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Abstract: In this paper, we derive integration-by-parts for-
mula using the generalized Riemann approach to stochastic
calculus called the backwards Itô integral. Moreover, we use
integration-by-parts formula to deduce the Itô formula for
the backwards Itô integral.
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1 Introduction

Itô Formula is the chain rule for stochastic calculus. It is
one of the most important tools in stochastic calculus. The
first version of this fundamental result was proved by Itô
[10] in 1951. In this paper, we derived the Itô Formula
by proving the integration-by-parts using the generalized
Riemann approach to stochastic integrals which is called the
backwards Itô integral [4, 3]. This approach is also called
the Henstock approach and was discovered independently
by J. Kurzweil in 1950s and by R. Henstock in the 1960s
when studying the classical (non-stochastic) integral.

The reader is reminded that it is impossible to define
stochastic integrals using the Riemann approach since the
integrators have paths of unbounded variation and the inte-
grands are highly oscillatory. Therefore, Henstock approach
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114 On Integration-by-parts and the Itô Formula for...

has been used to define the Itô integral instead. See, for
instance, [5], [8], [14], [15], [17], [18], and [20] among oth-
ers. These studies have shown that integrals defined by
the generalized Riemann approach encompass the classical
stochastic integral.

Recently, Toh, T.L and Chew, T.S. [16, pp.657-660],
used the same approach to prove their integration-by-parts
Formula for the Itô-Kurzweil-Henstock integral. However,
their integral was defined using Riemann sums where the
tags are always on the left endpoints of the subintervals.
This integral is equivalent to the classical (forward) Itô in-
tegral when the integrator is a Brownian motion.

In this paper, backwards Itô integral [4] was defined us-
ing generalized Riemann approach, but the �-fine division
used to define our integral is backwards in the sense that the
tags are the right endpoints of the disjoint left-open subin-
tervals. The adaptedness property is preserved by using
backwards filtration. Note that backwards �-fine division is
partial since a backwards �-fine full division may not exist.
By using Vitali’s Covering theorem, we are assured that a
partial backwards �-fine division that covers almost the en-
tire interval [0, T ] exists, that is, except for a small part of
[0, T ] whose Lebesgue measure can be made small.

2 Preliminaries

We will assume familiarity with the definitions and basic
properties which can be found in [3]. Throughout this note,
R denotes the set of real numbers, R+

0 the set of nonnegative
real numbers, N the set of positive integers and (⌦,G,P)
denotes a probability space.

Let {G
s : 0  s  T} be a family of sub s-algebras of

G. Then {G
s : 0  s  T} is called a backwards filtration if
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G
t
✓ G

s for all 0  s < t  T . If in addition, {Gs : 0  s  T}

satisfies the following condition: (1) GT contains all sets of
P -measure zero in G; and (2) for each s 2 [0, T ], Gs = G

s�

where G
s =

T
✏>0 G

s�✏
. Then {G

s : 0  s  T} is called a
standard backwards filtration. We often write {G

s
} instead

of {Gs : 0  s  T}.
A stochastic process f or simply process is a function

f : ⌦ ⇥ [0, T ] ! R, where [0, T ] is an interval in R+
0 and

f(·, s) is G
s-measurable for each s 2 [0, T ]. A process f =

{fs : s 2 [0, T ]} is said to be adapted to the standard back-
wards filtration {G

s
} if fs is G

s-measurable for each s 2

[0, T ]. Let B =
�
Bt : t 2 R+

0

 
be a standard Brownian mo-

tion (BM). Let s (Bu : s  u  T ) be the smallest s-
algebra generated by {Bu : s  u  T}. This is the smallest
s-algebra containing the information about the structure of
BM on [s, T ].

Throughout this note, we assume that the standard back-
wards filtration {G

s
} is the family of s-algebras s (Bu : s 

u  T ). This family is then called the natural backwards fil-
tration of B, (see [1, pp. 239-240]). Let (⌦,G, {Gs

},P) be
a standard backwards filtering space. We write L

p(⌦) for
L
p(⌦,G,P) and f 2 L

p(⌦) if E(f)p < 1. We also define

kfk
p
= {E(|f |p)}

1
p . For f 2 L

1(⌦), let E(f) denote the ex-
pectation of f , that is, E(f) =

R
⌦ fdP. The conditional

expectation of f given G
s is the random variable E(f |Gs).

3 Backwards Itô Integral

In this section, we shall present the backwards Itô integral
and some related results. The reader is refered to [4, 3] for
proof.

LetD = {((ui, ⇠i], ⇠i)}
n

i=1 be a finite collection of interval-
point pairs of (0, T ]. Then D is said to be a partial division
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116 On Integration-by-parts and the Itô Formula for...

of [0, T ] if {(ui, ⇠i]}
n

i=1 are disjoint subintervals of (0, T ]. In
addition, if

S
n

i=1(ui, ⇠i] = (0, T ] then D is a division of [0, T ].
Let � be a positive function on (0, T ]. An interval-point

pair ((u, ⇠], ⇠) is said to be backwards �-fine if (u, ⇠] ✓ (⇠ �
�(⇠), ⇠], whenever (u, ⇠] ✓ [0, T ] and ⇠ 2 (0, T ]. We call D
a backwards �-fine partial division of [0, T ] if D is a partial
division of [0, T ] and for each i, ((ui, ⇠i], ⇠i) is backwards �-
fine. Given ✏ > 0, a backwards �-fine partial division D is
said to fail to cover (0, T ] by at most Lebesgue measure ⌘ if
|T �

P
n

i=1(⇠i � ui)|  ⌘.

We remark that given any positive function �, one may
not be able to find a (full) division that covers the entire in-
terval (0, T ]. For example, take �(⇠) = ⇠/2. Then the inter-
val (0, T ] is not covered by any finite collection of backwards
�-fine intervals.

Definition 3.1 Let f = {fs : s 2 [0, T ]} be a process adapted
to the standard backwards filtering space (⌦,G, {Gs

} ,P).
Then f is said to be backwards Itô integrable on [0, T ] if
there exists an A 2 L

2(⌦) such that for every ✏ > 0, there
exist a positive function �(⇠) on [0, T ] and a positive num-
ber ⌘ such that for any backwards �-fine partial division
D = {((ui, ⇠i], ⇠i)}

n

i=1 of [0, T ] that fails to cover [0, T ] by at
most Lebesgue measure ⌘ we have

E
⇣
|

nX

i=1

f⇠i (B⇠i � Bui)� A|
2
⌘
 ✏.

We call A the backwards Ito integral of f, that is, A =R
T

0 ft dBt. It is not di�cult to check that the integral A is
unique up to a set of P-measure zero.

Example 3.2 The Brownian motion B is backwards Itô
integrable on [a, b] with respect to itself, and

Z
b

a

BtdBt =
1

2

�
B

2
b
� B

2
a

�
+

1

2
(b� a).
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The following definitions and theorems can be found in
[4, 3].

Definition 3.3 [2, p.509] Let F = {Fs : s 2 [0, T ]} be a
stochastic process. Then the process F is said to have an
AC

2- property if for each ✏ > 0, there exists ⌘ > 0 such that

E
⇣��

nX

i=1

F (ui, vi)
��2
⌘
 ✏,

for any finite collection of disjoint subintervals {(ui, vi]}
n

i=1

of [0, T ] for which

nX

i=1

|vi � ui|  ⌘.

Theorem 3.4 Let f be backwards Itô integrable on [0, T ].
Let
�(⇠, T ) =

R
T

⇠
ftdBt. Then � has AC

2-property.

Theorem 3.5 Let f and F be stochastic processes on [0, T ].
Then f is backwards Itô integrable to F on [0, T ] if and
only if (i) F satisfies AC2-property and (ii) for every ✏ > 0,
there exists a positive function � on [0, T ] such that for every
backwards �-fine partial division D = {((u, ⇠], ⇠)} of [0, T ]
we have,

E
⇣��(D)

nX

i=1

(B⇠i � Bui)� F (ui, ⇠i)
��2
⌘
 ✏.

Definition 3.6 An adapted process f = {fs : s 2 [0, T ]}
on (⌦,G, {Gs

} ,P) is called backwards L2- martingale if

(i) E(|fs|) < 1, for all s 2 [0, T ];

(ii) E(ft|Gs) = fs whenever 0  t  s  T ; and
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118 On Integration-by-parts and the Itô Formula for...

(iii) sup
t2[0,T ]

R
⌦ |ft|

2
dP < 1.

Theorem 3.7 Let f be backwards Itô integrable on any subin-
terval [0, T ] of [0,1) with F (s, T ) =

R
T

s
ftdBt. Then the

process {Fs : s 2 [0, T ]} is backwards L2-martingale with re-
spect to its natural backwards filtration {G

s
} .

We restate Definition 3.1 in the light of Theorem 3.4 and
Theorem 3.5 as follows.

Definition 3.8 Let f = {ft}t2[0,T ] be backwards adapted
process on (⌦,G, {Gt

},P). Then f is said to be backwards Itô
integrable on [0, T ] if there exists a backwards L2-martingale
process F = {Ft}t2[0,T ] that satisfies the AC

2-property on
[0, T ] such that for every ✏ > 0, there exists a positive func-
tion �(⇠) > 0 such that for every backwards �-fine partial
division D = {((ui, ⇠i], ⇠i)}

n

i=1 of [0, T ] we have

E
 

nX

i=1

���f⇠i(B⇠i � Bui)� (F⇠i � Fui)
���
2
!

 ✏.

In brief, we denote F⇠i � Fui by F (ui, ⇠i).

4 Integration-By-Parts for the Back-
wards Itô Integral

In this section, we shall establish the integration-by-parts
and prove some results relating to it.

Definition 4.1 Let G = {Gt : t 2 [0, T ]} be a backwards
process. For every backwards �-fine partial division D =
{((ui, ⇠i], ⇠i)}

n

i=1 of [0, T ], we define

�G[u, ⇠] := G⇠ �Gu = G(u, ⇠) (11)
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and

V (�G) = inf
�

sup
D

nX

i=1

E
⇣
G(ui, ⇠i)

⌘2
(12)

where sup is taken over all possible backwards �-fine partial
division D of [0, T ] and inf is taken over all possible positive
function �(⇠) on [0, T ].

Definition 4.2 Let f = {ft}t2[0,T ] be backwards adapted
process on (⌦,G, {Gt

},P). In Definition 3.8, replacing B by
a backwards adapted process X = {Xt}t2[0,T ], an integralR

T

0 fdX is defined, which is also called the backwards Itô
integral with respect to X. The stochastic process F (t, T ) =R

T

t
fdX is not necessarily backwards L2-martingale.

Remark 4.3 V (�G) = 0 if and only if for every ✏ > 0,
there is a �(⇠) > 0 on [0, T ] such that for every backwards
�-fine partial division D = {((ui, ⇠i], ⇠i)}

n

i=1 of [0, T ] we have

(D)
nX

i=1

E (G (ui, ⇠i))
2
 ✏.

The following result is very crucial in proving the Itô’s
Formula.

Theorem 4.4 (Integration-By-Parts). Let f and X be back-
wards adapted defined on a standard backwards filtering space
(⌦,G, {Gt

},P). Assume that f is backwards Itô integrable
with respect to X on [0, T ]. Then there exists a backwards
adapted process H such that V (�f�X � �H) = 0 if and
only if X is backwards Itô integrable with respect to f on
[0, T ]. Moreover,
Z

T

0

f(s)dX(s) +

Z
T

0

X(s)df(s)

= f(T )X(T )� f(0)X(0) + (H(T )�H(0)).
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120 On Integration-by-parts and the Itô Formula for...

Proof : Here, we denote f(⇠) = f⇠, X(⇠) = X⇠ and H(⇠) =
H⇠. Suppose a backwards adapted process H exists. Let

F (⇠, T ) =
R

T

⇠
f(t)dX(t) and define

G(⇠, T ) = f(T )X(T )� f(⇠)X(⇠)�

Z
T

⇠

f(t)dX(t)

+ (H(T )�H(⇠))

= f(T )X(T )� f(⇠)X(⇠))� F (⇠, T ) +H(⇠, T ).

Given any ✏ > 0, there exists a positive function �1 on [0, T ]
such that for every backwards �1-fine partial division D1 =
{((ui, ⇠i], ⇠i)}

n1

i=1 of [0, T ] we have,

n1X

i=1

E
✓
f⇠i(X⇠i �Xui)� F (ui, ⇠i)

◆2


✏

4
.

Since V (�f�X ��H) = 0 it follows by Remark 4.3, that
there exists a positive function �2 on [0, T ] such that for ev-
ery backwards �2-fine partial division D2 = {((ui, ⇠i], ⇠i)}

n2

i=1

of [0, T ] we have,

n2X

i=1

E
⇣
(f⇠i � fui)(X⇠i �Xui)�H(ui, ⇠i)

⌘2


✏

4
.

Define �(⇠) = min{�1(⇠), �2(⇠)} for all ⇠ 2 [0, T ]. Let D =
{((ui, ⇠i], ⇠i)}

n

i=1 be a backwards �-fine partial division of
[0, T ]. Then we have,

nX

i=1

E
✓
X⇠i (f⇠i � fui)�G(ui, ⇠i)

◆2

< ✏.

Hence, X is backwards Itô integrable with respect to f on
[0, T ].
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Conversely, suppose that X is backwards Itô integrable
with respect to f on [0, T ] with K(t, T ) =

R
T

t
X(s)df(s).

We follow the idea above by letting

H(⇠, T ) =

Z
T

⇠

f(t)dX(t) +

Z
T

⇠

X(t)df(t)

� [f(T )X(T )� f(⇠)X(⇠)] .

(13)

Then given any ✏ > 0, there exists a positive function �1 on
[0, T ] such that for every D1 = {((ui, ⇠i], ⇠i)}

n1

i=1 backwards
�1-fine partial division of [0, T ] we have,

n1X

i=1

E
✓
X⇠i(f⇠i � fui)� (K⇠i �Kui)

◆2


✏

4
.

Note that f is backwards Itô integrable to

F (t, T ) =

Z
T

t

f(s)dX(s)

with respect to X on [0, T ]. For each ✏ > 0, there exists
a positive function �2 on [0, T ] such that for every D2 =
{((ui, ⇠i], ⇠i)}

n2

i=1 backwards �2-fine partial division of [0, T ]
we have,

n2X

i=1

E
✓
f⇠i(X⇠i �Xui)� (F⇠i � Fui)

◆2


✏

4
.

We will show that V (�f�X � �H) = 0, that is, for
each ✏ > 0, there exists a positive function � on [0, T ]
such that for every backwards �-fine partial division D0 =
{((ui, ⇠i], ⇠i)}

n

i=1 of [0, T ] we have,

nX

i=1

E
⇣
(f⇠i � fui)(X⇠i �Xui)� (H⇠i �Hui)

⌘2


✏

4
.
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122 On Integration-by-parts and the Itô Formula for...

Now, define �(⇠) = min{�1(⇠), �2(⇠)} for all ⇠ 2 [0, T ]. Let
D = {((ui, ⇠i], ⇠i)}

n

i=1 be a backwards �-fine partial division
of [0, T ]. Then we have,

nX

i=1

E
⇣
(f⇠i � fui)(X⇠i �Xui)�H(ui, ⇠i)

⌘2
 ✏.

The proof is now complete. ⇤

The following corollary is a special case of Theorem 4.4
by putting H(t) ⌘ 0.

Corollary 4.5 Let f and X be backwards adapted processes
defined on (⌦,G, {Gt

},P). If f backwards Itô integrable with
respect to X on [0, T ] and V (�f�X) = 0, then X is back-
wards Itô integrable with respect to f on [0, T ]. Furthermore,

Z
T

0

f(s)dX(s) +

Z
T

0

X(s)df(s) = f(T )X(T )� f(0)X(0).

Also, by letting f = X, the next corollary follows.

Corollary 4.6 Let X be backwards adapted processes de-
fined on the standard backward filtering space (⌦,G, {Gt

},P)
such that

V (�X)2 = 0.

Then X is backwards Itô integrable with respect to X and

Z
T

0

X(s)dX(s) =
1

2
X(T )2 �

1

2
X(0)2.

The next result follows from Theorem 4.4 by setting f = X

and H = G.
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Corollary 4.7 Let X be backwards adapted processes de-
fined on the standard backward filtering space (⌦,G, {Gt

},P)
such that there exists a process G with

V ((�X)2 ��G)2 = 0.

Then X is backwards Itô integrable with respect to X and

Z
T

0

X(s)dX(s) =
1

2
X(T )2 �

1

2
X(0)2 +

1

2
(G(T )�G(0)) .

Lemma 4.8 The following are true; (i) V ((�B)2��G)2 =
0, where G(u, ⇠) = ⇠ � u, and (ii.) For each ✏ > 0, there
exists a positive function � on [0, T ] such that for every back-
wards �-fine partial division D = {((ui, ⇠i], ⇠i)}

n

i=1 of [0, T ],
we have

nX

i=1

h
E
�
(B⇠i � Bui)

2
� (⇠i � ui)

�4i 1
2
 ✏.

Proof : To prove (i), let ✏ > 0 be given and choose �(⇠) =
✏

2T so that for any backwards �-fine partial division D =
{((ui, ⇠i], ⇠i)}

n

i=1 of [0, T ] we have

nX

i=1

E
�
(B⇠i � Bui)

2
�G(u, ⇠)

�2
 ✏.

In proving (ii), we need to use the fact that

E

⇣
(B⇠i � B⇠i)

⌘2p
= Cp(⇠i � ui)

p
, (14)

for some constant Cp, p > 0 (see [19, p.283]). The proof is
similar to that of (i). ⇤
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124 On Integration-by-parts and the Itô Formula for...

Example 4.9 Let X be a Brownian motion B which is
by definition is backwards adapted to standard backwards
filtering space (⌦,G, {Gt

},P). By applying the Theorem
4.7 and Lemma 4.8(i), B is backwards Itô integrable with
respect to itself. Moreover, by definition of G in Lemma
4.8(i) we have

Z
T

0

B(s)dB(s) =
1

2
B(T )2 �

1

2
B(0)2 +

1

2
T (15)

Observe that there is one extra term, the 1
2T . This is be-

cause the Brownian motion is of unbounded variation.

5 The Itô Formula

The integration-by-parts formula that is developed earlier
is the main tool in proving the Itô Formula. It asserts that,
if F : R ! R is a real valued function which is at least
twice continuously di↵erentiable on R and that the following
condition (�) holds:

(1)

Z
T

0

F
0(B(t))dB(t), and;

(2)

Z
T

0

F
00(B(t))dB(t)

both exist in terms of L2-convergence.

The goal is to show that

Z
T

0

F
0(B(t))dB(t) = F (B(T ))� F (B(0))

+
1

2

Z
T

0

F
00(B(t))dt

(16)
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Note that in [11, pp. 105-107], the Itô Formula is shown
using convergence in probability but we do not impose such
a condition here.

Lemma 5.1 Let F : R ! R be at least twice continuously
di↵erentiable with the condition (�) above. Then there ex-
ists a backwards adapted process H such that
V (�F

0�B ��H) = 0 if and only if the backwards adapted
process B(t) is backwards Itô integrable with respect to F

0(B(t))
on [0, T ]. Furthermore,

Z
T

0

F
0(B(t))dB(t) +

Z
T

0

B(t)dF 0(B(t))

= F
0(B(T ))B(T )� F

0(B(0))B(0)

+ (H(1)�H(0)).

Proof : Let f(t) = F
0(B(t)) and X = B, and by applying

integration-by-parts, the result follows. ⇤

Lemma 5.2 Let f be backwards Itô integrable with respect
to B with the primitive process �(t, T ) =

R
T

t
f(s)dB(s).

Let G = {Gt : t 2 [0, T ]} be backwards adapted process.
If V (�G � ��) = 0, then for every ✏ > 0 there exists a
positive function � on [0, T ] such that for every backwards �-
fine partial division D = {((ui, ⇠i], ⇠i)}

n

i=1 of [0, T ], we have

nX

i=1

E
⇣
f⇠i(B⇠i � Bui)�G(ui, ⇠i)

⌘2
 ✏.

That is, �(ui, ⇠i) can be replaced by f⇠i(B⇠i�Bui) in V (�G�

��) = 0.

Proof : Let ✏ > 0. Since f is backwards Itô integrable
with respect to B with the primitive process �(t, T ) =
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R
T

t
f(s)dB(s), it follows that there exists a positive func-

tion �1 on [0, T ] such that for every backwards �1-fine partial
division D1 = {((ui, ⇠i], ⇠i)}

n1

i=1 of [0, T ], we have

(D1)
n1X

i=1

E
⇣
f⇠i(B⇠i � Bui)� �(ui, ⇠i)

⌘2


✏

4
.

Since V (�G � ��) = 0, it follows from Remark 4.3 that
there exists a positive function �2 on [0, T ] such that for ev-
ery backwards �2-fine partial division D2 = {((ui, ⇠i], ⇠i)}

n2

i=1

of [0, T ], we have

(D2)
n2X

i=1

E
⇣
G(ui, ⇠i)� �(ui, ⇠i)

⌘2


✏

4
.

Define �(⇠) = min{�1(⇠), �2(⇠)} for all ⇠ 2 [0, T ]. Let D =
{((ui, ⇠i], ⇠i)}

n

i=1 be a backwards �-fine partial division of
[0, T ], then we have

(D)
nX

i=1

E
⇣
f⇠(B⇠i � Bui)�G(ui, ⇠i)

⌘2
 ✏,

thereby completing the proof. ⇤

Theorem 5.3 Let F be a backwards adapted process that is

at least twice continuously di↵erentiable with

Z
T

0

F
0(B(t))dB(t)

and

Z
T

0

F
00(B(t))dB(t), both exist in terms of L2-convergence.

Furthermore, we assume that

lim
t!s

E(F 00(B(s))� F
00(B(t)))4 = 0.
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If H is the backwards adapted process given in Lemma 5.1.
Then H equals

H(t, T ) = � [F 0(B(T ))B(T )� F
0(B(t))B(t)]

+ [F (B(T ))� F (B(t))]

+
1

2

Z
T

t

F
00(B(s))ds+

Z
T

t

B(s)dF 0(B(s)).

The following results are needed.

Lemma 5.4 Let F be a backwards adapted process that is
at least twice continuously di↵erentiable. Then for every
✏ > 0 given, there exists a positive function � on [0, T ] small
enough such that when ✓ 2 (u, ⇠] ✓ (⇠ � �(⇠), ⇠],

E (F 00(B(⇠))� F
00 (B(✓)))4  ✏.

Proof : Observe that F 00 is continuous and Brownian motion
B has continuous sample paths. Therefore, F

00
B is uni-

formly continuous on [0, T ]. Thus, for every ✏ > 0 there
exists a positive function �(⇠) on [0, T ] small enough such
that when ✓, ⇠ 2 (u, ⇠] ✓ (⇠ � �(⇠), ⇠], we have

kF
00(B(⇠))� F

00 (B(✓))k
p
 ✏.

By taking p = 4 we have,

kF
00(B(⇠))� F

00 (B(✓))k4  ✏,

and the result follows. ⇤

Lemma 5.5 Let F be a backwards adapted process that is at
least twice continuously di↵erentiable. Let D = {((ui, ⇠i], ⇠i)}ni=1

be a backwards �-fine partial division of [0, T ]. Then for ev-
ery ✏ > 0, there exists a positive function �(⇠) such that

(D)
nX

i=1

E
�
F

00(B(⇠i)� F
00(B(✓i))) (B(⇠i)� B(ui))

2�2
 ✏.
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Proof : Use the fact that E(B(⇠i)�B(ui))8 = �(⇠i�ui)4 for
some constant � and using Lemma 5.5 the result follows. ⇤
We are now ready to prove the Itô formula.

Proof : Observe that

H(u, ⇠) = F
0(B(u))B(u)� F

0(B(⇠))B(⇠)

+ F (B(⇠))� F (B(u))

+
1

2

Z
⇠

u

F
00(B(s))ds+

Z
⇠

u

B(s)dF 0(B(s)).

(17)

In view of Lemma 5.2, in H(u, ⇠),

Z
⇠

u

F
00(B(s))ds

and Z
⇠

u

B(s)dF 0(B(s))

can be replaced by F
00(B(⇠))(⇠ � u) and B(⇠)(F 0(B(⇠)) �

F
0(B(u))) respectively. Therefore,

E [H(u, ⇠)]2 = E
h
F

0(B(u))B(u)� F
0(B(⇠))B(⇠) + F (B(⇠))

� F (B(u)) + 1
2F

00(B(⇠))(⇠ � u)

+B(⇠) (F 0 (B(⇠))� F
0 (B(u)))

i2
.

On the other hand, apply the Taylor’s expansion to F at
B(u) up to just second order we get,

F (B(u)) = F (B(⇠)) + F
0(B(⇠)) (B(u)� B(⇠))

+
1

2
F

00 (B(✓))(B(⇠)� B(u))2
(18)
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where ✓ 2 (u, ⇠] and equation (18) holds pathwise. Observe
that there exists ↵ between B(u) and B(⇠) such that equa-
tion (18) holds with B(✓) replaced by ↵. Note also that B
is continuous on (u, ⇠], so there exist ✓ such that B(✓) = ↵

Furthermore, note that B(⇠) is in fact B(!, ⇠), that is, B(⇠)
depends on ! 2 ⌦, so ✓ also depends on ! 2 ⌦. Now by
equation (18) we get

E [H(u, ⇠)]2 = E
n
F

0(B(u)) [B(u)� B(⇠)] + F (B(⇠))�
n
F (B(⇠)) + F

0(B(⇠))(B(u)� B(⇠))

+
1

2
F

00(B(✓))(B(⇠)� B(u))2
o
+

1

2
F

00(B(⇠))(⇠ � u)
o2

.

Thus,

E [(F 0(B(⇠))� F
0(B(u))) (B(⇠)� B(u))�H(u, ⇠)]2

= E
h1
2
F

00 (B(✓)) (B(⇠)� B(u))2 �

1
2F

00(B(⇠))(⇠ � u)
i2
.

(19)

Observe that in equation (19) we assume that B(✓) be
replaced by B(⇠). Now, by Lemma 5.5,

(D)
nX

i=1

E
�
F

00(B(⇠i)� F
00(B(✓i))) (B(⇠i)� B(ui))

2�2
 ✏,

whenever D = {((ui, ⇠i], ⇠i)}ni=1 is a backwards �-fine partial
division of [0, T ]. Now going back to equation (19), we have

E [(F 0(B(⇠))� F
0(B(u)))(B(⇠)� B(u))�H(u, ⇠)]2

= E

1

2
F

00 (B(⇠))
⇥
(B(⇠)� B(u))2 � (⇠ � u)

⇤�2 (20)
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Let �k = {⇠ 2 [0, T ] : |E(F 00(B(⇠)))4| 2 [k � 1, k)}, k 2 N.
Then for every ✏ > 0 and k 2 N by Lemma 4.8(ii) there
exists a positive function �k on �k such that

nX

i=1

h
E
�
(B(⇠)� B(u))2 � (⇠ � u)

�4i 1
2


✏

2k(
p
k)

for any backwards �k-fine partial divisionD = {((ui, ⇠i], ⇠i)}ni=1

with ⇠i 2 �k.
Clearly, we have [0, T ] =

S1
k=1 �k. Define �(⇠) = �k(⇠),

if ⇠ 2 �k, for k = 1, 2, 3, . . .. Let D = {((ui, ⇠i], ⇠i)}ni=1 be
any backwards �-fine partial division of [0, T ], and Dk =
{(ui, ⇠i], ⇠i) 2 D : ⇠i 2 �k}. Then

(D)
nX

i=1

E
⇣
(F 00(B(⇠i)))

2 �(B⇠i � Bui)
2
� (⇠i � ui

�2⌘

 (Dk)
X

i

h
(E (F 00 (B (⇠i)))

4
i ⇥

E (B⇠i � Bui)
2
� (⇠i � ui)

4⇤ 1
2



1X

i=1

p

k(Dk)
X

i

E[((B⇠i � Bui)
2
� (⇠i � ui)

4]
1
2



1X

i=1

p

k
✏

2k(
p
k)

=
1X

i=1

✏

2k

= ✏.

(21)

Hence, by equation (20), we have

(D)
nX

i=1

E
��
F

0(B(⇠))� F
0(B(u))

�
(B(⇠)� B(u))�H(u, ⇠)

�2

=
1

4
(D)

nX

i=1

E
��
F

00 (B(⇠i))
��
(B⇠i � Bui)

2
� (⇠i � ui)

��2
 ✏

The MINDANAWAN
Journal of Mathematics

Volume 3 Issue 2
October 2012



J.P. Arcede, E.A. Cabral 131

and the proof is done. ⇤

By substituting H(⇠, T ) of Theorem 5.3 to Lemma 5.1,
the Itô Formula follows.

Theorem 5.6 (Itô Formula) Let F : R ! R be a twice con-
tinuously di↵erentiable function with additional condition �
and

lim
t!s

E(F 00(B(s))� F
00(B(t)))4 = 0.

If F 0(B(t)) is backwards Itô integrable with respect to B(t).
Then we have
Z

T

s

F
0(B(t))dB(t) = F (B(s))�F (B(0))+

1

2

Z
T

s

F
00(B(t))dt.
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[1] Applebaum, David. Lévy Processes and Stochastic Cal-
culus. Cambridge University Press, 2004.

[2] T. S. Chew, J.Y. Tay and T. L. Toh, The non-uniform
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[7] R. Henstock, The e�ciency of convergence of factors for
functions of a continuous real variable, Journal London
Math. Soc.,Vol. 30 (1955), 273-286

[8] R. Henstock: The General Theory of Integration. Ox-
ford Science, 1991.

[9] R. Henstock, Stochastic and other functional integrals,
Real Anal. Exchange, 16 (1990/1991), 460-470.
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