in the succeeding years due to the extreme effects of
climate change and increasing demand for rice, which is estimated to rise around 16 MMT by
2023-2024[15].

The study only used univariate time series models to forecast the Philippine rice stock.
Because of this limitation, the researchers recommend investigating multivariate models. This
may give better insights into understanding factors that affect the rice stock in the Philippines.
Another worth studying is the spatiotemporal models. These models will help to model the rice
stock for different locations simultaneously.
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