
THE MINDANAWAN
JOURNAL OF MATHEMATICSTMJM

OFFICIAL JOURNAL OF THE MINDANAO STATE UNIVERSITY - ILIGAN INSTITUTE OF TECHNOLOGY

Vol. 6 (2024), no. 2, pp. 79–111 ISSN: 2094-7380 (Print) | 2783-0136 (Online)

https://doi.org/10.62071/tmjm.v6i2.716.
.

Performance Analysis of Classical Algorithms
for the Traveling Salesman Problem

Rene Luna-Garcia1, Thricia Mae C. Candano2,∗, and Randy L. Caga-anan3

1Centro de Investigacion en Computacion

Instituto Politecnico Nacional, Mexico City, Mexico

lunar@cic.ipn.mx

2,3Department of Mathematics and Statistics

MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines

thriciamae.candano@g.msuiit.edu.ph, randy.caga-anan@g.msuiit.edu.ph

Received: 20th December 2024 Revised: 3rd January 2025

Abstract

The Traveling Salesman Problem (TSP) is a fundamental optimization problem with
wide-ranging applications in logistics, routing, and network design. This paper presents a
comprehensive performance analysis of classical algorithms applied to solve the TSP, includ-
ing exact methods like Brute Force and Dynamic Programming, and heuristic approaches
such as Particle Swarm Optimization (PSO), Simulated Annealing (SA), Genetic Algorithms
(GA), and k-Nearest Neighbors (KNN). The study evaluates these algorithms across mul-
tiple problem instances, varying in scale and complexity, to compare their solution quality,
computational efficiency, and scalability.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most studied optimization problems in
mathematics and computer science [9][32][16]. It involves finding the shortest possible route
that visits a set of cities exactly once and returns to the starting point. Despite its seemingly
simple formulation, the TSP is classified as an NP-hard problem, meaning that the compu-
tational resources required to solve it grow exponentially with the number of cities[8][22][30].
This complexity makes the TSP a benchmark for evaluating the performance of optimization
algorithms and has inspired extensive research in both theoretical and practical domains.

Classical algorithms for solving the TSP can be broadly categorized into exact methods and
heuristic approaches[1][4]. Exact methods, such as Brute Force[27][33] guarantee optimal solu-
tions by exhaustively searching [20]. However, these methods become computationally impracti-
cal as the number of cities increases due to their exponential time complexity. In contrast, heuris-
tic and metaheuristic algorithms, including Particle Swarm Optimization (PSO)[19][31], Sim-
ulated Annealing (SA)[28], Genetic Algorithms (GA)[7], and k-Nearest Neighbors (KNN)[18],
offer a trade-off between solution quality and computational efficiency. These approaches do not

∗Corresponding author
2020 Mathematics Subject Classification: 05C85, 90C27, 68Q25
Keywords and Phrases: Algorithm, Optimization, Time Complexity, Traveling Salesman Problem

This research is supported by the DOST-ASTHRDP Student Research Support Fund

https://journals.msuiit.edu.ph/tmjm
https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
mailto:lunar@cic.ipn.mx
mailto:thriciamae.candano@g.msuiit.edu.ph
mailto:randy.caga-anan@g.msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

guarantee an optimal solution but can provide the best possible solution within a reasonable
timeframe, making them suitable for large-scale and real-world applications[4].

This article focuses on analyzing the performance of classical algorithms applied to the TSP.
By examining their computational efficiency, solution quality, and scalability across different
problem instances, this study aims to provide a comprehensive comparison of these methods.
Additionally, the impact of algorithm tuning on heuristic approaches is explored to highlight the
role of parameter optimization in improving performance. The findings of this study contribute
to a deeper understanding of classical TSP-solving techniques and serve as a foundation for
developing more efficient algorithms for real-world optimization challenges.

2 Classical Algorithms

This section details the key outcomes of applying various optimization algorithms to solve
the Traveling Salesman Problem (TSP), modeled through graph theory. By analyzing the
performance of classical algorithms such as Particle Swarm Optimization Algorithm (PSO),
Simulated Annealing (SA),Genetic Algorithm (GA), Greedy Algorithm, Divide and Conquer
Algorithm, K-Nearest Neighbor Algorithm (KNN), Dynamic Programming, and Brute Force
Algorithm, the results reveal distinct differences in solution quality, computational efficiency,
and scalability. The findings highlight which algorithms are more suited for specific problem
sizes or conditions, offering valuable insights into the trade-offs between accuracy and resource
consumption in optimizing the TSP.

2.1 K-Nearest Neighbors Algorithm (KNN)

The k-nearest neighbors (KNN) algorithm [18] is a simple, non-parametric, supervised learning
method used for classification and regression tasks in statistical analysis. It classifies or predicts
based on proximity in a multidimensional feature space. During training, the algorithm stores
feature vectors and their associated class labels. In the classification phase, a test point is
assigned the label most frequent among its k nearest neighbors, with k being a user-defined
constant. This makes KNN an intuitive and widely used machine learning algorithm. Its
adaptability to high-dimensional feature spaces and its reliance on distance metrics to determine
”closeness” have made it a fundamental tool in machine learning, despite challenges such as
computational inefficiency with large datasets and sensitivity to irrelevant features[3].
The K-Nearest Neighbors (KNN) Approach to the Traveling Salesman Problem
(TSP)[17] described in the algorithm ?? aims to provide a heuristic solution for the TSP by
leveraging proximity in a distance metric, specifically the Euclidean distance. The algorithm
begins with a given set of cities (nodes) and their pairwise distances. A city is randomly selected
as the starting point to initiate the tour. For each unvisited city, the algorithm computes the
Euclidean distances from the current city to all unvisited cities and identifies the k-nearest
neighbors, where k is a predefined constant. The Euclidean distance d between two cities
located at coordinates (x1, y1) and (x2, y2) is calculated as:

d =
√
(x2 − x1)2 + (y2 − y1)2.

Among the k-nearest neighbors, one city is chosen at random as the next destination. This city
is added to the tour, and the process repeats until all cities are visited. Finally, the algorithm
returns to the starting city to complete the tour, ensuring each city is visited exactly once. The
output is a complete tour that approximates an efficient solution to the TSP.

80 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

Algorithm 2.1 K-Nearest Neighbors Approach to TSP

1: Input: Set of cities (nodes) and their pairwise distances
2: Choose a Starting City: Randomly select a city as the initial point in the route.
3: for each unvisited city do
4: From the current city, find the closest k− nearest neighbor based on its Euclidean distance

5: Travel to one of the k−nearest city and add it to the tour.
6: end for
7: After visiting all cities, return to the starting city to complete the loop (tour).
8: Output: Complete tour visiting all cities once and returning to the starting city

Theorem 2.1. Let n be the number of cities. The time complexity of the k-nearest neighbors
approach for TSP is O(n2) [29].

Proof. Let T (n) denote the time complexity of solving the Traveling Salesman Problem (TSP)
for n cities. Initially, choosing a starting city from the set of n cities is an O(1) operation,
as it only requires a constant-time selection. The main computational cost lies in finding the
k-nearest neighbors for each city. For each of the n − 1 unvisited cities, finding the nearest
k cities requires scanning up to n − 1 cities, which takes O(n) time per city. Repeating this
for n − 1 iterations results in a total time complexity of O(n) × O(n − 1) = O(n2). Next, the
operation of traveling to one of the k-nearest cities and marking it as visited is performed in
O(1) time per step. Repeating this for n−1 cities contributes O(n) in total. Finally, completing
the tour by returning to the starting city is an O(1) operation. Summarizing these results, the
overall time complexity is T (n) = O(1) + O(n2) + O(n) + O(1). The dominant term here is
O(n2), so the total time complexity simplifies to T (n) = O(n2). 2.1

2.2 Dynamic Programming

Dynamic programming (DP) works by solving complex problems through a strategy of break-
ing them down into smaller, overlapping subproblems. Instead of solving the same subproblem
multiple times, DP identifies these subproblems and solves each one independently. Once a sub-
problem is solved, its solution is stored in a table or array, allowing it to be reused later without
recalculating. This storage of solutions is key to how DP avoids redundancy and reduces the
overall computation time. As the process continues, DP builds up solutions to progressively
larger subproblems using the stored solutions of the smaller ones. This method ensures that
each subproblem is solved only once, optimizing efficiency and making it particularly effective
for problems with overlapping subproblems and optimal substructure[12]. The Dynamic Pro-
gramming Approach to the Traveling Salesman Problem (TSP) [13] in algorithm 2.2
is an optimization method that utilizes dynamic programming principles to minimize compu-
tational redundancy and determine the best possible tour. The algorithm begins by taking as
input a set of cities and their pairwise distances, often represented as a distance matrix D, where
D[i][j] denotes the distance between city i and city j. The first step involves precomputing this
distance matrix, a 2D array containing the distances between all pairs of cities, ensuring efficient
distance lookups throughout the algorithm. Next, an initial solution is established by starting
the tour at a designated city, such as city 0, and considering the initial cost of visiting one other
city from this starting point. This forms the base case for the dynamic programming recur-
rence. The algorithm then iterates over subsets of cities (excluding the starting city). For each
subset S, it computes the minimum cost to visit each city j ∈ S from another city i ∈ S. The
results of previously computed smaller subsets are used to calculate the costs for larger subsets,

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
81

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

thereby avoiding redundant calculations. As the algorithm progresses, the results for subsets of
increasing size are stored in a table or array. This dynamic programming table allows solutions
for larger subsets to build upon those for smaller subsets. Once all subsets have been processed,
the algorithm computes the minimum cost of returning to the starting city from any other city
in the final subset, completing the tour and determining the total minimum cost. Finally, the
algorithm outputs the best possible tour, which is the sequence of cities that minimizes the
total travel cost.

Algorithm 2.2 Dynamic Programming Approach to TSP

1: Input: Set of cities and their pairwise distances
2: Compute the distance matrix between all pairs of cities.
3: Start with initial solutions where the tour begins at city 0 and visits one other city.
4: for each subset of cities do
5: Calculate the minimum cost to reach each city in the subset from another city in the

same subset.
6: end for
7: Update the results for each subset size, building up solutions from smaller subsets to larger

ones.
8: Compute the minimum cost to return to the starting city from any city and complete the

tour.
9: Output: Return the optimal tour (sequence of cities) that gives the minimum cost.

Theorem 2.2. Let n be the number of cities. The time complexity of the dynamic programming
approach for TSP is O(n22n) [13].

Proof. Let T (n) denote the time complexity of solving the Traveling Salesman Problem (TSP)
for n cities . This Dynamic programming (DP) algorithm uses a table dp[S][i], where S is
a subset of cities that includes the starting city, and i represents the last city visited within
this subset. There are 2n possible subsets of n cities, since each city can either be included or
excluded. For each subset S, the algorithm calculates the minimum cost of ending at each of
the n cities, resulting in O(2n × n) entries in the DP table.
To fill each entry dp[S][i], the algorithm must determine the minimum cost to reach city i by
checking each possible preceding city j in the subset S, requiring O(n) operations per entry.
Thus, the total complexity for filling the DP table is O(n) operations for each of the O(2n × n)
entries, yielding an overall time complexity of O(2n × n2).
After the DP table is filled, the algorithm computes the minimum cost to return to the starting
city from any city i, which requires O(n) time. However, this final step does not affect the
overall complexity significantly, as it is dominated by the complexity of filling the DP table.
Consequently, the overall time complexity of the DP approach to TSP is T (n) = O(2n × n2).
2.2

2.3 Brute Force Algorithm

A brute force algorithm [27][33] is a general problem-solving technique that involves trying all
possible solutions until the correct one is found. It doesn’t incorporate any shortcuts or opti-
mizations, making it a very straightforward but inefficient approach for solving computational
problems, particularly when the search space is large.
TheBrute Force Approach to the Traveling Salesman Problem (TSP) [23] is a straight-
forward algorithm described in algorithm 2.3 that systematically explores all possible solutions
to determine the optimal tour. The algorithm takes as input a set of n cities and their pairwise

82 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

distances, typically represented in a distance matrix D, where D[i][j] indicates the distance
between city i and city j. To simplify the problem, one city is selected as the starting point
(e.g., city 1), reducing the problem to finding the optimal order for the remaining n− 1 cities.
Since the starting city is fixed, the remaining n−1 cities can be arranged in all possible permu-
tations, resulting in (n−1)! possible tours. Each permutation corresponds to a unique sequence
of visiting the remaining cities. For each permutation Pj , the algorithm computes the total
travel cost by summing the distances between consecutive cities in the permutation and adding
the distance from the last city back to the starting city. Mathematically, the travel cost for a
permutation Pj = [1, i1, i2, . . . , in−1] is calculated as:

Cost(Pj) = D[1][i1] +D[i1][i2] + · · ·+D[in−1][1].

After evaluating all (n−1)! permutations, the algorithm selects the tour with the minimum total
cost as the optimal solution. Finally, it outputs the optimal tour, which is the sequence of cities
that minimizes the total travel distance, along with the corresponding minimum travel cost.
While this approach is simple and guarantees optimality, its factorial growth in computational
complexity makes it impractical for large-scale problems.

Algorithm 2.3 Brute Force Approach to TSP

1: Input: Set of n cities and their pairwise distances
2: List all n cities and select the initial city.
3: Generate all possible tours for n− 1 cities, yielding (n− 1)! possible permutations since the

initial city is fixed and the rest can be permuted.
4: for each permutation Pj do
5: Compute the total travel cost for Pj .
6: end for
7: Select the permutation with the minimum total cost.
8: Output: The tour (sequence of cities) with the minimum total cost.

Theorem 2.3. Let n be the number of cities. The time complexity of the brute force algorithm
approach for TSP is O(n!) [23].

Proof. The total time complexity of the brute force approach is the sum of three main compo-
nents: generating all permutations, computing the cost for each permutation, and comparing
the costs to find the minimum. Let T (n) denote the time complexity of solving the Traveling
Salesman Problem (TSP) for n cities. First, generating all permutations involves (n−1)! steps,
as there are (n− 1)! ways to arrange the remaining cities after choosing the starting city. Next,
for each permutation, the algorithm performs n additions to compute the total travel cost,
resulting in

n× (n− 1)! = n!

operations. Finally, comparing the costs of all permutations to determine the minimum requires
(n− 1)! comparisons. In asymptotic terms, the dominant factor in the time complexity is n!, as

n× (n− 1)! = n!.

Therefore, the overall time complexity of the brute force algorithm for TSP is

T (n) = O(n!).

2.3

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
83

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

2.4 Particle Swarm Optimization

In computational science, particle swarm optimization (PSO)[19][31] is a computational method
that optimizes a problem by iteratively trying to improve a candidate solution with regard to a
given measure of quality. It solves a problem by having a population of candidate solutions, here
dubbed particles, and moving these particles around in the search-space according to simple
mathematical formulae over the particle’s position and velocity. Each particle’s movement is
influenced by its local best known position, but is also guided toward the best known positions
in the search-space, which are updated as better positions are found by other particles. This is
expected to move the swarm toward the best solutions. The Particle Swarm Optimization
(PSO) Approach to the Traveling Salesman Problem (TSP)[34] in algorithm 2.4 is
a heuristic optimization technique inspired by the social behavior of swarms. It adapts the
principles of PSO to iteratively improve a population of candidate solutions, called particles,
until an optimal or near-optimal tour is found. The algorithm begins by taking as input a set
of cities and their pairwise distances, typically represented in a distance matrix. Each particle
represents a candidate solution encoded as a sequence of cities, such as [1, 3, 2, 4], which denotes
the order in which the cities are visited. Initially, the total distance of the tour represented
by each particle is calculated, serving as the fitness measure, with smaller distances indicating
better solutions. Each particle’s position (tour) is updated based on its personal best position,
the best tour (lowest cost) it has discovered so far, and the global best position, the best tour
found by any particle in the swarm. These updates involve local adjustments, such as modifying
the current tour by swapping or reordering cities, and guidance toward the personal and global
best tours to direct the particle toward promising regions of the search space. The algorithm
iterates through a series of updates, where each particle adjusts its position and recalculates
its cost. The personal best of each particle is updated if the current position improves upon it,
and the global best is updated if any particle’s current position outperforms the known global
best. This process continues for a predefined number of iterations or until the swarm converges,
meaning the particles are no longer significantly improving their solutions. The algorithm stops
when one of the criteria, such as reaching the maximum number of iterations or achieving
convergence, is met. At this point, the global best particle represents the shortest tour found
by the swarm, which is returned as the algorithm’s output.

Algorithm 2.4 PSO Approach to TSP

1: Input: Cities and pairwise distances
2: Each particle is a tour (city sequence).
3: Compute the total tour distance for each particle. Minimize this distance.
4: Update:
5: for each particle do
6: Adjust the tour by swapping or reordering cities.
7: Move towards personal and global best positions.
8: end for
9: Repeat for a set number of iterations or until convergence.

10: Stop when criteria are met. The global best particle gives the shortest tour.
11: Output: Shortest tour found.

Theorem 2.4. Let n be the number of cities. The time complexity of the particle swarm
optimization algorithm approach for TSP is O(n3)[35].

Proof. Let T (n) denote the time complexity needed to solve the Traveling Salesman Problem
(TSP) for n cities. First, initializing P particles involves assigning random tours, where each

84 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

tour consists of n cities. This requires P×n operations. Next, for each particle in each iteration,
the algorithm computes the fitness (total distance of the tour), which involves n additions. For
P particles, this results in P ×n operations per iteration. Additionally, adjusting each particle’s
tour by swapping or reordering cities and moving it towards the global and personal bests also
requires O(n) operations per particle, contributing another P × n operations per iteration.
Combining these steps, the time complexity for one iteration is O(P × n).
Finally, repeating the process for T iterations results in a total complexity of T × P × n. In
asymptotic terms, assuming P = O(n) (number of particles scales linearly with n) and T = O(n)
(number of iterations scales linearly with n), the dominant factor in the time complexity is:

T × P × n = n× n× n = n3.

Therefore, the overall time complexity of the PSO algorithm for TSP is:

T (n) = O(n3).

2.4

2.5 Simulated Annealing

Simulated Annealing (SA)[28] is a probabilistic optimization technique inspired by the annealing
process in physics, where materials are heated and slowly cooled to reach a stable, low-energy
state. It is commonly used to find approximate solutions to complex optimization problems.
The algorithm works by exploring the solution space and accepting both improvements and
occasional worse solutions to avoid getting trapped in local optima. As the ”temperature”
decreases over time, the algorithm becomes more selective, eventually converging to a near-
optimal solution. SA is well-suited for large, non-linear, or combinatorial optimization tasks
like the Traveling Salesman Problem (TSP). The Simulated Annealing (SA) Approach
for the Traveling Salesman Problem (TSP)[10] is a probabilistic optimization method
inspired by the physical process of annealing in materials science described in algorithm 2.5.
This technique mimics the gradual cooling of materials to reach a stable, low-energy state and
applies the same principle to optimization problems, enabling it to escape local optima and find
near-optimal solutions. The algorithm begins by taking as input a set of cities and their pairwise
distances, typically represented as a distance matrix. It starts with a random tour, which is an
arbitrary sequence of cities, and calculates the total distance (cost) of this tour, serving as the
initial solution. A high initial temperature T is set, governing the probability of accepting worse
solutions. This allows the algorithm to explore the solution space freely in the early stages. A
new solution is generated by making a small change to the current tour, such as swapping the
positions of two cities, reversing the order of a segment, or other small perturbations. The total
distance of this new tour is then calculated and compared with the current solution’s cost. If the
new solution is better (i.e., has a shorter tour), it is accepted as the current solution. If the new
solution is worse, it may still be accepted with a probability given by P = e−∆/T [2] [28], where
∆ is the difference in cost between the new and current solutions (∆ = new cost−current cost).
This probabilistic acceptance helps the algorithm escape local optima by occasionally moving
to worse solutions, especially at high temperatures. The temperature is gradually reduced
according to a cooling schedule, commonly T = αT , where α (e.g., 0.9) is a constant between 0
and 1. The algorithm terminates when the temperature becomes sufficiently low, no significant
improvement is observed over several iterations, or a maximum number of iterations is reached.
Finally, the shortest tour found during the execution is returned as the output.

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
85

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

Algorithm 2.5 Simulated Annealing Approach for TSP

1: Input: Cities and pairwise distances
2: Start with a random tour (a sequence of cities). Calculate the total distance of this tour.
3: Set an initial high temperature T .
4: Generate a new solution by making a small change to the current tour (e.g., swapping the

positions of two cities).
5: Calculate the total distance of the new tour.

Acceptance Criteria:
6: if the new tour is shorter (better) then
7: Accept it as the current solution.
8: else
9: Accept it with a probability: P = e−∆/T , where ∆ is the difference in cost between the

new and current solutions.
10: end if
11: Reduce the temperature according to a cooling schedule (e.g., T = αT , where 0 < α < 1).
12: Stop when the temperature is sufficiently low or no significant improvement is observed.
13: Output: Shortest tour found.

Theorem 2.5. Let n be the number of cities. The time complexity of the simulated annealing
algorithm approach for TSP is O(n3)[5].

Proof. Let T (n) denote the time complexity of solving the Traveling Salesman Problem (TSP)
for n cities. First, the algorithm begins with a random tour consisting of n cities, and calculating
the total distance of this tour requires O(n) operations. Generating a new solution involves
making a small modification to the current tour, such as swapping two cities, which can be
performed in O(1). Calculating the total distance of the new tour again requires O(n), as it
involves summing up the distances between consecutive cities in the modified sequence.
The acceptance criteria involve comparing the new tour to the current one, which is an O(1)
operation. If the new solution is worse, the algorithm computes the acceptance probability
P = e−∆/T , which is also an O(1) operation. Afterward, the temperature is reduced according
to a cooling schedule, which is a constant-time operation (O(1)).
The process of generating, evaluating, and accepting/rejecting new solutions is repeated for a
set number of iterations I, which depends on the cooling schedule and the convergence criteria.
Thus, the time complexity per iteration is O(n) for evaluating the tour, and for I iterations,
the total time complexity becomes O(I × n).
In asymptotic terms, the total time complexity is dominated by I × n. Assuming I = O(n2),
a common practical choice for ensuring sufficient exploration of the solution space, the overall
time complexity of the Simulated Annealing algorithm for TSP is:

T (n) = O(n3).

2.5

2.6 Genetic Algorithm

A Genetic Algorithm (GA)[7][24] is a heuristic optimization technique inspired by the process
of natural selection in biological evolution. It is particularly useful for solving complex prob-
lems where traditional optimization methods struggle, especially in problems with large search
spaces. GA belongs to the class of evolutionary algorithms (EAs) and works by evolving a
population of candidate solutions toward an optimal or near-optimal solution through processes

86 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

analogous to selection, crossover (recombination), and mutation. The Genetic Algorithm
(GA) Approach for the Traveling Salesman Problem (TSP)[14] is a heuristic opti-
mization technique inspired by the principles of natural selection and biological evolution. It
belongs to the class of evolutionary algorithms and is particularly effective for solving optimiza-
tion problems with large and complex search spaces, such as the TSP described in algorithm2.6.
The algorithm begins by taking as input a set of cities and their pairwise distances, typically
represented in a distance matrix. Each individual in the population, also known as a chromo-
some, represents a candidate solution to the TSP, encoded as a sequence of cities (e.g., [1, 3, 2, 4]
represents a tour visiting city 1, then city 3, and so on). The fitness of each chromosome is de-
termined by the total distance of the tour it represents, with shorter tours having higher fitness,
as the goal is to minimize the total travel distance. Parents for reproduction are selected based
on their fitness. Selected parents are paired to produce offspring through crossover (recombi-
nation), which combines parts of the parent chromosomes to create new solutions. To maintain
genetic diversity and prevent premature convergence to suboptimal solutions, mutations are
introduced in the offspring. Common mutation techniques include swap mutation, where the
positions of two cities in the tour are randomly swapped, and reverse mutation, which reverses
the order of cities in a randomly selected segment of the tour. The algorithm iterates through
generations, repeating the selection, crossover, and mutation steps. It terminates when a fixed
number of generations is reached or when a satisfactory solution, such as a tour below a specific
distance, is found. Finally, the algorithm outputs the best tour discovered during its execution,
representing the shortest travel route identified by the population.

Algorithm 2.6 Genetic Algorithm Approach for TSP

1: Input: Cities and pairwise distances
2: Each individual (chromosome) represents a tour (sequence of cities).
3: The fitness of each chromosome is based on the total distance of the tour it represents.
4: Select parents for reproduction based on their fitness.
5: Apply crossover to selected parents to produce offspring.
6: Introduce genetic diversity to prevent premature convergence. Common mutations include:

• Randomly swap two cities in the sequence.

• Reverse a subsection of the route.

7: Stop after a fixed number of generations or when a satisfactory solution has been found.
8: Output: Best tour found.

In [14], the time complexity of the genetic algorithm for the Traveling Salesman Problem
(TSP) is reported as O(n2). However, in our analysis, we derive a complexity of O(n3) when
accounting for the number of iterations over G generations. Typically, G is chosen to be pro-
portional to n, which justifies the higher complexity in our model.

To elaborate, for example, in the genetic algorithm approach, the commonly cited complexity
of O(n2) assumes a fixed starting city and does not simulate across all n cities. In contrast,
our work includes simulations over all n cities and considers the iterative processes across
generations, thereby providing a more comprehensive analysis of the algorithm’s behavior.

Theorem 2.6. Let n be the number of cities. The time complexity of the genetic algorithm
approach for TSP is O(n3).

Proof. Let T (n) denote the time complexity of solving the Traveling Salesman Problem (TSP)
for n cities. First, the algorithm starts by initializing a population of P individuals (chromo-

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
87

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

somes), where each chromosome represents a tour consisting of n cities. Generating P random
tours requires O(P × n) operations. Next, the fitness of each individual is evaluated by calcu-
lating the total distance of its tour, which involves summing the pairwise distances of n cities.
This requires O(n) operations per chromosome, leading to O(P × n) for the entire population.
In the selection step, parents are chosen based on their fitness, typically using methods like
roulette wheel selection or tournament selection. This step involves sorting or ranking the pop-
ulation based on fitness, which has a complexity of O(P logP). Selection itself for P individuals
generally requires O(P) operations.
Crossover is applied to the selected parents to generate offspring. Depending on the crossover op-
erator (e.g., partially matched crossover or order crossover), the operation typically takes O(n)
for each pair of parents. For P individuals, this results in O(P × n) operations for crossover.
Mutations, such as swapping two cities or reversing a subsection of the route, are applied to
introduce diversity. Each mutation operates on a chromosome and takes O(n) in the worst case.
For P individuals, mutation contributes another O(P × n) operations per generation.
These steps are repeated for G generations. The total time complexity per generation is dom-
inated by the fitness evaluation, crossover, and mutation steps, each contributing O(P × n).
Over G generations, the total time complexity becomes O(G× P × n).
In practical applications, P (population size) and G (number of generations) are often chosen
proportional to n, i.e., P = O(n) and G = O(n). Substituting these values, the total time
complexity can be expressed as:

T (n) = O(n× n× n) = O(n3).

2.6

2.7 Greedy Algorithm

A greedy algorithm[25] is a problem-solving approach that makes the locally optimal choice at
each step with the hope of finding a global optimum solution. This method does not consider
the long-term consequences of each choice but focuses on the best immediate option available.
The key idea is to select the best possible choice at each step, leading to a solution that may
not always be the most optimal but is often good enough for many problems.
The Greedy Algorithm Approach for the Traveling Salesman Problem (TSP)[15]
is a heuristic method that constructs a solution incrementally by making a series of locally
optimal decisions. The algorithm 2.7 begins by taking as input a set of cities and their pairwise
distances, typically represented as a distance matrix. It starts at an arbitrary city, chosen as
the starting point for the tour. While there are still unvisited cities, the algorithm identifies
the nearest unvisited city based on the given distances, travels to it, and marks it as visited.
This iterative selection ensures that each move minimizes the immediate travel distance from
the current city. Once all cities have been visited, the algorithm returns to the starting city
to complete the tour, forming a closed loop. The final output of the algorithm is the complete
tour, which is the sequence of cities visited, along with the total distance of the tour.

88 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

Algorithm 2.7 Greedy Algorithm Approach for TSP

1: Input: Cities and pairwise distances
2: Begin at an arbitrary city.
3: while not all cities have been visited do
4: Find the nearest unvisited city (based on the distance) and travel to it.
5: Mark the city as visited.
6: end while
7: Return to the starting city to complete the tour.
8: Output: Complete tour with the total distance.

Theorem 2.7. Let n be the number of cities. The time complexity of the greedy algorithm
approach for TSP is O(n2) [26].

Proof. Let T (n) denote the time complexity of solving the Traveling Salesman Problem (TSP)
for n cities. The algorithm begins at an arbitrary city, which is selected in O(1) time as this is
a constant-time operation. At each step, the algorithm searches for the nearest unvisited city.
Finding the nearest city involves checking the distances from the current city to all unvisited
cities, which requires O(n) comparisons in the worst case. Since this step is repeated for
n − 1 cities as the algorithm progressively visits all cities, the total complexity of this step is
O((n− 1)× n) = O(n2).
Additionally, marking a city as visited is a constant-time operation (O(1)) and is performed
n− 1 times, contributing O(n) in total. Finally, returning to the starting city to complete the
tour takes O(1) time. These lower-order operations (O(1) and O(n)) do not affect the overall
time complexity, which is dominated by the repeated search for the nearest unvisited city.
Therefore, the total time complexity of the Greedy Algorithm for TSP is T (n) = O(n2). 2.7

2.8 Divide and Conquer Algorithm

The Divide and Conquer algorithm [11] is a problem solving strategy that involves breaking
down a complex problem into smaller, more manageable parts, solving each part individually,
and then combining the solutions to solve the original problem. The Divide and Conquer
Algorithm for the Traveling Salesman Problem (TSP)[6] is a heuristic approach that
applies the divide-and-conquer strategy to break down the problem into smaller, more manage-
able subproblems, solve each subproblem independently, and then combine the results to form
a solution for the original problem. The algorithm 2.8 takes as input a set of cities, typically
provided with their coordinates and pairwise distances. To introduce variation and improve
the chances of finding a better solution, the cities are shuffled randomly. The set of cities is
then recursively divided into two subsets based on their x-coordinates or y-coordinates, chosen
randomly to avoid bias. This step reduces the complexity by focusing on smaller subsets of the
original problem. If a subset contains only one city, it is considered solved since no connections
are required. For subsets with two cities, the solution is simply the edge (direct connection)
between the two cities. For subsets with more than two cities, the algorithm recursively applies
itself to solve the TSP for each subset independently. Once the solutions for the subsets are
obtained, they are merged by finding the shortest connection (bridge) between the two subsets,
minimizing the total travel distance. The merged solution is then adjusted to ensure there are no
repeated cities or unnecessary connections. The final output is a merged solution representing
a complete tour of all cities, along with the total tour distance.

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
89

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

Algorithm 2.8 Divide and Conquer Approach for TSP

1: Input: A set of cities with coordinates and pairwise distances
2: Randomly shuffle the cities to introduce variation.
3: Recursively split the cities into two subsets based on their x or y coordinates (chosen

randomly).
4: Base Case:
5: if the number of cities in a subset is 1 then
6: Return the city as the solution for this subset.
7: else if the number of cities in a subset is 2 then
8: Return the edge connecting the two cities as the solution for this subset.
9: end if

10: Recursively solve the TSP for each subset.
11: Merge the solutions from the two subsets by finding the shortest connection (bridge) between

the subsets to minimize total distance.
12: Adjust the merged solution to ensure no cities are repeated.
13: Output: The merged solution with the total tour distance.

Theorem 2.8. Let n be the number of cities. The time complexity of the divide and conquer
approach for TSP is O(n2)[21].

Proof. Let T (n) denote the time complexity of solving the Traveling Salesman Problem (TSP)
for n cities using the Divide and Conquer approach. The algorithm begins by dividing the n
cities into two subsets of approximately equal size. Solving each subset independently results
in the recurrence relation:

T (n) = 2T
(n
2

)
+M(n),

where 2T
(
n
2

)
represents the cost of solving the two subsets recursively, and M(n) is the cost

of merging the solutions from the subsets. The merging step involves finding the shortest
connections (bridges) between the two subsets. If each subset contains n/2 cities, the algorithm
evaluates all pairwise connections between cities in the subsets. This results in:

M(n) = O
(n
2
· n
2

)
= O

(
n2

4

)
= O(n2).

At the base case of the recursion, when the number of cities is 1 or 2, the problem is solved in
constant time, O(1). The recurrence T (n) = 2T

(
n
2

)
+O(n2) unfolds as follows:

i. At the first level of recursion, the merging cost is O(n2).

ii. At the second level, there are two subproblems of size n/2, each with a merging cost of

O
((

n
2

)2)
= O

(
n2

4

)
. The total merging cost for this level is:

2 ·O
(
n2

4

)
= O

(
n2

2

)
.

iii. At the third level, there are four subproblems of size n/4, with a merging cost of:

4 ·O
((n

4

)2
)

= 4 ·O
(
n2

16

)
= O

(
n2

4

)
.

90 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

At each level of recursion, the total merging cost is halved relative to the previous level. The
merging costs form a geometric series:

O(n2) +O

(
n2

2

)
+O

(
n2

4

)
+ . . .

The sum of this series converges to O(n2), as the total cost of merging diminishes exponentially
across levels of recursion.
Thus, the overall time complexity of the algorithm is dominated by the merging cost, which is
O(n2). The splitting step, contributing O(n) at each level, sums to O(n log n) over all levels,
but it is asymptotically smaller than the merging cost. Therefore, the time complexity of the
Divide and Conquer TSP algorithm is:

T (n) = O(n2).

2.8

Table 1: Time Complexity of the Different Algorithms Used

Algorithm Time Complexity

PSO O(n3)
SA O(n3)
GA O(n3)

Greedy O(n2)
Divide & Conquer O(n2)

Dynamic Programming O(n22n)
Brute Force O(n!)

KNN O(n2)

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
91

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

Table 2: Experimental Results of Various Algorithms Across Different City Instances each with 10
Simulations

Cities Algorithm Best Worst Average cost Variance Std Dev. Average time

cities 8

PSO 2379.6953 2379.6953 2379.6953 2.068e−25 4.547e−13 7.798 s
SA 2379.6953 2379.6953 2379.6953 2.068e−25 4.547e−13 0.012 s
GA 2379.6953 2379.653 2379.653 2.068e−25 4.547e−13 156.188 s

Greedy 2379.670 3047.029 2732.819 47880.085 218.815 0.760 s
Divide & Conquer 2379.695 3140.935 2688.423 110818.167 332.894 0.472 s

NN 2379.695 3047.029 2762.610 34218.674 184.982 2.60 s
KNN 2379.695 2776.642 2640.423 21031.975 145.023 2.85 s

Dynamic Programming 2238.426 2892.123 2685.128 53516.457 231.336 0.003 s
Brute Force 1974.371 3443.446 2557.793 172725.111 415.602 9.757 s

cities 16

PSO 74.001 75.477 74.592 0.240 0.490 12.060 s
SA 74.378 77.546 75.653 0.824 0.908 0.014 s
GA 73.988 74.152 74.105 0.006 0.074 148.432 s

Greedy 77.127 97.200 91.094 41.825 6.467 1.457 s
Divide & Conquer 76.869 105.284 87.948 63.340 8.327 0.995 s

NN 84.428 104.735 90.154 59.677 7.725 5.19 s
KNN 77.127 104.077 89.071 58.467 7.646 6.25 s

Dynamic Programming 2815.412 3811.006 3290.850 91403.593 302.33 4.585 s
Brute Force — — — — — —

cities 32

PSO 890.733 1146.593 992.360 5966.231 77.241 15.734 s
SA 872.671 1047.484 955.515 2868.764 53.561 0.023 s
GA 907.453 936.108 910.318 73.890 8.596 138.081 s

Greedy 917.178 1194.209 1038.795 9970.301 99.851 2.662 s
Divide & Conquer 1101.076 1390.162 1204.035 15327.999 123.806 1.966 s

NN 917.178 1219.846 1105.907 8894.260 94.309 10.27 s
KNN 917.178 1382.142 1104.951 14650.903 121.041 12.51 s

Dynamic Programming — — — — — —
Brute Force — — — — — —

cities 64

PSO 7533.121 8743.234 8025.122 163909.512 404.857 25.141 s
SA 7082.393 8203.696 7742.635 103340.357 321.466 0.052 s
GA 6743.790 7381.666 7126.282 38262.253 195.607 161.697 s

Greedy 7909.445 9415.389 8613.979 180868.547 425.286 4.661 s
Divide & Conquer 7663.135 11361.523 9381.196 1029031.23 1014.412 3.891 s

NN 8113.459 8901.467 8483.541 76479.733 276.550 19.97 s
KNN 7915.697 9176.967 8450.199 149480.429 386.627 20.15 s

Dynamic Programming — — — — — —
Brute Force — — — — — —

cities 128

PSO 1045.092 1145.378 1086.321 945.659 30.752 53.570 s
SA 1073.724 1163.183 1118.767 989.023 31.449 0.097 s
GA 969.470 1011.357 997.047 190.693 13.809 180.485 s

Greedy 1026.946 1136.787 1076.326 974.630 31.219 9.165 s
Divide & Conquer 1148.457 1600.845 1340.903 13999.907 118.321 8.229 s

NN 1048.324 1115.780 1089.073 463.128 21.520 41.12 s
KNN 1027.139 1132.151 1089.436 712.059 26.684 41.94 s

Dynamic Programming — — — — — —
Brute Force — — — — — —

cities 256

PSO 1424.557 1575.723 1505.023 1856.563 43.088 102.818 s
SA 1396.215 1728.325 1546.455 9052.550 95.145 0.175 s
GA 1342.939 1466.473 1435.518 1345.239 36.677 208.324 s

Greedy 1390.980 1562.452 1475.609 2153.972 46.411 21.591 s
Divide & Conquer 1736.906 2252.505 1982.109 27081.974 164.566 20.320 s

NN 1483.161 1570.500 1514.891 833.613 28.872 82.72 s
KNN 1400.648 1567.968 1474.610 3485.294 59.036 83.06 s

Dynamic Programming — — — — — —
Brute Force — — — — — —

92 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

Figure 1: Performance Comparison of all algorithms

3 Discussion of the Experimental Results and Comparison among
Algorithms

The graph in Figure 1 illustrates a performance comparison of various classical algorithms
applied to the Traveling Salesman Problem (TSP). The algorithms evaluated include Particle
Swarm Optimization (PSO), Simulated Annealing (SA), Genetic Algorithm (GA), Greedy Algo-
rithm (Grd), Divide and Conquer (DaC), Nearest Neighbor (NN), k-Nearest Neighbors (KNN),
Dynamic Programming (DP), and Brute Force (BF). The performance is assessed using the
average computation time (y-axis) plotted against the number of cities (x-axis), both presented
on a logarithmic scale.
From the results, the Brute Force algorithm clearly emerges as the slowest, consistent with its
factorial time complexity (O(n!)). Dynamic Programming performs better than Brute Force
but demonstrates an exponential increase in computation time as the number of cities grows,
reflecting its O(n2 ·2n) complexity. Heuristic methods like Nearest Neighbor (NN) and k-Nearest
Neighbors (KNN) show better scalability but do not consistently outperform optimization tech-
niques such as Simulated Annealing or Genetic Algorithm.
Simulated Annealing strikes a balance between performance and scalability, showing consis-
tent efficiency across varying problem sizes. Its probabilistic acceptance criterion enables it to
escape local optima, making it a robust choice for solving TSP. Similarly, Genetic Algorithm
and Particle Swarm Optimization are competitive, with PSO demonstrating particularly stable
performance for larger problem sizes, suggesting its adaptability to complex solution spaces.
Deterministic approaches such as Divide and Conquer and the Greedy Algorithm perform well
for smaller instances of the TSP but lose efficiency and solution quality as the problem size
increases. This highlights their limitation in solving larger-scale, complex optimization prob-
lems. The comparison underscores the impracticality of exact methods like Brute Force and

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
93

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

Dynamic Programming for anything beyond small problem instances due to their computational
demands.
Overall, the results emphasize the suitability of metaheuristic algorithms such as Simulated
Annealing, Genetic Algorithm, and Particle Swarm Optimization for balancing computational
efficiency and solution quality, especially for large-scale TSP instances. These approaches out-
perform exact methods and simpler heuristics, demonstrating their value in practical applica-
tions of TSP.

3.1 Algorithm Performance Variations

The results indicate notable variations in the performance of the algorithms applied to the
Traveling Salesman Problem (TSP). The Brute Force approach produces the exact solution
since it evaluates all possible routes, but it quickly becomes computationally infeasible as the
number of cities increases due to its exponential time complexity. Dynamic Programming (DP)
also delivers near-optimal solutions but exhibits increased variance as the problem size grows,
reflecting its sensitivity to scaling. On the other hand, metaheuristic algorithms like Particle
Swarm Optimization (PSO), Simulated Annealing (SA), and Genetic Algorithms (GA) present
diverse performance profiles. PSO often yields competitive results with shorter computation
times, particularly for smaller problem instances, while SA demonstrates stability but requires
careful tuning to enhance convergence for larger datasets. GA, though robust and effective,
appears to be slightly slower compared to PSO in terms of execution time.

3.2 Scalability

Scalability is a critical factor when addressing larger TSP instances, and the results clearly il-
lustrate the limitations of exact algorithms like Brute Force and Dynamic Programming. Both
methods exhibit exponential growth in computation time, rendering them impractical for prob-
lems with a high number of cities. In contrast, metaheuristic algorithms such as PSO and GA
showcase significant scalability, as indicated by their consistent average computation times even
as the number of cities increases. This makes them more suitable for real-world applications
where problem sizes tend to be larger and computational efficiency is critical.

3.3 Variance in Solution Quality

Another important observation is the variance in solution quality across different algorithms.
Metaheuristic approaches, being probabilistic in nature, show higher variance compared to
deterministic methods like Brute Force and DP. While exact algorithms guarantee optimal
solutions, metaheuristics rely on heuristics and randomness, which occasionally lead to subop-
timal solutions. This variability underscores the importance of algorithm tuning and parameter
optimization. Interestingly, the K-Nearest Neighbor (KNN) algorithm, likely utilized as a clas-
sifier or heuristic for TSP implementation, demonstrates a good balance between accuracy and
computational efficiency, offering a promising alternative in specific scenarios.

3.4 Standard Deviation and Average Time

Standard Deviation and Average Times The comparison of standard deviations and average
computation times reveals further insights into the behavior of these algorithms. Metaheuristic
algorithms like PSO, SA, and GA clearly outperform exact methods in terms of average exe-
cution time, particularly for larger instances. This highlights their efficiency and adaptability
in tackling large-scale problems. However, the higher standard deviations observed in PSO

94 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

and GA suggest inconsistencies in their performance. Fine-tuning their parameters, such as
adjusting the cooling schedule in SA or mutation rates in GA, could lead to more consistent
and reliable solutions.

Acknowledgements

The authors are grateful to the anonymous referees for their helpful comments and suggestions.

References

[1] A. Baltz et al., Exact and Heuristic Algorithms for the Travelling Salesman Problem with
Multiple Time Windows and Hotel Selection, Journal of the Operational Research Society,
vol. 65, no. 9, pp. 1388–1402, 2014, doi:10.1057/jors.2014.17.

[2] Algorithm Afternoon, Simulated Annealing: Chapter 3, Algorithm Afternoon, Accessed
January 2, 2025, https://algorithmafternoon.com/books/simulated_annealing/

chapter03/.

[3] Baeldung, K-Nearest Neighbors (KNN), https://www.baeldung.com/cs/

k-nearest-neighbors.

[4] Baeldung, TSP: Exact Solutions vs Heuristic vs Approximation Algorithms,
Baeldung on Computer Science, 2022, https://www.baeldung.com/cs/

tsp-exact-solutions-vs-heuristic-vs-approximation-algorithms.

[5] B. Manthey and J. van Rhijn, Towards a Lower Bound for the Average Case Runtime
of Simulated Annealing on TSP, arXiv preprint arXiv:2208.11444, 2022, https://arxiv.
org/abs/2208.11444.

[6] CodingDrills, Divide and Conquer Algorithms: Divide and Conquer on Graphs
- Traveling Salesman Problem, https://www.codingdrills.com/tutorial/

introduction-to-divide-and-conquer-algorithms/travelling-salesman-prob.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989, https://archive.org/details/geneticalgorithm0000gold.

[8] D. L. Applegate et al., The Traveling Salesman Problem: A Computational Study,
Princeton University Press, 2007, https://press.princeton.edu/books/hardcover/

9780691129938/the-traveling-salesman-problem.

[9] E. L. Lawler et al., The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization, Wiley, 1985, https://archive.org/details/travelingsalesma00lawl,

[10] Fourmilab, Simulated Annealing: The Travelling Salesman Problem, https://www.

fourmilab.ch/documents/travelling/anneal/.

[11] GeeksforGeeks, Divide and Conquer Algorithm: Explanation and Examples, https://www.
geeksforgeeks.org/divide-and-conquer/.

[12] GeeksforGeeks, Dynamic Programming, https://www.geeksforgeeks.org/

dynamic-programming/.

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
95

https://doi.org/10.1057/jors.2014.17
https://algorithmafternoon.com/books/simulated_annealing/chapter03/
https://algorithmafternoon.com/books/simulated_annealing/chapter03/
https://www.baeldung.com/cs/k-nearest-neighbors
https://www.baeldung.com/cs/k-nearest-neighbors
https://www.baeldung.com/cs/tsp-exact-solutions-vs-heuristic-vs-approximation-algorithms
https://www.baeldung.com/cs/tsp-exact-solutions-vs-heuristic-vs-approximation-algorithms
https://arxiv.org/abs/2208.11444
https://arxiv.org/abs/2208.11444
https://www.codingdrills.com/tutorial/introduction-to-divide-and-conquer-algorithms/travelling-salesman-prob
https://www.codingdrills.com/tutorial/introduction-to-divide-and-conquer-algorithms/travelling-salesman-prob
https://archive.org/details/geneticalgorithm0000gold
https://press.princeton.edu/books/hardcover/9780691129938/the-traveling-salesman-problem
https://press.princeton.edu/books/hardcover/9780691129938/the-traveling-salesman-problem
https://archive.org/details/travelingsalesma00lawl
https://www.fourmilab.ch/documents/travelling/anneal/
https://www.fourmilab.ch/documents/travelling/anneal/
https://www.geeksforgeeks.org/divide-and-conquer/
https://www.geeksforgeeks.org/divide-and-conquer/
https://www.geeksforgeeks.org/dynamic-programming/
https://www.geeksforgeeks.org/dynamic-programming/
https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

[13] GeeksforGeeks, Travelling Salesman Problem using Dynamic Programming, https://www.
geeksforgeeks.org/travelling-salesman-problem-using-dynamic-programming/.

[14] GeeksforGeeks, Traveling Salesman Problem using Genetic Algorithm, https://www.

geeksforgeeks.org/traveling-salesman-problem-using-genetic-algorithm/.

[15] GeeksforGeeks, Travelling Salesman Problem — Greedy Approach, https://www.

geeksforgeeks.org/travelling-salesman-problem-greedy-approach/.

[16] G. Gutin and A. P. Punnen (Eds.), The Traveling Salesman Problem and Its Variations,
Springer, 2006, https://link.springer.com/book/10.1007/b101971.

[17] Hampden-Sydney College, The Nearest-Neighbor Algorithm for the Traveling Salesman
Problem, https://people.hsc.edu/faculty-staff/robbk/Math111/Lectures/Fall\

%202016/Lecture\%2033\%20-\%20The\%20Nearest-Neighbor\%20Algorithm.pdf.

[18] IBM, What is the k-nearest neighbors algorithm?, https://www.ibm.com/topics/knn.

[19] MDPI, Particle Swarm Optimization: A Survey of Historical and Recent Developments,
https://www.mdpi.com/2504-4990/1/1/10.

[20] MIT Open Course Ware, Optimization Methods in Management Science, Lec-
ture 17, Massachusetts Institute of Technology, 2013, https://ocw.mit.edu/

courses/15-053-optimization-methods-in-management-science-spring-2013/

ad6650acdf97013e60e559903d8d25fa_MIT15_053S13_lec17.pdf.

[21] M. Moreno Maza, The Complexity of Divide-and-Conquer Algorithms, University of West-
ern Ontario, https://www.csd.uwo.ca/~mmorenom/CS874/Lectures/Introduction.

html/node16.html.

[22] M. Weiss, Proof that Traveling Salesman Problem is NP-
hard, Geeks for Geeks, 2023, https://www.geeksforgeeks.org/

proof-that-traveling-salesman-problem-is-np-hard/.

[23] OpenGenus IQ, Travelling Salesman Problem (Basics + Brute force approach), https:
//iq.opengenus.org/travelling-salesman-problem-brute-force/.

[24] P. Larrañaga et al., Genetic Algorithms for the Travelling Salesman Problem: A Review of
Representations and Operators, Artificial Intelligence Review, vol. 13, no. 2, pp. 129–170,
1999, doi:10.1023/A:1006529012972.

[25] Programiz, Greedy Algorithm: Explanation and Examples, https://www.programiz.com/
dsa/greedy-algorithm.

[26] P. Toth and D. Vigo, The Vehicle Routing Problem, SIAM Monographs on Discrete Mathe-
matics and Applications, 2002, Chapter 3. https://epubs.siam.org/doi/book/10.1137/
1.9780898718515.

[27] R. T. Koether, The Traveling Salesman Problem – Brute Force Method, Hampden-Sydney
College, 2018, https://people.hsc.edu/faculty-staff/robbk/Math111/Lectures/

Spring

[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing,
Science, vol. 220, no. 4598, pp. 671–680, 1983, doi:10.1126/science.220.4598.671.

96 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://www.geeksforgeeks.org/travelling-salesman-problem-using-dynamic-programming/
https://www.geeksforgeeks.org/travelling-salesman-problem-using-dynamic-programming/
https://www.geeksforgeeks.org/traveling-salesman-problem-using-genetic-algorithm/
https://www.geeksforgeeks.org/traveling-salesman-problem-using-genetic-algorithm/
https://www.geeksforgeeks.org/travelling-salesman-problem-greedy-approach/
https://www.geeksforgeeks.org/travelling-salesman-problem-greedy-approach/
https://link.springer.com/book/10.1007/b101971
https://people.hsc.edu/faculty-staff/robbk/Math111/Lectures/Fall%202016/Lecture%2033%20-%20The%20Nearest-Neighbor%20Algorithm.pdf
https://people.hsc.edu/faculty-staff/robbk/Math111/Lectures/Fall%202016/Lecture%2033%20-%20The%20Nearest-Neighbor%20Algorithm.pdf
https://www.ibm.com/topics/knn
https://www.mdpi.com/2504-4990/1/1/10
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/ad6650acdf97013e60e559903d8d25fa_MIT15_053S13_lec17.pdf
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/ad6650acdf97013e60e559903d8d25fa_MIT15_053S13_lec17.pdf
https://ocw.mit.edu/courses/15-053-optimization-methods-in-management-science-spring-2013/ad6650acdf97013e60e559903d8d25fa_MIT15_053S13_lec17.pdf
https://www.csd.uwo.ca/~mmorenom/CS874/Lectures/Introduction.html/node16.html
https://www.csd.uwo.ca/~mmorenom/CS874/Lectures/Introduction.html/node16.html
https://www.geeksforgeeks.org/proof-that-traveling-salesman-problem-is-np-hard/
https://www.geeksforgeeks.org/proof-that-traveling-salesman-problem-is-np-hard/
https://iq.opengenus.org/travelling-salesman-problem-brute-force/
https://iq.opengenus.org/travelling-salesman-problem-brute-force/
https://link.springer.com/article/10.1023/A:1006529012972
https://www.programiz.com/dsa/greedy-algorithm
https://www.programiz.com/dsa/greedy-algorithm
https://epubs.siam.org/doi/book/10.1137/1.9780898718515
https://epubs.siam.org/doi/book/10.1137/1.9780898718515
https://people.hsc.edu/faculty-staff/robbk/Math111/Lectures/Spring%202018/Lecture%2030%20-%20The%20TSP%20-%20Brute%20Force%20Method.pdf
https://people.hsc.edu/faculty-staff/robbk/Math111/Lectures/Spring%202018/Lecture%2030%20-%20The%20TSP%20-%20Brute%20Force%20Method.pdf
https://doi.org/10.1126/science.220.4598.671
https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

[29] Sindhu Kumari, Traveling Salesman Problem, Medium, 2020, https://sindhukumari.

medium.com/traveling-salesman-problem-9deb6853ac6.

[30] Tutorialspoint, Proof that Travelling Salesman Problem is NP Hard, https://www.

tutorialspoint.com/proof-that-travelling-salesman-problem-is-np-hard.

[31] Wikipedia, Particle Swarm Optimization, https://en.wikipedia.org/wiki/Particle_
swarm_optimization.

[32] W. J. Cook, In Pursuit of the Traveling Salesman: Mathematics at the Limits
of Computation, Princeton University Press, 2012, https://archive.org/details/

inpursuitoftrave0000cook.

[33] WsCube Tech, Traveling Salesman Problem, WsCube Tech Resources, https://www.

wscubetech.com/resources/dsa/travelling-salesman-problem.

[34] X. Lian, Y. Wang, and Y. Shao, Particle Swarm Optimization for Traveling Salesman
Problem, in Proceedings of the 2004 International Conference on Machine Learning and
Cybernetics, vol. 7, pp. 3972–3975, 2004, doi:10.1109/ICMLC.2004.1382228.

[35] Y. Shi, H. Teng, and Z. Li, An Improved Particle Swarm Optimization Algorithm for Travel-
ing Salesman Problem, Proceedings of the 2010 International Conference on Machine Learn-
ing and Cybernetics, IEEE, 2010, https://ieeexplore.ieee.org/document/5583011.

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
97

https://sindhukumari.medium.com/traveling-salesman-problem-9deb6853ac6
https://sindhukumari.medium.com/traveling-salesman-problem-9deb6853ac6
https://www.tutorialspoint.com/proof-that-travelling-salesman-problem-is-np-hard
https://www.tutorialspoint.com/proof-that-travelling-salesman-problem-is-np-hard
https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://archive.org/details/inpursuitoftrave0000cook
https://archive.org/details/inpursuitoftrave0000cook
https://www.wscubetech.com/resources/dsa/travelling-salesman-problem
https://www.wscubetech.com/resources/dsa/travelling-salesman-problem
https://ieeexplore.ieee.org/document/1382228
https://ieeexplore.ieee.org/document/5583011
https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

4 Appendices

This section presents a collection of Python programming implementations for various classical
algorithms. These codes are foundational to solving optimization problems and demonstrate
essential computational approaches. Each example highlights the logic and structure of the
algorithm, serving as a practical reference for understanding their functionality. From basic
implementations to more intricate procedures, this section aims to bridge the gap between
theoretical concepts and practical application in Python.

4.1 KNN Algorithm Python Code

K-Nearest Neighbors Algorithm for TSP

1 import random

2 import math

3

4 class City:

5 def __init__(self , x, y, name=None):

6 self.x = x

7 self.y = y

8 self.name = name

9

10 def distance(self , other):

11 """ Calculate Euclidean distance to another city."""

12 return math.sqrt((self.x - other.x)**2 + (self.y - other.y)**2)

13

14 def __repr__(self):

15 return f"City({self.name}, {self.x}, {self.y})" if self.name

else f"City({self.x}, {self.y})"

16

17 def path_cost(route):

18 """ Calculate the total cost of a route."""

19 cost = 0

20 for i in range(len(route) - 1):

21 cost += route[i]. distance(route[i + 1])

22 return cost

23

24 def knn_tsp(cities , k=1):

25 """ Solve TSP using the K-Nearest Neighbors (KNN) approach."""

26 start_city = random.choice(cities)

27 route = [start_city]

28 unvisited = [city for city in cities if city != start_city]

29

30 while unvisited:

31 current_city = route[-1]

32 nearest_neighbors = sorted(

33 unvisited , key=lambda city: current_city.distance(city)

34)[:k]

35 next_city = min(nearest_neighbors , key=lambda city:

current_city.distance(city))

36 route.append(next_city)

37 unvisited.remove(next_city)

38

39 route.append(start_city)

40 total_cost = path_cost(route)

98 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

41

42 return route , total_cost

4.2 Dynamic Programming Python Code

Dynamic Programming for TSP

1 import math

2 import itertools

3

4 # Function to calculate Euclidean distance

5 def calculate_distance(city1 , city2):

6 return math.sqrt((city1 [0] - city2 [0]) **2 + (city1 [1] -

city2 [1]) **2)

7

8 # Function to solve TSP using Held -Karp Algorithm

9 def held_karp_tsp(cities):

10 """

11 Solve the Traveling Salesman Problem using the Held -Karp algorithm.

12

13 Parameters:

14 cities (list): List of tuples representing city coordinates

[(x1 , y1), (x2 , y2), ...]

15

16 Returns:

17 tuple: (minimum cost , optimal path)

18 """

19 n = len(cities)

20 distances = [[calculate_distance(cities[i], cities[j]) for j in

range(n)] for i in range(n)]

21

22 # Initialize DP table

23 dp = {}

24 for i in range(1, n):

25 dp[(1 << i, i)] = distances [0][i] # Cost to reach city i

directly from city 0

26

27 # Iterate through subsets of increasing size

28 for subset_size in range(2, n):

29 for subset in itertools.combinations(range(1, n), subset_size):

30 bits = sum(1 << i for i in subset)

31 for current in subset:

32 prev_bits = bits & ~(1 << current)

33 dp[(bits , current)] = min(

34 dp[(prev_bits , k)] + distances[k][current]

35 for k in subset if k != current

36)

37

38 # Find the minimum cost to complete the tour

39 bits = (1 << n) - 1 # All cities visited

40 optimal_cost = min(

41 dp[(bits & ~(1 << 0), i)] + distances[i][0] for i in range(1,

n)

42)

43

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
99

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

44 # Reconstruct the optimal path

45 path = [0]

46 last = 0

47 visited = bits

48 for _ in range(n - 1):

49 next_city = min(

50 range(n),

51 key=lambda i: dp.get((visited & ~(1 << i), i),

float(’inf’)) + distances[i][last]

52 if visited & (1 << i) else float(’inf’)

53)

54 path.append(next_city)

55 visited &= ~(1 << next_city)

56 last = next_city

57

58 path.append (0) # Return to starting city

59 return optimal_cost , path

60

61

62 # Example Usage

63 if __name__ == "__main__":

64 # Example cities as (x, y) coordinates

65 cities = [

66 (0, 0), (2, 3), (5, 2), (7, 7), (3, 8), (9, 1), (4, 6)

67]

68

69 cost , path = held_karp_tsp(cities)

70 print("Optimal Path:", path)

71 print("Minimum Cost:", cost)

4.3 Brute Force Algorithm Python Code

Brute Force Algorithm for TSP

1 from itertools import permutations

2 import math

3

4 # Function to calculate the Euclidean distance between two cities

5 def calculate_distance(city1 , city2):

6 return math.sqrt((city1 [0] - city2 [0]) **2 + (city1 [1] -

city2 [1]) **2)

7

8 # Brute Force TSP Solver

9 def brute_force_tsp(cities):

10 """

11 Solve the Traveling Salesman Problem using the Brute Force

approach.

12

13 Parameters:

14 cities (list): List of tuples representing city coordinates

[(x1 , y1), (x2 , y2), ...]

15

16 Returns:

17 tuple: (minimum cost , optimal path)

18 """

100 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

19 n = len(cities)

20 all_permutations = permutations(range(n)) # Generate all

permutations of city indices

21 min_cost = float(’inf’) # Initialize the minimum cost to infinity

22 best_path = None # Initialize the best path

23

24 # Evaluate each permutation

25 for perm in all_permutations:

26 current_cost = 0

27 # Calculate the total travel cost for this permutation

28 for i in range(n - 1):

29 current_cost += calculate_distance(cities[perm[i]],

cities[perm[i + 1]])

30 # Add the cost of returning to the starting city

31 current_cost += calculate_distance(cities[perm[-1]],

cities[perm [0]])

32

33 # Update the minimum cost and best path

34 if current_cost < min_cost:

35 min_cost = current_cost

36 best_path = perm

37

38 # Reconstruct the optimal path

39 optimal_path = [cities[i] for i in best_path]

40 return min_cost , optimal_path

41

42

43 # Example Usage

44 if __name__ == "__main__":

45 # Example cities as (x, y) coordinates

46 cities = [

47 (0, 0), (2, 3), (5, 2), (7, 7), (3, 8)

48]

49

50 # Solve TSP using Brute Force

51 cost , path = brute_force_tsp(cities)

52 print("Optimal Path (Coordinates):", path)

53 print("Minimum Cost:", cost)

4.4 PSO Algorithm Python Code

Particle Swarm Optimization (PSO) Algorithm for TSP

1 import random

2 import math

3

4 # Function to calculate the Euclidean distance between two cities

5 def calculate_distance(city1 , city2):

6 return math.sqrt((city1 [0] - city2 [0]) **2 + (city1 [1] -

city2 [1]) **2)

7

8 # Function to calculate the total tour distance for a given sequence

of cities

9 def calculate_tour_distance(cities , sequence):

10 distance = 0

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
101

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

11 for i in range(len(sequence) - 1):

12 distance += calculate_distance(cities[sequence[i]],

cities[sequence[i + 1]])

13 distance += calculate_distance(cities[sequence [-1]],

cities[sequence [0]]) # Return to start

14 return distance

15

16 # Particle class for PSO

17 class Particle:

18 def __init__(self , num_cities):

19 self.position = random.sample(range(num_cities), num_cities)

Random city sequence

20 self.velocity = [] # Velocity as a series of swaps

21 self.best_position = list(self.position) # Personal best

22 self.best_cost = float(’inf’) # Best cost for this particle

23 self.current_cost = float(’inf’) # Current cost

24

25 # PSO Algorithm for TSP

26 def pso_tsp(cities , num_particles =30, max_iterations =100, w=0.5,

c1=1.5, c2 =1.5):

27 """

28 Solve the Traveling Salesman Problem using Particle Swarm

Optimization.

29

30 Parameters:

31 cities (list): List of tuples representing city coordinates

[(x1 , y1), (x2 , y2), ...].

32 num_particles (int): Number of particles in the swarm.

33 max_iterations (int): Maximum number of iterations.

34 w (float): Inertia weight.

35 c1 (float): Cognitive weight.

36 c2 (float): Social weight.

37

38 Returns:

39 tuple: (best cost , best tour)

40 """

41 num_cities = len(cities)

42

43 # Initialize particles

44 particles = [Particle(num_cities) for _ in range(num_particles)]

45 global_best_position = None

46 global_best_cost = float(’inf’)

47

48 # Main PSO loop

49 for iteration in range(max_iterations):

50 for particle in particles:

51 # Calculate the cost for the current position

52 particle.current_cost = calculate_tour_distance(cities ,

particle.position)

53

54 # Update personal best

55 if particle.current_cost < particle.best_cost:

56 particle.best_cost = particle.current_cost

57 particle.best_position = list(particle.position)

58

59 # Update global best

102 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

60 if particle.current_cost < global_best_cost:

61 global_best_cost = particle.current_cost

62 global_best_position = list(particle.position)

63

64 # Update particle velocities and positions

65 for particle in particles:

66 new_velocity = []

67

68 # Apply random swaps for velocity update

69 for _ in range(random.randint(1, num_cities // 2)):

70 if random.random () < w:

71 idx1 , idx2 = random.sample(range(num_cities), 2)

72 new_velocity.append ((idx1 , idx2))

73

74 # Apply cognitive and social components

75 for i in range(num_cities):

76 if random.random () < c1:

77 if particle.position[i] !=

particle.best_position[i]:

78 idx1 , idx2 =

particle.position.index(particle.best_position[i]),

i

79 new_velocity.append ((idx1 , idx2))

80 if random.random () < c2:

81 if particle.position[i] != global_best_position[i]:

82 idx1 , idx2 =

particle.position.index(global_best_position[i]),

i

83 new_velocity.append ((idx1 , idx2))

84

85 # Apply the velocity (swaps) to the particle ’s position

86 for idx1 , idx2 in new_velocity:

87 particle.position[idx1], particle.position[idx2] = (

88 particle.position[idx2],

89 particle.position[idx1],

90)

91

92 # Save the updated velocity

93 particle.velocity = new_velocity

94

95 return global_best_cost , [cities[i] for i in global_best_position]

96

97 # Example Usage

98 if __name__ == "__main__":

99 # Example cities as (x, y) coordinates

100 cities = [

101 (0, 0), (2, 3), (5, 2), (7, 7), (3, 8), (6, 1), (4, 5)

102]

103

104 # Solve TSP using PSO

105 cost , tour = pso_tsp(cities , num_particles =50, max_iterations =200)

106 print("Optimal Tour:", tour)

107 print("Minimum Cost:", cost)

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
103

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

4.5 SA Algorithm Python Code

Simulated Annealing Algorithm for TSP

1 import random

2 import math

3

4 # Function to calculate the Euclidean distance between two cities

5 def calculate_distance(city1 , city2):

6 return math.sqrt((city1 [0] - city2 [0]) **2 + (city1 [1] -

city2 [1]) **2)

7

8 # Function to calculate the total distance of a tour

9 def calculate_tour_distance(cities , tour):

10 distance = 0

11 for i in range(len(tour) - 1):

12 distance += calculate_distance(cities[tour[i]], cities[tour[i

+ 1]])

13 distance += calculate_distance(cities[tour[-1]], cities[tour [0]])

Return to the start

14 return distance

15

16 # Function to perform Simulated Annealing

17 def simulated_annealing_tsp(cities , initial_temperature =1000 ,

cooling_rate =0.995 , stop_temperature =1e-8, max_iterations =1000):

18 """

19 Solve the Traveling Salesman Problem using Simulated Annealing.

20

21 Parameters:

22 cities (list): List of tuples representing city coordinates

[(x1 , y1), (x2 , y2), ...].

23 initial_temperature (float): Starting temperature.

24 cooling_rate (float): Rate at which the temperature decreases.

25 stop_temperature (float): Minimum temperature to stop the

algorithm.

26 max_iterations (int): Maximum iterations at each temperature

level.

27

28 Returns:

29 tuple: (best distance , best tour)

30 """

31 num_cities = len(cities)

32

33 # Generate an initial random tour

34 current_tour = list(range(num_cities))

35 random.shuffle(current_tour)

36 current_distance = calculate_tour_distance(cities , current_tour)

37

38 # Initialize best solution

39 best_tour = list(current_tour)

40 best_distance = current_distance

41

42 # Initialize temperature

43 temperature = initial_temperature

44

45 while temperature > stop_temperature:

104 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

46 for _ in range(max_iterations):

47 # Create a new tour by swapping two cities

48 new_tour = list(current_tour)

49 i, j = random.sample(range(num_cities), 2)

50 new_tour[i], new_tour[j] = new_tour[j], new_tour[i]

51

52 # Calculate the distance of the new tour

53 new_distance = calculate_tour_distance(cities , new_tour)

54

55 # Acceptance criteria

56 if new_distance < current_distance or random.random () <

math.exp((current_distance - new_distance) /

temperature):

57 current_tour = new_tour

58 current_distance = new_distance

59

60 # Update the best solution found so far

61 if current_distance < best_distance:

62 best_tour = list(current_tour)

63 best_distance = current_distance

64

65 # Reduce the temperature according to the cooling schedule

66 temperature *= cooling_rate

67

68 return best_distance , [cities[i] for i in best_tour]

69

70

71 # Example Usage

72 if __name__ == "__main__":

73 # Example cities as (x, y) coordinates

74 cities = [

75 (0, 0), (2, 3), (5, 2), (7, 7), (3, 8), (6, 1), (4, 5)

76]

77

78 # Solve TSP using Simulated Annealing

79 best_distance , best_tour = simulated_annealing_tsp(cities)

80 print("Best Tour:", best_tour)

81 print("Best Distance:", best_distance)

4.6 Genetic Algorithm Python Code

Genetic Algorithm for TSP

1 import random

2 import math

3

4 # Function to calculate the Euclidean distance between two cities

5 def calculate_distance(city1 , city2):

6 return math.sqrt((city1 [0] - city2 [0]) **2 + (city1 [1] -

city2 [1]) **2)

7

8 # Function to calculate the total distance of a tour

9 def calculate_tour_distance(cities , tour):

10 distance = 0

11 for i in range(len(tour) - 1):

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
105

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

12 distance += calculate_distance(cities[tour[i]], cities[tour[i

+ 1]])

13 distance += calculate_distance(cities[tour[-1]], cities[tour [0]])

Return to start

14 return distance

15

16 # Function to create an initial population

17 def create_population(cities , population_size):

18 num_cities = len(cities)

19 return [random.sample(range(num_cities), num_cities) for _ in

range(population_size)]

20

21 # Function to select parents for crossover

22 def select_parents(population , fitness_scores):

23 total_fitness = sum(fitness_scores)

24 probabilities = [fitness / total_fitness for fitness in

fitness_scores]

25 parent1 = random.choices(population , weights=probabilities , k=1)[0]

26 parent2 = random.choices(population , weights=probabilities , k=1)[0]

27 return parent1 , parent2

28

29 # Function to perform crossover

30 def crossover(parent1 , parent2):

31 size = len(parent1)

32 start , end = sorted(random.sample(range(size), 2))

33 child = [-1] * size

34 child[start:end] = parent1[start:end]

35 pointer = 0

36

37 for gene in parent2:

38 if gene not in child:

39 while child[pointer] != -1:

40 pointer += 1

41 child[pointer] = gene

42

43 return child

44

45 # Function to perform mutation

46 def mutate(tour , mutation_rate =0.1):

47 for i in range(len(tour)):

48 if random.random () < mutation_rate:

49 j = random.randint(0, len(tour) - 1)

50 tour[i], tour[j] = tour[j], tour[i]

51

52 # Genetic Algorithm for TSP

53 def genetic_algorithm_tsp(cities , population_size =100,

generations =500, mutation_rate =0.1):

54 """

55 Solve the Traveling Salesman Problem using a Genetic Algorithm.

56

57 Parameters:

58 cities (list): List of tuples representing city coordinates

[(x1 , y1), (x2 , y2), ...].

59 population_size (int): Size of the population.

60 generations (int): Number of generations.

61 mutation_rate (float): Probability of mutation.

106 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

62

63 Returns:

64 tuple: (best distance , best tour)

65 """

66 # Create the initial population

67 population = create_population(cities , population_size)

68

69 # Iterate over generations

70 for generation in range(generations):

71 # Calculate fitness scores (inverse of distance)

72 fitness_scores = [1 / calculate_tour_distance(cities , tour)

for tour in population]

73

74 # Create the next generation

75 next_generation = []

76 for _ in range(population_size // 2):

77 # Select parents and produce offspring

78 parent1 , parent2 = select_parents(population ,

fitness_scores)

79 child1 = crossover(parent1 , parent2)

80 child2 = crossover(parent2 , parent1)

81

82 # Mutate the offspring

83 mutate(child1 , mutation_rate)

84 mutate(child2 , mutation_rate)

85

86 # Add offspring to the next generation

87 next_generation.extend ([child1 , child2])

88

89 # Replace the old population with the new generation

90 population = next_generation

91

92 # Find the best solution in the final population

93 best_tour = min(population , key=lambda tour:

calculate_tour_distance(cities , tour))

94 best_distance = calculate_tour_distance(cities , best_tour)

95

96 return best_distance , [cities[i] for i in best_tour]

97

98

99 # Example Usage

100 if __name__ == "__main__":

101 # Example cities as (x, y) coordinates

102 cities = [

103 (0, 0), (2, 3), (5, 2), (7, 7), (3, 8), (6, 1), (4, 5)

104]

105

106 # Solve TSP using Genetic Algorithm

107 best_distance , best_tour = genetic_algorithm_tsp(cities)

108 print("Best Tour:", best_tour)

109 print("Best Distance:", best_distance)

4.7 Greedy Algorithm Python Code

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
107

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

Greedy Algorithm for TSP

1 import math

2

3 # Function to calculate the Euclidean distance between two cities

4 def calculate_distance(city1 , city2):

5 return math.sqrt((city1 [0] - city2 [0]) **2 + (city1 [1] -

city2 [1]) **2)

6

7 # Function to calculate the total distance of a tour

8 def calculate_tour_distance(cities , tour):

9 distance = 0

10 for i in range(len(tour) - 1):

11 distance += calculate_distance(cities[tour[i]], cities[tour[i

+ 1]])

12 distance += calculate_distance(cities[tour[-1]], cities[tour [0]])

Return to start

13 return distance

14

15 # Greedy Algorithm for TSP

16 def greedy_tsp(cities):

17 """

18 Solve the Traveling Salesman Problem using the Greedy Algorithm.

19

20 Parameters:

21 cities (list): List of tuples representing city coordinates

[(x1 , y1), (x2 , y2), ...]

22

23 Returns:

24 tuple: (total distance , tour as a list of city indices)

25 """

26 num_cities = len(cities)

27 visited = [False] * num_cities # Track visited cities

28 tour = [0] # Start from the first city

29 visited [0] = True

30

31 # Visit all cities

32 for _ in range(num_cities - 1):

33 last_visited = tour[-1]

34 nearest_city = None

35 nearest_distance = float(’inf’)

36

37 # Find the nearest unvisited city

38 for i in range(num_cities):

39 if not visited[i]:

40 distance = calculate_distance(cities[last_visited],

cities[i])

41 if distance < nearest_distance:

42 nearest_distance = distance

43 nearest_city = i

44

45 # Mark the nearest city as visited and add it to the tour

46 visited[nearest_city] = True

47 tour.append(nearest_city)

48

49 # Complete the tour by returning to the starting city

108 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

50 total_distance = calculate_tour_distance(cities , tour)

51 return total_distance , tour

52

53

54 # Example Usage

55 if __name__ == "__main__":

56 # Example cities as (x, y) coordinates

57 cities = [

58 (0, 0), (2, 3), (5, 2), (7, 7), (3, 8), (6, 1), (4, 5)

59]

60

61 # Solve TSP using Greedy Algorithm

62 total_distance , tour = greedy_tsp(cities)

63 tour_coordinates = [cities[i] for i in tour]

64

65 print("Tour (indices):", tour)

66 print("Tour (coordinates):", tour_coordinates)

67 print("Total Distance:", total_distance)

4.8 Divide and Conquer Algorithm for TSP

Divide and Conquer Algorithm for TSP

1 import math

2 import random

3

4 # Function to calculate the Euclidean distance between two cities

5 def calculate_distance(city1 , city2):

6 return math.sqrt((city1 [0] - city2 [0]) **2 + (city1 [1] -

city2 [1]) **2)

7

8 # Function to divide cities into two subsets

9 def divide_cities(cities):

10 """

11 Divide cities into two subsets based on their x or y coordinates

(randomly chosen).

12 """

13 if random.choice ([True , False]): # Split by x-coordinate

14 cities.sort(key=lambda city: city [0])

15 else: # Split by y-coordinate

16 cities.sort(key=lambda city: city [1])

17 mid = len(cities) // 2

18 return cities [:mid], cities[mid:]

19

20 # Function to find the shortest bridge between two subsets

21 def find_shortest_bridge(subset1 , subset2):

22 """

23 Find the shortest edge connecting two subsets.

24 """

25 min_distance = float(’inf’)

26 bridge = None

27

28 for city1 in subset1:

29 for city2 in subset2:

30 distance = calculate_distance(city1 , city2)

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
109

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

R. Luna-Garcia, T. Candano, and R. Caga-anan

31 if distance < min_distance:

32 min_distance = distance

33 bridge = (city1 , city2)

34

35 return bridge

36

37 # Recursive Divide and Conquer TSP Solver

38 def divide_and_conquer_tsp(cities):

39 """

40 Solve TSP using Divide and Conquer.

41

42 Parameters:

43 cities (list): List of tuples representing city coordinates

[(x1 , y1), (x2 , y2), ...]

44

45 Returns:

46 tuple: (tour as a list of city coordinates , total distance)

47 """

48 # Base Case: If there is only one city , return it as the solution

49 if len(cities) == 1:

50 return cities , 0

51

52 # Base Case: If there are two cities , connect them and return

53 if len(cities) == 2:

54 distance = calculate_distance(cities [0], cities [1])

55 return cities + [cities [0]], 2 * distance

56

57 # Recursive Case

58 # Step 1: Divide cities into two subsets

59 subset1 , subset2 = divide_cities(cities)

60

61 # Step 2: Recursively solve for each subset

62 tour1 , distance1 = divide_and_conquer_tsp(subset1)

63 tour2 , distance2 = divide_and_conquer_tsp(subset2)

64

65 # Step 3: Find the shortest bridge between the two subsets

66 bridge = find_shortest_bridge(subset1 , subset2)

67

68 # Step 4: Merge the solutions

69 # Insert the bridge to connect the two subsets

70 tour1 = tour1 [:-1] # Remove the last city to avoid duplicate in

merging

71 merged_tour = tour1 + [bridge [0], bridge [1]] + tour2

72

73 # Calculate the total distance

74 merged_distance = distance1 + distance2 +

calculate_distance(bridge [0], bridge [1])

75

76 return merged_tour , merged_distance

77

78

79 # Example Usage

80 if __name__ == "__main__":

81 # Example cities as (x, y) coordinates

82 cities = [

83 (0, 0), (2, 3), (5, 2), (7, 7), (3, 8), (6, 1), (4, 5)

110 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 6 (2024), no. 2, pp. 79–111

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Performance Analysis of Classical Algorithms

84]

85

86 # Solve TSP using Divide and Conquer

87 tour , total_distance = divide_and_conquer_tsp(cities)

88 print("Tour (coordinates):", tour)

89 print("Total Distance:", total_distance)

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

https://doi.org/10.62071/tmjm.v6i2.716
111

https://msuiit.edu.ph
https://doi.org/10.62071/tmjm.v6i2.716
https://msuiit.edu.ph

	Introduction
	Classical Algorithms
	K-Nearest Neighbors Algorithm (KNN)
	Dynamic Programming
	Brute Force Algorithm
	Particle Swarm Optimization
	Simulated Annealing
	Genetic Algorithm
	Greedy Algorithm
	Divide and Conquer Algorithm

	Discussion of the Experimental Results and Comparison among Algorithms
	Algorithm Performance Variations
	Scalability
	Variance in Solution Quality
	Standard Deviation and Average Time

	Appendices
	KNN Algorithm Python Code
	Dynamic Programming Python Code
	Brute Force Algorithm Python Code
	PSO Algorithm Python Code
	SA Algorithm Python Code
	Genetic Algorithm Python Code
	Greedy Algorithm Python Code
	Divide and Conquer Algorithm for TSP

