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Abstract: In this paper, we give some representations of
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ing Hessenberg matrices. These formulas generalize some
results obtained by Kiliç et al. in [12].
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1 Introduction

For n > 0, the Fibonacci sequence {Fn} is defined by

Fn+1 = Fn + Fn�1,

where F0 = 0 and F1 = 1. The Lucas sequence {Ln} is
defined by

Ln+1 = Ln + Ln�1,

where L0 = 2 and L1 = A.
In [5], Kiliç introduced the generalized Fibonacci se-

quence and gave the explicit formulas for the sums of the
terms of these sequences using matrix methods. He con-
structed essential generating matrices and used matrix prop-
erties to obtain these sums. Kiliç’s definition provided a mo-
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tivation to the construction of the AB-generalized Fibonacci
sequence and AB-generalized Lucas sequence.

Let n > 0 and let A and B be nonzero integers with
A

2 + 4B 6= 0. The AB-generalized Fibonacci sequence
{un} has the recurrence relation

un+1 = Aun +Bun�1,

where u0 = 0 and u1 = 1. The AB-generalized Lucas
sequence {vn} has the recurrence relation

vn+1 = Avn +Bvn�1,

where v0 = 2 and v1 = A.
In [1], the author gave the combinatorial representations

of {un} and {vn} and are respectively given by

un+1 =

b
n
2 cX

k=0

✓
n� k

k

◆
A

n�2k
B

k
,

vn =

b
n
2 cX

k=0

n

n� k

✓
n� k

k

◆
A

n�2k
B

k
.

Numerous authors have been interested with the sec-
ond order linear recurrences and show their relationships
between the permanents and determinants of tridiagonal
matrices.

In [10], the authors gave interesting results involving
the permanent of the (�1, 0, 1)-matrix and the Fibonacci
number Fn+1. Consequently, the authors established some
results involving the positively and negatively subscripted
terms of the Fibonacci and Lucas numbers.

In [8], the authors discovered the families of (0, 1)-matrices
and then gave the relationships between the permanents of
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136 On the AB-Generalized Lucas Sequence by Hessenberg...

these matrices and the sums of the Fibonacci and Lucas
numbers.

In [4], the author introduced two tridiagonal matrices
and then gave the relationships between the permanents
and determinants of these matrices and the second order
linear recurrences.

In [11], the authors introduced the two generalized dou-
bly stochastic matrices and then show the relationships be-
tween the doubly stochastic permanents and the second or-
der linear recurrences.

In [9] and [12], the authors define lower Hessenberg ma-
trices and gave the relationships between the permanents
and determinants of these matrices and the generalized Fi-
bonacci, generalized Lucas and Pell sequences.

Analogous to the methods done in [9], the authors in [14]
also define lower Hessenberg matrices and gave the relation-
ships between the permanents and determinants of these
matrices and the AB-generalized Fibonacci sequence.

A lower Hessenberg matrixMn = (aij) is an n⇥n matrix
where ajk = 0 whenever k > j + 1 and aj(j+1) 6= 0 for some
j. Clearly,

Mn =

2

6666666664

a11 a12 0 · · · 0 0

a21 a22 a23
. . .

... 0

a31 a32 a33
. . . 0

...
...

...
. . .

. . . a(n�2)(n�1) 0
a(n�1)1 a(n�1)2 · · · a(n�1)(n�2) a(n�1)(n�1) a(n�1)n

an1 an2 an3 · · · an(n�1) ann

3

7777777775

.

In [2], the authors consider the above general lower Hes-
senberg matrix and then give the following determinant for-
mula. For n � 2,

detMn = ann · detMn�1 +
n�1X

r=1

0

@(�1)n�r
amr

n�1Y

j=r

aj(j+1) detMr�1

1

A .
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In this paper, we consider the AB-generalized Lucas se-
quence {vn} and then we show the relationships between the
AB-generalized Lucas sequence and the Hessenberg deter-
minants and permanents. Also, we give the representations
of v2n and v2n+1. The authors in [12] proved the results for
special case B = 1.

2 On the AB-Generalized Lucas Se-
quence by Hessenberg Matrices

Consider first the following Hessenberg matrices. Let the
n⇥ n lower Hessenberg matrix Gn defined by

Gn =

2

666666664

A
2 + 3B B 0 · · · 0 0

B A
2 +B B

. . .
... 0

B B A
2 +B

. . . 0
...

...
...

. . . . . . B 0
B B · · · B A

2 +B B

B B B · · · B A
2 +B

3

777777775

.

We shall use the following two results later.

Theorem 2.1 [14] For every n > 0,

un+2 =
detHn

An�1
, where

Hn =

2

666666664

A
2 +B B 0 · · · 0 0

B A
2 +B B

. . .
... 0

B B A
2 +B

. . . 0
...

...
...

. . . . . . B 0
B B · · · B A

2 +B B

B B B · · · B A
2 +B

3

777777775

.
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By induction, the following result holds.

Lemma 2.2 For every n � 0,

vn+1 = un+2 +Bun.

Theorem 2.3 For every n > 0,

vn+2 =
detGn

An�2
or

detGn =

b
n+2
2 cX

k=0

n+ 2

n+ 2� k

✓
n+ 2� k

k

◆
A

2n�2k
B

k
.

Proof : If n = 1, then detG1 = det [A2 + 3B] = A
1�2

v1+2.
Now, let n � 2. By Lemma 2.2, Theorem 2.1 and using
the fact that detHn = (A2+B) detHn�1�B

2 detHn�2, we
have

detGn = (A3 + 3B) detHn�1 � B
2 detHn�2 = A

n�2
vn+2,

and the proof is complete. ⇤

It is worth noting that if A = B = 1, then by Theorem
2.3, we have

��������������

4 1 0 · · · 0 0

1 2 1
. . .

... 0

1 1 2
. . . 0

...
...

...
. . . . . . 1 0

1 1 · · · 1 2 1
1 1 1 · · · 1 2

��������������
n⇥n

= Ln+2,

where Ln is the n
th Lucas number.
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As done by the authors in [12], we shall now consider
the permanent of a Hessenberg matrix. We define first the
following concepts.

A matrix M is said to be convertible if there is an n⇥n

(1,�1)-matrix H such that per M = det(M � H), where
M � H denotes the Hadamard product of M and H. The
matrix H is called the converter of M .

Now, let S be an n⇥ n (1,�1)-matrix defined by

S =

2

666666664

1 �1 1 · · · 1 1

1 1 �1
. . .

... 1

1 1 1
. . . 1

...
...

...
. . . . . . �1 1

1 1 · · · 1 1 �1
1 1 1 · · · 1 1

3

777777775

.

We denote the Hadamard product Gn � S by Dn. Then

Dn =

2

666666664

A
2 + 3B �B 0 · · · 0 0

B A
2 +B �B

. . .
... 0

B B A
2 +B

. . . 0
...

...
...

. . . . . . �B 0
B B · · · B A

2 +B �B

B B B · · · B A
2 +B

3

777777775

.

The following result is a consequence of Theorem 2.3.

Corollary 2.4 For every n > 0,

vn+2 =
per Dn

An�2
or

per Dn =

b
n+2
2 cX

k=0

n+ 2

n+ 2� k

✓
n+ 2� k

k

◆
A

2n�2k
B

k
.
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3 Representations of v2n and v2n+1

In this section, we give the representations of v2n and v2n+1

using permanents and determinants of some Hessenberg ma-
trices.

Firstly, let the n⇥n lower Hessenberg matrix En defined
by

En =

2

666666664

A
2 + 3B �B 0 · · · 0 0

A
2 + 2B A

2 +B �B
. . .

... 0

A
2 + 2B A

2
A

2 +B
. . . 0

...
...

...
. . . . . . �B 0

A
2 + 2B A

2
· · · A

2
A

2 +B �B

A
2 + 2B A

2
A

2
· · · A

2
A

2 +B

3

777777775

.

The following two results are needed in obtaining the
representations of v2n and v2n+1.

Theorem 3.1 [14] For every n > 0,

u2n =
detVn

A
, where

Vn =

2

666666664

A
2

�B 0 · · · 0 0

A
2

A
2 +B �B

. . .
... 0

A
2

A
2

A
2 +B

. . . 0
...

...
...

. . . . . . �B 0
A

2
A

2
· · · A

2
A

2 +B �B

A
2

A
2

A
2

· · · A
2

A
2 +B

3

777777775

.

Theorem 3.2 [14] For every n > 0,

u2n+1 = detWn, where
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Wn =

2

666666664

A
2 +B �B 0 · · · 0 0

A
2

A
2 +B �B

. . .
... 0

A
2

A
2

A
2 +B

. . . 0
...

...
...

. . . . . . �B 0
A

2
A

2
· · · A

2
A

2 +B �B

A
2

A
2

A
2

· · · A
2

A
2 +B

3

777777775

.

Theorem 3.3 For every n > 0,

v2n+1 = A detEn.

Proof : The case where n = 1 is trivial. Suppose that
v2n+1 = A detEn. We now show that the equation also
holds for n + 1. Now, subtracting the n

th row from the
(n+1)th row and expanding along the last column, we have
detEn+1 = (A2+2B) detEn�B

2 detEn�1. By the assump-
tion and the recurrence relation of the sequence {vn}, we
have detEn+1 = A

�1
v2n+3. Thus, by induction, the asser-

tion must be true. ⇤

Secondly, let the n⇥ n lower Hessenberg matrix Zn de-
fined by

Zn =

2

666666664

A
2 + 2B �B 0 · · · 0 0

A
2

A
2 +B �B

. . .
... 0

A
2

A
2

A
2 +B

. . . 0
...

...
...

. . . . . . �B 0
A

2
A

2
· · · A

2
A

2 +B �B

A
2

A
2

A
2

· · · A
2

A
2 +B

3

777777775

.

Then we have the following result.

Theorem 3.4 For every n > 0,

v2n = detZn.
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Proof : The equation holds for n = 1. Now assume that
v2n = detZn. We now show that the equation also holds
for n + 1. Then expanding along the first row, we have
detZn+1 = (A2 + 2B) detWn + B detVn. By assumption,
recurrence relation of the sequence {vn}, Lemma 2.2 and
Theorem 3.3, we have detZn+1 = v2n+2. Hence, by induc-
tion, the conclusion follows. ⇤

Consider again the n⇥n (1,�1) matrix S defined previ-
ously. We denote the Hadamard products En �S and Zn �S

by Mn and Yn, respectively. Then

Mn =

2

666666664

A
2 + 3B B 0 · · · 0 0

A
2 + 2B A

2 +B B
. . .

... 0

A
2 + 2B A

2
A

2 +B
. . . 0

...
...

...
. . . . . . B 0

A
2 + 2B A

2
· · · A

2
A

2 +B B

A
2 + 2B A

2
A

2
· · · A

2
A

2 +B

3

777777775

and

Yn =

2

666666664

A
2 + 2B B 0 · · · 0 0

A
2

A
2 +B B

. . .
... 0

A
2

A
2

A
2 +B

. . . 0
...

...
...

. . . . . . B 0
A

2
A

2
· · · A

2
A

2 +B B

A
2

A
2

A
2

· · · A
2

A
2 +B

3

777777775

.

The following results are consequences of Theorems 3.3 and
3.4.

Corollary 3.5 For every n > 0, v2n+1 = A per Mn.

Corollary 3.6 For every n > 0, v2n = per Yn.
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Using the above results and identity in [1], we have the
following representations:

detEn = perMn =

b
2n+1

2 cX

k=0

2n+ 1

2n+ 1� k

✓
2n+ 1� k

k

◆
A

2n�2k
B

k
,

and

detZn = per Yn =
nX

k=0

2n

2n� k

✓
2n� k

k

◆
A

2n�2k
B

k
.
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[7] E. Kiliç and D. Stanica, Factorizations and repre-
sentations of second order linear recurrences with in-
dices in arithmetic progressions, Bul. Mex. Math. Soc.,
15(1)(2009) 23-36.

Volume 3 Issue 2
October 2012

The MINDANAWAN
Journal of Mathematics



144 On the AB-Generalized Lucas Sequence by Hessenberg...
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