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Abstract: In this paper, we give some representations of
the terms of the AB-generalized Lucas sequence {v,} us-
ing Hessenberg matrices. These formulas generalize some
results obtained by Kili¢ et al. in [12].

Keywords/Phrases: Fibonacci sequence, Lucas sequence,
generalized Fibonacci sequence, generalized Lucas sequence,
AB-generalized Fibonacci sequence, AB-generalized Lucas
sequence

1 Introduction
For n > 0, the Fibonacci sequence {F,} is defined by
Fn+1 :Fn+Fn71;

where Fy = 0 and F; = 1. The Lucas sequence {L,} is

defined by
Ln+l = Ln + Lnfla

where Ly = 2 and L; = A.

In [5], Kili¢ introduced the generalized Fibonacci se-
quence and gave the explicit formulas for the sums of the
terms of these sequences using matrix methods. He con-
structed essential generating matrices and used matrix prop-
erties to obtain these sums. Kili¢’s definition provided a mo-
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tivation to the construction of the AB-generalized Fibonacci
sequence and AB-generalized Lucas sequence.

Let n > 0 and let A and B be nonzero integers with
A? + 4B # 0. The AB-generalized Fibonacci sequence
{u,} has the recurrence relation

Up41 = Aun + Bun—la

where ug = 0 and u; = 1. The AB-generalized Lucas
sequence {v,} has the recurrence relation

Unt1 = Avn + an—lv

where vg = 2 and v; = A.
In [1], the author gave the combinatorial representations
of {u,} and {v,} and are respectively given by

L2 n=k\ 0ok ok
Un+1=Z L A B,

k=0

v :% n_(n—Fk A2k gk
" ~n—k\ k '

Numerous authors have been interested with the sec-
ond order linear recurrences and show their relationships
between the permanents and determinants of tridiagonal
matrices.

In [10], the authors gave interesting results involving
the permanent of the (—1,0,1)-matrix and the Fibonacci
number F,, ;. Consequently, the authors established some
results involving the positively and negatively subscripted
terms of the Fibonacci and Lucas numbers.

In [8], the authors discovered the families of (0, 1)-matrices
and then gave the relationships between the permanents of
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136 On the AB-Generalized Lucas Sequence by Hessenberg...

these matrices and the sums of the Fibonacci and Lucas
numbers.

In [4], the author introduced two tridiagonal matrices
and then gave the relationships between the permanents
and determinants of these matrices and the second order
linear recurrences.

In [11], the authors introduced the two generalized dou-
bly stochastic matrices and then show the relationships be-
tween the doubly stochastic permanents and the second or-
der linear recurrences.

In [9] and [12], the authors define lower Hessenberg ma-
trices and gave the relationships between the permanents
and determinants of these matrices and the generalized Fi-
bonacci, generalized Lucas and Pell sequences.

Analogous to the methods done in [9], the authors in [14]
also define lower Hessenberg matrices and gave the relation-
ships between the permanents and determinants of these

matrices and the AB-generalized Fibonacci sequence.

A lower Hessenberg matrix M,, = (a;;) is an n x n matrix
where aj, = 0 whenever k > j + 1 and a;(;j11) # 0 for some
j. Clearly,

[ ail a2 0 e 0 0 1
as agz a3 : 0
M, = asy as2 ass 0
A(n—2)(n-1) 0
Apn—1)1 An-1)2 " Qn-1)(n-2) G(n-1)(n-1) An-1)n
L an1l an2 an3 e an(n—l) Gpn J

In [2], the authors consider the above general lower Hes-
senberg matrix and then give the following determinant for-
mula. For n > 2,

n—1 n—1
det Mn = Qnn * det Mnfl + Z ((_1)n_ramr H aj(j+1) det M'rl) .

r=1 j=r
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In this paper, we consider the AB-generalized Lucas se-
quence {v, } and then we show the relationships between the
AB-generalized Lucas sequence and the Hessenberg deter-
minants and permanents. Also, we give the representations
of vg,, and wvy,,1. The authors in [12] proved the results for
special case B = 1.

2 On the AB-Generalized Lucas Se-
quence by Hessenberg Matrices

Consider first the following Hessenberg matrices. Let the
n x n lower Hessenberg matrix G,, defined by

[ A% + 3B

B
B

B
B

B
A+ B
B
B
B

0
B
A2+ B

B

0 0
: 0
0 .
- B 0
B A’+B B
B  A*+ B |

We shall use the following two results later.

Theorem 2.1 [14] For everyn > 0,

[ A2+ B

B
B

B
B

det H,,

Unt2 =

B 0

A’ + B B
B A2+ B

B

B B

where
0 0 i
: 0
0 )
.. B 0
B A’+B B
B A*+B |
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By induction, the following result holds.
Lemma 2.2 For every n > 0,
Upt1 = Upto + Bun

Theorem 2.3 For everyn > 0,
det G,

Un+2 = W or

| 2#2]
2 n+2 (n—l—Z—k

detGn= D ok

) A2n72k Bk )
k=0

Proof: If n = 1, then det G; = det [A? + 3B] = A" v .
Now, let n > 2. By Lemma 2.2, Theorem 2.1 and using
the fact that det H,, = (A? + B) det H,_; — B*>det H,_,, we
have

det G, = (A* +3B)det H,_, — B*det H,_y = A" v,,9,

and the proof is complete. 0

It is worth noting that if A = B = 1, then by Theorem
2.3, we have

41 0 0 0
1 2 1 0
11 2 0 — Lpso,
: 10
11 1 21
11 1 1 2
nxn
where L,, is the n'* Lucas number.
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As done by the authors in [12], we shall now consider
the permanent of a Hessenberg matrix. We define first the
following concepts.

A matrix M is said to be convertible if there is an n x n
(1, —1)-matrix H such that per M = det(M o H), where
M o H denotes the Hadamard product of M and H. The
matrix H is called the converter of M.

Now, let S be an n x n (1, —1)-matrix defined by

1 -1 1 -~ 1 1
1 1 -1 . 1
g—|1 1 1 " 1
U |
r1r -~ 1 1 -1
'+ 1r 1 --- 1 1 |
We denote the Hadamard product G,, o S by D,,. Then
[ A2+3B -B 0 0 0 ]
B A*+B -B : 0
D — B B A*+ B 0 :
: : -B 0
B B B A*+B -B
i B B B B A*+ B |

The following result is a consequence of Theorem 2.3.

Corollary 2.4 For every n > 0,

per D,
Un+2 = W or

[=5*]
per D, = Z

k=0

n+2

n+2—k
n+2—k

A2n72kBk'
)
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3 Representations of vy, and vy,

In this section, we give the representations of vy, and v, 1
using permanents and determinants of some Hessenberg ma-

trices.

Firstly, let the n x n lower Hessenberg matrix £, defined

by

A? + 3B
A? + 2B
A’ + 2B

A% + 2B
A% + 2B

—B 0
A2+ B —-B
A? A2+ B
A2 .
A2 A?

0 0
0

0 )
—-B 0

A> A2+ B -B

A* A*+ B

The following two results are needed in obtaining the
representations of vg, and v, 1.

Theorem 3.1 [14] For every n > 0,

_ detV, L
Ugn = —r—, where
[ A2 -B 0 0 0 ]
A> A>+B -B : 0
2 2 2 :
v, = A A A+ B 0
: : . —B 0
A? A? e A? A2+ B -B
| A? A? A? A? A*+ B |
Theorem 3.2 [14] For everyn > 0,
Ugps1 = det W,  where
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[ A2+ B -B 0 - 0 0 ]
A*  A*+B -B . : 0
W, — A? A2 A4+ B .0 :
z s . -, _B 0
A? A? ... A A2+B -B
L A? A2 ... A2 A4 B |

Theorem 3.3 For every n > 0,
Von+1 = Adet En

Proof: The case where n = 1 is trivial. Suppose that
Vopr1 = Adet E,. We now show that the equation also
holds for n + 1. Now, subtracting the n'® row from the
(n+ 1) row and expanding along the last column, we have
det E, 11 = (A4 2B) det E,, — B*det E,,_;. By the assump-
tion and the recurrence relation of the sequence {v,}, we
have det E,,,1 = A 'vy,, 3. Thus, by induction, the asser-
tion must be true. 0

Secondly, let the n x n lower Hessenberg matrix Z,, de-
fined by

[ A2+ 2B B 0 - 0 l
A* A*+B -B : :
7 A? A2 A+B .0
: : . . _B 0
A? A? ... A* A2+B -B
A7 A? A2 ... A2 A4 B

Then we have the following result.
Theorem 3.4 For every n > 0,

Von = det Zn
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Proof: The equation holds for n = 1. Now assume that
Vo, = det Z,,. We now show that the equation also holds
for n + 1. Then expanding along the first row, we have
det Z,,1 = (A? + 2B)det W,, + BdetV,. By assumption,
recurrence relation of the sequence {v,}, Lemma 2.2 and
Theorem 3.3, we have det Z,,11 = v9,42. Hence, by induc-
tion, the conclusion follows. 0

Consider again the n xn (1, —1) matrix .S defined previ-
ously. We denote the Hadamard products F,, 05 and Z,,0.5
by M, and Y,,, respectively. Then

A%+ 3B B 0 0 0
A2+2B A+ B B : 0
Mo— | A2+2B  A* A+ B 0 :
: : .. B 0
A2+ 2B A2 A2 A2+ B B
| A24+2B A2 A? A* A4+ B |
and
[ A% + 2B B 0 0 0 1
A2 A2+ B B : 0
V. — A? A A*+B 0 '
: : .. B 0
A? A? A? A+ B B
oA A2 A2 A2 A2+ B |

The following results are consequences of Theorems 3.3 and

3.4.

Corollary 3.5 For every n > 0, vg,11 = A per M,.

Corollary 3.6 For every n > 0, vy, = per Y,.
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Using the above results and identity in [1], we have the
following representations:

L?n;lj
det E,, = per M,, = Z

— 2n+1—k k
and
" 2n 2n — k
det Z,, = Y, = A2k gk
et per Z S ( I )
k=0
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