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Abstract

This study formulates and analyzes a COVID-19 disease contagion model, incorporating
a psychological variable over a population considering that infected cases can be confirmed
or unreported. Using a system of ordinary differential equations, the model describes the
impact of anxiety on the disease progression where the contact parameter is defined as
a function of anxiety level. We derive the basic reproduction number R0 and numerical
simulations validate our theoretical results. Our findings provide a qualitative understanding
of the interplay between psychological states and epidemiological outcomes, offering a novel
framework for future research and potential policymaking applications in epidemic response.

1 Introduction

Anxiety is a complex and widely studied psychological phenomenon that affects human behavior
in various contexts. Defined as an unpleasant emotional state characterized by feelings of ten-
sion, apprehension, and worry, anxiety plays a significant role in social interactions [4]. While
moderate levels of anxiety may help individuals avoid potential threats and navigate social sit-
uations [9], excessive or inappropriate anxiety can have detrimental effects on social life and
overall well-being [15]. Research has highlighted how varying levels of anxiety influence social
decision-making, with individuals differing in anxiety levels demonstrating distinct behavioral
patterns and autonomic responses during decision-making processes [20]. The impact of anxiety
on mental health has become particularly evident in recent years, as the World Health Organi-
zation (WHO) reported a 25% global increase in anxiety and depression during the first year
of the COVID-19 pandemic [19]. In hindsight, this surge in mental health concerns prompted
90% of countries to incorporate mental health and psychosocial support into their COVID-19
response plans, though substantial gaps remain.

A study assessing the prevalence of anxiety and depression among disadvantaged public uni-
versity students in New York City revealed alarming levels of psychological distress among those
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from lower socioeconomic backgrounds [14]. The findings highlight the disproportionate impact
of mental health challenges on students from economically disadvantaged families, emphasizing
the need for targeted support. The perception of vulnerability during a pandemic also varies
significantly based on socioeconomic status, with individuals from lower-income backgrounds
often experiencing heightened anxiety compared to their higher-income counterparts. Further-
more, social roles have been shown to influence anxiety levels, with certain groups facing unique
stressors that exacerbate psychological distress. A broader study across multiple populations
found notable variations in anxiety prevalence with healthcare workers exhibiting the highest
levels [16]. These findings underscore the significant impact of anxiety across diverse groups,
suggesting that mental health interventions can be effective in addressing this issue and war-
ranting further investigation into the factors contributing to these disparities.

Despite the significant impact of mental well-being on health outcomes and public health re-
sponses, incorporating psychological behavior in the context of disease contagion models remains
underexplored. This exigency to account for psychological parameters, specifically anxiety, in
the context of the disease contagion model is herewith addressed.

The rest of the paper is organized as follows: Section 2 introduces the behavior-contagion
model, detailing its key parameters and the derivation of the anxiety variable and contact rate
expressions. Section 3 offers a comprehensive mathematical analysis of the model, demonstrat-
ing the existence of a unique solution, and proving its nonnegativity and boundedness. This
section also examines the equilibrium points and their stability, and calculates the critical re-
production number, R0. Finally, Section 4 presents the simulation results, which are shown to
be consistent with the theoretical predictions.

2 Mathematical model and its study

2.1 Description of the model

This study focuses on five components of the epidemic flow, comprising the densities of Sus-
ceptible individuals (S), Exposed individuals (E), Confirmed Infected individuals (Ic), Unre-
ported Infected individuals (Iu), and Removed individuals (R). We anchor the formulation of
our mathematical model on the standard strategy developed in the literature concerning the
Susceptible-Infected-Recovered (SIR) model [6, 10]. Parallel to bygone epidemics, we assume
everyone is susceptible to the disease prior to infection. Upon exposure to the pathogen, indi-
viduals enter the exposed compartment E and after the incubation period, transition into either
the confirmed infected (Ic) or unreported infected (Iu) compartments. Susceptible individuals
can only be infected by infected individuals and recovered individuals might get susceptible
again over time. The flowchart of the model is shown in Figure 1.
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Figure 1: Compartmental representation of the SEIcIuR´model.

The dynamics is governed by a system of five p5q ordinary differential equations (ODE) as
follows, for t ą 0,
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S1ptq “ ´ωpAqpβcIc ` βuIuq
S

N
` θR

E1ptq “ ωpAqpβcIc ` βuIuq
S

N
´ δE

I 1
cptq “ pδE ´ γIc

I 1
uptq “ p1 ´ pqδE ´ γIu

R1ptq “ γpIc ` Iuq ´ θR.

(1)

Each equation corresponds to a rate of a compartmental flow, where the contact parameter
is described as a function of anxiety level A. The first term of the first equation corresponds
to the flow of susceptibles to the exposed compartment and the second term constitutes the
resusceptible population. The second term of the second equation corresponds to the propor-
tion leaving the exposed compartment after a period of latency. The third and fourth equations
signify the dynamics of the infected confirmed and unreported, respectively, based on the pa-
rameter 0 ď p ď 1. Finally, the last equation corresponds to the dynamics of the recovered
individuals, considering the tendency of reinfection. The forms of the anxiety variable and the
contact parameter ω are detailed in the succeeding subsections. Assuming a constant living
population N , we have

N “ S ` E ` Ic ` Iu ` R.

No new recruit is added. The corresponding parameters are outlined in Table 1.

Table 1: Description of the parameters

Parameters Description

ωpAqβc Transmission rate from S to E from contact with Ic
ωpAqβu Transmission rate from S to E from contact with Iu
δ Latency rate
p Probability to be confirmed infected
p1 ´ p Probability to be unreported infected
γ Recovery rate
θ Transmission rate from R to S
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2.2 Derivation of the anxiety variable

In this study, we consider two forms of the anxiety variable. The first form is given by a simple
linear model, where the rate of change of anxiety is based on the two main influences:

A1ptq “ ´α0pA ´ Aeqq `
α1Ic

1 ` β1Ic
. (2)

The tendency for oscillations of the anxiety variable is modeled by the forced oscillation

A2ptq “ ϵα0p1 ´ A2qA1ptq ´ α0pAptq ´ Aeqq `
α1Ic

1 ` β1Ic
. (3)

Here, Aeq denotes the anxiety at equilibrium level. The nonlinearity and oscillations of anxiety
around the equilibrium level depict more realistic human dynamics in response to a stimulus.

The Yerkes-Dodson law [21] applies to understanding the relationship between anxiety and
behavior in the context of infectious diseases, COVID-19 in particular. We provide that our
contact parameter follows the Yerkes-Dodson law described by normal distribution

ωpAq “
ω0

?
2πσ

exp

ˆ

´
pA ´ µq2

2σ2

˙

. (4)

It is, thus, a proposition of the Yerkes-Dodson curve that there is an optimal level of anxiety
that promotes adaptive behaviors in response to a threat, striking a balance between awareness
and concern without succumbing to overwhelming anxiety.

3 Results

In this section, we provide the details for the system (1)-(2).

3.1 Global well-posedness

We need to ensure that the model’s solution exists and is unique for any given initial conditions.
Unrealistic results, such as negative populations or erratic behavior, undermine its usefulness
for understanding the dynamics of disease progression. Thus, we establish that the solutions
are well-defined and satisfy nonnegativity and boundedness.

Define

Ω “ tpS,E, Ic, Iu, R,Aq P R6
`; 0 ď S ` E ` Ic ` Iu ` R ď N ; 0 ď A ď Amaxu.

In the succeeding results, we refer to the system of equations p1q´p2q, unless otherwise specified.

Theorem 3.1. Assuming that the initial condition lies in Ω, there exists a unique global-in-time
solution pS,E, Ic, Iu, R,Aq in C pR`; Ωq.

Proof. Since the right-hand sides of the differential equations governing the system are contin-
uous, with continuous partial derivatives in Ω, the Cauchy-Lipschitz theorem guarantees the
existence of a unique solution on a short time interval. This establishes the local existence and
uniqueness of the solution in C pr0, T s; Ωq.

Next, we prove that the set Ω is positively invariant. This means that if the initial conditions
lie in Ω, then the solution remains in Ω for all t ě 0. Observe that if S “ 0 and R ě 0,

dS

dt
“ θR.
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As all parameters are nonnegative, dS
dt ě 0. This means S is increasing and Sptq ě 0, for all

t ą 0. Similarly, if E “ 0, then

dE

dt
“ ωpAqpβcIc ` βuIuq

S

N
ě 0,

which implies E is increasing and Eptq ě 0, for all t ą 0. Also, if Ic, Iu “ 0, then

dIc
dt

“ pδE,
dIu
dt

“ p1 ´ pqδE ě 0,

respectively. Thus, Ic, Iu are increasing and Icptq, Iuptq ě 0 for all t ą 0. Moreover, if R “ 0,
then

dR

dt
“ γpIc ` Iuq ě 0,

so that Rptq ě 0 for all t ą 0. Finally, assuming A “ 0,

dA

dt
“ α0Aeq `

α1Ic
1 ` β1Ic

ě 0,

which means Aptq ě 0 for all t ą 0. Since S ` E ` Ic ` Iu ` R “ N , for all t ě 0, the solution
remains within the region Ω for all t ě 0.

Define the total population N as the sum of the state variables:

Nptq “ Sptq ` Eptq ` Icptq ` Iuptq ` Rptq.

Since each of the state variables Sptq, Eptq, Icptq, Iuptq, Rptq is nonnegative, and since dNptq
dt “ 0

so that N “ Nptq “ Np0q, for all time t ě 0. This implies that the sum of the state variables
is bounded by the initial total population, i.e.,

Sptq ` Eptq ` Icptq ` Iuptq ` Rptq ď Np0q,

for all t ě 0. Since each of these variables is non-negative, we have

0 ď Sptq, Eptq, Icptq, Iuptq, Rptq ď Np0q.

Therefore, each human compartment is uniformly bounded for all time t ě 0 and since the
anxiety variable is scaled and given to be 0 ď A ď Amax, it is also bounded. This boundedness
extends the local solution to a global solution on the interval r0,8q. Specifically, there exists a
unique global-in-time solution in C pR`; Ωq.

3.2 Basic reproduction number

The reproduction number R0 is a key metric in epidemiological modeling that indicates the
average number of secondary infections generated by a single infected individual in a fully
susceptible population [13]. It helps assess the potential for an outbreak to grow or decline—if
R0 is greater than 1, the disease is likely to spread, while if R0 is less than 1, the outbreak
will eventually die out. Understanding R0 allows public health agencies to design targeted
interventions to control the spread of the disease. The reproduction numberR0 can be computed
thanks to the next generation matrix of the model as in [18]. Since the infected individuals are
in E, Ic and Iu, the rate of appearance of new infections in each compartment F and the rate
of other transitions between all compartments V can be rewritten as

F “

¨

˝

ωpβcIc ` βuIuq S
N

0
0

˛

‚, V “

¨

˝

δE
γIc ´ pδE

γIu ´ p1 ´ pqδE

˛

‚.
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Thus,

F “

¨

˝

0 ωβcS
N

ωβuS
N

0 0 0
0 0 0

˛

‚, V “

¨

˝

δ 0 0
´pδ γ 0

´p1 ´ pqδ 0 γ

˛

‚, V ´1 “

¨

˚

˝

1
δ 0 0
p
γ

1
γ 0

1´p
γ 0 1

γ

˛

‹

‚

.

Therefore, the next generation matrix is

FV ´1 “

¨

˚

˝

pωβcS
γN `

p1´pqωβuS
γN

ωβuS
γN

ωβuS
γN

0 0 0
0 0 0

˛

‹

‚

.

We deduce that the basic reproduction number is

R0 :“ ω

ˆ

pβc
γ

`
p1 ´ pqβu

γ

˙

S˚

N˚
.

Biologically speaking, the first term pβc

γ represents the transmission due to confirmed individuals
during the average infection period 1{γ. The second one concerns the unreported cases.

3.3 Equilibrium behavior

Studying the equilibrium behavior of an epidemiological model is crucial because it helps identify
long-term patterns in the spread of the disease, such as whether the infection will persist or
eventually die out with time, which is what we wanted to achieve.

Since a steady state solution is a solution to the system that is constant for all time t, we
set

dS

dt
“

dE

dt
“

dIc
dt

“
dIu
dt

“
dR

dt
“

dA

dt
“ 0.

Theorem 3.2. The disease-free equilibrium pDFE q of the system is pN, 0, 0, 0, 0, Aeqq.

Proof. Let pS˚, E˚, I˚
c , I

˚
u , R

˚, A˚q be a DFE point. Then E˚ “ I˚
c “ I˚

u “ 0 and

dS

dt
“

dE

dt
“

dIc
dt

“
dIu
dt

“
dR

dt
“

dA

dt
“ 0.

Thus, we have

θR˚ “ 0

´θR˚ “ 0

´α0pA˚ ´ Aeqq “ 0.

Given that all of the parameters are nonzero, we have R˚ “ 0 and A˚ “ Aeq. Evaluating the
first equation p1q with this value, we have dS

dt “ 0. Hence, Sp0q “ Sptq “ N , @t, so that S˚ “ N .
Therefore, the disease-free equilibrium point is given by pN, 0, 0, 0, 0, Aeqq.

Theorem 3.3. The endemic equilibrium pEE q of the system is
˜

N

R0
,

γθ

γθ ` δθ ` δγ

´

1 ´
1

R0

¯

N,
pδθ

γθ ` δθ ` δγ

´

1 ´
1

R0

¯

N,

p1 ´ pqδθ

γθ ` δθ ` δγ

´

1 ´
1

R0

¯

N,
δγ

γθ ` δθ ` δγ

´

1 ´
1

R0

¯

N,Aeq `
α1I

˚
c

α0p1 ` β1I˚
c q

¸

.
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Proof. Let pS˚, E˚, I˚
c , I

˚
u , R

˚, A˚q be an EE point. Then

dS

dt
“

dE

dt
“

dIc
dt

“
dIu
dt

“
dR

dt
“

dA

dt
“ 0.

Thus, we have

0 “ ´ωpβcI
˚
c ` βuI

˚
uq

S˚

N
` θR˚ (5)

0 “ ωpβcI
˚
c ` βuI

˚
uq

S˚

N
´ δE˚ (6)

0 “ pδE˚ ´ γI˚
c (7)

0 “ p1 ´ pqδE˚ ´ γI˚
u (8)

0 “ γpI˚
c ` I˚

uq ´ θR˚ (9)

0 “ ´α0pA˚ ´ Aeqq `
α1I

˚
c

1 ` β1I˚
c

. (10)

The anxiety equation p10q yields A˚ “ Aeq `
α1I˚

c

α0p1`β1I
˚
c q
. For the human compartments, adding

equations p5q and p6q yields R˚ “ δE˚

θ . From equations p7q and p8q, we get I˚
c “

pδE˚

γ and

I˚
u “

p1´pqδE˚

γ , respectively. Substituting these values to equation p6q, we have

ω

ˆ

βc
`pδE˚

γ

˘

` βu
`p1 ´ pqδE˚

γ

˘

˙

S˚

N
´ δE˚ “ 0,

so that
ω

`

pβc ` p1 ´ pqβu
˘

S˚ “ γN.

Hence,

S˚ “
γN

ω
`

pβc ` p1 ´ pqβu
˘ .

The remaining E˚, I˚
c , I

˚
u , R

˚ can be obtained using the population constraint

S˚ ` E˚ ` I˚
c ` I˚

u ` R˚ “ N.

Substituting the values obtained above to solve for E˚, we have

S˚ ` E˚ `
pδE˚

γ
`

p1 ´ pqδE˚

γ
`

δE˚

θ
“ N.

This gives

S˚ ` E˚
´

1 `
pδ

γ
`

p1 ´ pqδ

γ
`

δ

θ

¯

“ N.

Let K “ 1 `
pδ
γ `

p1´pqδ
γ ` δ

θ . Then, S
˚ “ N ´ E˚K and so

N ´ E˚K “
γN

ω
`

pβc`p1´pqβu

˘

ñ E˚K “
N

´

ω
`

pβc`p1´pqβu

˘

´γ

¯

ω
`

pβc`p1´pqβu

˘

ñ E˚ “
N

´

ω
`

pβc`p1´pqβu

˘

´γ

¯

K

´

ω
`

pβc`p1´pqβu

˘

¯ “
N

´

ω
`

pβc`p1´pqβu

˘

´γ

¯

´

1`
pδ
γ

`
p1´pqδ

γ
` δ

θ

¯´

ω
`

pβc`p1´pqβu

˘

¯

“
γθ

γθ`δθ`δγ

´

1 ´ 1
R0

¯

N.
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Hence,

I˚
c “

pδE˚

γ “
pδθ

γθ`δθ`δγ

´

1 ´ 1
R0

¯

N

I˚
u “

p1´pqδE˚

γ “
p1´pqδθ

γθ`δθ`δγ

´

1 ´ 1
R0

¯

N

R˚ “ δE˚

θ “
δγ

γθ`δθ`δγ

´

1 ´ 1
R0

¯

N

S˚ “
γN

ω
`

pβc`p1´pqβu

˘ “ N
R0

.

The stability of the equilibrium point can be performed by calculating the roots of the
characteristic polynomial

detpJ˚ ´ λIq “ 0

where J˚ is the Jacobian matrix evaluated at the equilibrium and I is the identity matrix.
Concerning the endemic equilibrium, we used the softwareMathematica to derive the coefficients
of the characteristic polynomial:

P pλq “ λ6 ` a1λ
5 ` a2λ

4 ` a3λ
3 ` a4λ

2 ` a5λ ` a6.

Theorem 3.4. 1. If R0 ď 1, the disease free equilibrium is locally asymptotically stable.

2. If R0 ą 1, the DFE is unstable and the endemic equilibrium is locally stable if the system
follows the Routh-Hurwitz criteria and unstable otherwise.

Proof. By computing the eigenvalues of the Jacobian matrix, we deduce that if R0 ď 1, then
the DFE is locally asymptotically stable and unstable whenever R0 ą 1.

With the help of the Routh-Hurwitz criteria, we deduce that all eigenvalues of P pλq are
negative or have negative real parts if and only if aj ą 0, j “ 1, ..., 6 and the determinant of all
Hurwitz matrices are positive, that is,

det H1 “ a1 ą 0,

det H2 “ det

„

a1 1
a3 a2

ȷ

ą 0,

det H3 “ det

»

–

a1 1 0
a3 a2 a1
a5 a4 a3

fi

fl ą 0,

det H4 “ det

»

—

—

–

a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a2
0 a6 a5 a4

fi

ffi

ffi

fl

ą 0,

det H5 “ det

»

—

—

—

—

–

a1 1 0 0 0
a3 a2 a1 1 0
a5 a4 a3 a2 a1
0 a6 a5 a4 a3
0 0 0 a6 a5

fi

ffi

ffi

ffi

ffi

fl

ą 0,

det H6 “ det

»

—

—

—

—

—

—

–

a1 1 0 0 0 0
a3 a2 a1 1 0 0
a5 a4 a3 a2 a1 1
0 a6 a5 a4 a3 a2
0 0 0 a6 a5 a4
0 0 0 0 0 a6

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ą 0.
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If the Routh-Hurwitz criterion is satisfied, then the endemic equilibrium is locally stable (see
Appendix A for the values of aj ą 0, j “ 1, ..., 6).

In the remaining results, we consider the disease-free equilibrium for the oscillatory anxiety
equation p3q. One set A1ptq “ Bptq so that B1ptq “ A2ptq. Hence, we have the transformed
system

A1 “ B

B1 “ ϵα0p1 ´ A2qB ´ α0pA ´ Aeqq `
α1Ic

1 ` β1Ic
.

Therefore, along with equations p1q ´ p3q, we have the new system of seven first-order ODEs:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

dS

dt
“ ´ωpAqpβcIc ` βuIuq

S

N
` θR

dE

dt
“ ωpAqpβcIc ` βuIuq

S

N
´ δE

dIc
dt

“ pδE ´ γIc

dIu
dt

“ p1 ´ pqδE ´ γIu

dR

dt
“ γpIc ` Iuq ´ θR

dA

dt
“ B

dB

dt
“ ϵα0p1 ´ A2qB ´ α0pA ´ Aeqq `

α1Ic
1 ` β1Ic

.

(11)

Theorem 3.5. If R0 ď 1, the DFE pN, 0, 0, 0, 0, Aeq, 0q of the system p11q is locally asymptot-
ically stable and unstable otherwise.

Proof. As in Theorem 3.2 and setting dA
dt “ dB

dt “ 0, we have A˚ “ Aeq and B˚ “ 0 so that
we have the DFE pN, 0, 0, 0, 0, Aeq, 0q. Moreover, by computing the eigenvalues of the Jacobian
matrix, we deduce that the DFE point is locally asymptotically stable whenever R0 ď 1.
Otherwise, the DFE is unstable.

4 Numerical Simulations

Numerical simulations illustrate theoretical results by providing a computational approach to
check the accuracy of analytical solutions. This section considers testing the model under
varying conditions and ensuring the theoretical predictions align with the observed behavior.

We fixed the initial conditions of the compartments as follows :

Sp0q “ 300000, Ep0q “ 60000, Icp0q “ 30000, Iup0q “ 20000, Rp0q “ 0, N “ 410000.

We also fixed assumed values of the parameters and some based on literature [2] as follows:

γ “ 0.103809, θ “ 1.49346 x 10´2, α0 “ 2.2412 x 10´2, α1 “ 4.331216 x 10´3,

β1 “ 0.19676, ω0 “ 0.99994, δ “ 0.269925, p “ 0.387702.

For anxiety metrics, we set
σ “ 2.01, µ “ 18.664.
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The infection rates βc and βu are varying allowing to consider the scenarios of Theorem 3.2
where R0 ď 1 and R0 ą 1. The final time of the simulation is T “ 365. Table 2 summarizes
the results, and visualizations of the compartments are illustrated in the succeeding figures.

βc “ 0.05, βu “ 0.025 βc “ 3, βu “ 5

R0 0.0663 ă 1 8.08 ą 1

SpT q 409411.69 57202.73

EpT q 0 16277.99

IcpT q 0 16409.97

IupT q 0 25916.28

RpT q 588.31 294193.03

ApT q 18.67 19.65

Table 2: Values of the model parameters for a final time T “ 365.

Figure 2: βc “ 0.05, βu “ 0.025 with R0 “ 0.0663 ă 1

Figure 3: βc “ 3, βu “ 5 with R0 “ 8.077 ą 1

Increasing final time T “ 1000, compartment values eventually converge to the predicted equi-
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librium point pN, 0, 0, 0, 0, Aeqq. Figure 4 visualizes this result.

Figure 4: βc “ 0.05, βu “ 0.025 with R0 “ 0.07 ă 1

On the other hand, increasing the final time T “ 5000 for the case where βc “ 3, βu “ 5 still
yields R0 ą 1, so that infections continue to circulate and the solution converges to the EE.
Figure 5 visualizes this result.

Figure 5: βc “ 3, βu “ 5, R0 “ 8.077

Finally, for Theorem 3.5 and oscillatory anxiety, we fixed the same initial conditions and
parameters are set as βc “ 0.25, βu “ 0.07, θ “ 0.3, α0 “ 0.0125, α1 “ 0.333, β1 “ 0.5,
ω0 “ 0.4, ϵ “ 0.00005, and B0 “ 3. We set the final time of our simulations to T “ 1000.
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βc “ 0.25, βu “ 0.07 βc “ 4, βu “ 7

R0 0.1069 ă 1 4.7604 ą 1

SpT q 409999.99 409492.458

EpT q 0 115.177

IcpT q 0 117.387

IupT q 0 185.389

RpT q 0 89.586

ApT q 18.664 25.611

Predicted A˚ 18.664 18.664

BpT q 0 1.3244

Predicted B˚ 0 0

Table 3: Values of the model compartments at T “ 1000

Table 3 shows that the values of all compartments stabilize around the DFE.

Figure 6: βc “ 0.25, βu “ 0.07, ϵ “ 0.00005, and R0 “ 0.1069.

Here, increasing ϵ results in a lower oscillation of the anxiety parameter. We now consider
increasing infection rates βc “ 4 and βu “ 7 with a remarkably low ϵ “ 0.00005.

Compartment Value

SpT q 409492.458

EpT q 115.177

IcpT q 117.387

IupT q 185.389

RpT q 89.586

ApT q 25.611

Predicted A˚ 18.664

BpT q 1.3244

Predicted B˚ 0

Table 4: Values of the model compartments at T “ 1000

Observe from Table 4 that the compartments do not stabilize around the DFE wheneverR0 ą 1.
Figure 7 illustrates this trend over time.
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Figure 7: βc “ 4, βu “ 7, ϵ “ 0.00005, and R0 “ 4.7604. The upper left figure shows high
oscillations of anxiety, the upper right figure shows the trend of the infected compartments Ic
and Iu, and the bottom figure shows the values of all the compartments (anxiety level and
populations) after the final time of the simulations.

Varying the value of ϵ provides differing levels of oscillations of the compartments over time.

Figure 8: βc “ 4, βu “ 7, ϵ “ 0.005, and R0 “ 4.7604. The same figure descriptions apply from
Figure 7, this time with low ϵ.
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This emphasizes the significant impact of an oscillating anxiety variable in the dynamics of
COVID-19 disease progression. In contrast with the above highly oscillatory trend, the following
simulations fixed the same values, except ϵ “ 0.005.

A Appendix

Cont. Proof of Theorem 3.1(2)

Using the online software Mathematica, it is obtained that

a1 “

´

2N2γ ` N2δ ` N2θ ´ N2Rθ ` N2α0 ` 4N2Icγβ1 ` 2N2Icδβ1`

2N2Icθβ1 ´ 2N2RIcθβ1 ` 2N2Icα0β1 ` 2N2I2c γβ
2
1 ` N2I2c δβ

2
1`

N2I2c θβ
2
1 ´ N2RI2c θβ

2
1 ` N2I2cα0β

2
1 ` NSIcωpAqβc`

2NSI2cωpAqβ1βc ` NSI3cωpAqβ2
1βc ` NIuSωpAqβu`

2NIuSIcωpAqβ1βu ` NIuSI
2
cωpAqβ2

1βu

¯

O

N2 p1 ` Icβ1q
2

a2 “ N2γ2 ` 2N2γδ ` 2N2γθ ´ 2N2Rγθ ` N2δθ ´ N2Rδθ ´ N2Rθ2`

2N2γα0 ` N2δα0 ` N2θα0 ´ N2Rθα0 ` 2N2Icγ
2β1 ` 4N2Icγδβ1`

4N2Icγθβ1 ´ 4N2RIcγθβ1 ` 2N2Icδθβ1 ´ 2N2RIcδθβ1 ´ 2N2RIcθ
2β1`

4N2Icγα0β1 ` 2N2Icδα0β1 ` 2N2Icθα0β1 ´ 2N2RIcθα0β1 ` N2I2c γ
2β2

1`

2N2I2c γδβ
2
1 ` 2N2I2c γθβ

2
1 ´ 2N2RI2c γθβ

2
1 ` N2I2c δθβ

2
1 ´ N2RI2c δθβ

2
1´

N2RI2c θ
2β2

1 ` 2N2I2c γα0β
2
1 ` N2I2c δα0β

2
1 ` N2I2c θα0β

2
1 ´ N2RI2c θα0β

2
1´

NpdXωpAqβe ` 2NSIcγωpAqβc ` NSIcδωpAqβc ` NSIcθωpAqβc`

NSIcωpAqα0βc ´ 2NpSIcωpAqβ1βc ` 4NSI2c γωpAqβ1βc`

2NSI2c δωpAqβ1βc ` 2NSI2c θωpAqβ1βc ` 2NSI2cωpAqα0β1βc`

2NIuSIcγωpAqβu ´ NSδωpAqβu ` NpSδωpAqβu ` NIuSδωpAqβu`

NIuSθωpAqβu ` NIuSωpAqα0βu ` 4NIuSIcγωpAqβ1βu´

2NSIcδωpAqβ1βu ` 2NpSIcδωpAqβ1βu ` 2NIuSIcδωpAqβ1βu`

2NIuSIcθωpAqβ1βu ` 2NIuSIcωpAqα0β1βu ` 2NIuSI
2
c γωpAqβ2

1βu´

NSI2c δωβ
2
1βu ` NpSI2c δωpAqβ2

1βu ` NIuSI
2
c δωpAqβ2

1βu`

NIuSI
2
c θωpAqβ2

1βu ` NIuSI
2
cωpAqα0β

2
1βu

¯

O

N2 p1 ` Icβ1q
2 ,
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a3 “

´

N2Sγδ ´ N2pSγδ ` N2γ2δ ` N2γ2θ ´ N2Rγ2θ ` 2N2γδθ ´ 2N2Rγδθ´

2N2Rγθ2 ´ N2Rδθ2 ` N2γ2α0 ` 2N2γδα0 ` 2N2γθα0 ´ 2N2Rγθα0`

N2δθα0 ´ N2Rδθα0 ´ N2Rθ2α0 ` N2pδxα1 ` 2N2SIcγδβ1´

2N2pSIcγδβ1 ` 2N2Icγ
2δβ1 ` 2N2Icγ

2θβ1 ´ 2N2RIcγ
2θβ1`

4N2Icγδθβ1 ´ 4N2RIcγδθβ1 ´ 4N2RIcγθ
2β1 ´ 2N2RIcδθ

2β1`

2N2Icγ
2α0β1 ` 4N2Icγδα0β1 ` 4N2Icγθα0β1 ´ 4N2RIcγθα0β1`

2N2Icδθα0β1 ´ 2N2RIcδθα0β1 ´ 2N2RIcθ
2α0β1 ` N2xI2c γδβ

2
1´

N2pSI2c γδβ
2
1 ` N2I2c γ

2δβ2
1 ` N2I2c γ

2θβ2
1 ´ N2RI2c γ

2θβ2
1`

2N2I2c γδθβ
2
1 ´ 2N2RI2c γδθβ

2
1 ´ 2N2RI2c γθ

2β2
1 ´ 2N2RI2c δθ

2β2
1`

N2pδxβc ´ NSIcγ
2ωβc ` 2NSIcγδωβc ´ NpδSIcθωβc ` 2NpIcSθωβc`

2NIcSγθωβ1 ` NSIcδθωβc ´ NpIcSωα0βc ` 2NSIcγωα0β1`

NSIcδωα0β1 ` NSIcθωα0β1 ´ 2NpIcSγωβ1 ` 2NSIcI
2
uγ

2ωβ1´

2NpIcSθωβ1 ` 2NpRIcSIuθωβ1N
2Sγδ ´ N2pSγδ ` N2γ2δ ` N2γ2θ´

N2Rγ2θ ` 2N2γδθ ´ 2N2Rγδθ ´ 2N2Rγθ2 ´ N2Rδθ2 ` N2γ2α0`

2N2γδα0 ` 2N2γθα0 ´ 2N2Rγθα0 ` N2δθα0 ´ N2Rδθα0 ´ N2Rθ2α0`

N2pδSβc ` 2N2SIcγδβ1 ´ 2N2pSIcγδβ1 ` 2N2Icγ
2δβ1 ` 2N2Icγ

2θβ1´

2N2RIcγ
2θβ1 ` 4N2Icγδθβ1 ´ 4N2RIcγδθβ1 ´ 4N2RIcγθ

2β1´

2N2RIcδθ
2β1 ` 2N2Icγ

2α0β1 ` 4N2Icγδα0β1 ` 4N2Icγθα0β1´

4N2RIcγθα0β1 ` 2N2Icδθα0β1 ´ 2N2RIcδθα0β1 ´ 2N2RIcθ
2α0β1`

N2SI2c γδβ
2
1 ´ N2pSI2c γδβ

2
1 ` N2I2c γ

2δβ2
1 ` N2I2c γ

2θβ2
1 ´ N2RI2c γ

2θβ2
1`

2N2I2c γδθβ
2
1 ´ 2N2RI2c γδθβ

2
1 ´ 2N2RI2c γθ

2β2
1 ` 2N2RI2c δθ

2β2
1 ` N2pδSβc´

NSIcγ
2ωβc ` 2NSIcγδωβc ´ NpδSIcθωβc ` 2NpIcSθωβc ` 2NIcSγθωβ1`

NSIcδθωβc ´ NpIcSωα0βc ` 2NSIcγωα0β1 ` NSIcδωα0β1 ` NSIcθωα0β1´

2NpIcSIuγωβ1 ` 2NSIcI
2
uγ

2ωβ1 ´ 2NpIcSθωβ1 ` 2NpRIcSIuθωβ1

¯

O

N2 p1 ` Icβ1q
2 ,

a4 “ N2Sγ2δ ´ N2pSγ2δ ´ N2pδSγθ ´ N2RSγδθ ` N2pRSγδθ ` N2γ2δθ

´ N2Rγ2δθ ´ N2Rγθ2 ´ 2N2Rγδθ2 ` N2γ2δα0 ` N2γ2θα0

´ N2Rγ2θα0 ` 2N2γδθα0 ´ 2N2Rγδθα0 ´ 2N2Rγθ2α0

´ N2Rδθ2α0 ` N2pδSγα1 ` N2pδSθα1 ´ N2pδRSθα1

` 2N2SIcγ
2δβ1 ´ 2N2pSIcγ

2δβ1 ´ 2N2pδSIcγθβ1

´ 2N2RSIcγδθβ1 ` 2N2pRSIcγδθβ1 ` 2N2Icγ
2δθβ1

´ 2N2RIcγ2δθβ1 ´ 2N2RIcγθ
2β1 ´ 4N2RIcγδθ

2β1

` 2N2Icγ2δα0β1 ` 2N2Icγ
2θα0β1 ´ 2N2RIcγ

2θα0β1

` 4N2Icγδθα0β1 ´ 4N2RIcγδθα0β1 ´ 4N2RIcγθ
2α0β1
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´ 2N2RIcδθ
2α0β1 ` N2SIcγ

2δωpAqβc ´ NpδSγθωpAqβc

` NpδRSγθωpAqβc ´ NpδSIcγθωpAqβc ` NSIcγ
2θωpAqβc

` NSIcγδθωβc ` NpSIcγδθωpAqβc ` NpδRSθ2ωpAqβc

´ NpδSγωpAqα0βe ` NSIcγ
2ωpAqα0βc ` 2NSIcγδωpAqα0βc

´ NpδSθωpAqα0βc ` NpδRSθωpAqα0βc ` 2NSIcγθωα0βc

` NSIcδθωpAqα0βc ` 2NSIcδdθωpAqα0βc ` 2NSIcδ
2dθωpAqβ1

` NSIcδ
2δθβ1 ` 2NIuSγδωpAqα0βu ` 2NIuSγδωpAqα0βu

´ NSδθωpAqα0βu ` NpSδθωpAqα0βu ` NRSδθωpAqα0βu

´ NpRSδθωpAqα0βu ` NIuSδθωpAqα0βu ` 2NIuSIcγ
2δωβ1βu

´ 2NpδIuSIcγθωpAqβ1βu ` 2NIuSIcγ
2θωpAqβ1βu

´ 2NSIcγδθωpAqβ1βu ` 2NpSIcγδθωpAqβ1βu

` 2NRSIcγδθωpAqβ1βu ´ 2NpRSIcγδθωpAqβ1βu

` 2NIuSIcγδθωpAqβ1βu ` 2NpIuSIcγδθωpAqβ1βu

` 2NRSIcδθ
2ωpAqβ1βu ´ 2NpRSIcδθ

2ωpAqβ1βu

` 2NIuSIcγ
2ωpAqα0β1βu ´ 2NSIcγδωpAqα0β1βu

` 2NpSIcγδωpAqα0β1βu ` 4NIuSIcγδωpAqα0β1βu

` 4NIuSIcγθωpAqα0β1βu ´ 2NSIcδθωpAqα0β1βu

` 2NpSIcδθωpAqα0β1βu ` 2NRSIcδθωpAqα0β1βu

´ 2NpRSIcδθωpAqα0β1βu ` 2NIuSIcδθωpAqα0β1βu

` NIuSI
2
c γ

2δωpAqβ2
1βu ´ NpδIuSI

2
c γθωpAqβ2

1βu

` NIuSI
2
c γ

2θωpAqβ2
1βu ´ NSI2c γδθωpAqβ2

1βu

` NpSI2c γδθωpAqβ2
1βu ` NRSI2c γδθωpAqβ2

1βu

´ NpRSI2c γδθωpAqβ2
1βu ` NIuSI

2
c δθ

2ωpAqβ2
1βu

´ NpRSI2c δθ
2ωpAqβ2

1βu ` NIuSI
2
c γ

2ωpAqα0β
2
1βu

´ NSI2c γδωpAqα0β
2
1βu ` NpSI2c γδωpAqα0β

2
1βu

` 2NIuSI
2
c γδωpAqα0β

2
1βu ` 2NIuSI

2
c γθωpAqα0β

2
1βu

´ NSI2c δθωpAqα0β
2
1βu ` NpSI2c δθωpAqα0β

2
1βu

` NRSI2c δθωpAqα0β
2
1βu ´ NpRSI2c δθωpAqα0β

2
1βu

` NIuSI
2
c δθωpAqα0β

2
1βu

¸ O

N2 p1 ` Icβ1q
2 .
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a5 “

´

´ N2pδxγ2θ ´ N2RSγ2δθ ` N2pRSγ2δθ ` N2pδRSγθ2

´ N2Rγ2δθ2 ` N2γ2δθα0 ´ N2Rγ2δθα0 ´ 2N2Rγδθ2α0

` N2pδSγθα1 ´ N2pδRSγθα1 ´ N2pδRSθ2α1 ´ 2N2pδSIcγ
2θβ1´

2N2RSIcγ
2dθβ1 ` 2N2pRSIcγ

2dθβ1 ` 2N2pδRSIuγθ
2β1`

2N2RIcγ
2dθ2β1 ´ 2N2Icγ

2δθα0β1 ´ 2N2RIcγ
2δθα0β1´

4N2RIcγδθ
2α0β1 ´ N2pδSI2c γ

2θβ1 ´ N2RSI2c γ
2δθβ1 ` N2pRSI2c γ

2δθβ2
1

` N2pδRSI2c γθ
2β2

1 ´ N2RI2c γ
2δθ2β2

1 ` N2I2c γ
2δθα0β

2
1 ´ N2RI2c γ

2δθα0β
2
1´

N2RI2c γ
2θ2α0β1 ´ 2N2RI2c γδθ

2α0β1 ´ NpδSIcγ
2θωpAqβc

` NpSIcγ
2δθωpAqβc ` NpδRSγθ2ωβc ` NSIcγ

2δωpAqα0βc´

NpδSγθωpAqα0βc ` NpδRSγθωpAqα0βc ´ NpδSIcγθωpAqα0βc

` NSIcγ
2θωpAqα0βc ` NSIcγdθωpAqα0βc ` NpSIcγδθωpAqα0βc´

2NpδSI2c γ
2θωpAqβ1 ` N2pδRSIcγ

2θ2β1βc ` 2NpδRSIcγ
2θωpAqβ1βc´

2NpδSIcγθωpAqα0β1βc ` 2NpδRSIcγ
2θωpAqα0β1βc´

2NpδSI2c γ
2θωpAqα0β1 ´ NpδSI3c γ

2θωpAqβ1βc ` NpSI3c γ
2dθωpAqβc`

NpδSI2c γ
2δθωpAqα0β1 ` 2NpδRSI2c γ

2θωpAqα0β1 ´ N2pδSI3c γ
2θωpAqβ1´

NpδSI2c γ
2δθωpAqβ1βc ` N2pSI2c γ

2δθωpAqβ1βc`

NSI3c γ
2δωpAqα0β

2
1βc ´ NpδSI2c γθωpAqα0β

2
1βe`

NpRSI2c γθωpAqα0β
2
1βc ´ NpSI3c γθωpAqα0β

2
1βc`

NSI3c γ
2θωpAqα0β

2
1βc ` NSI3c γδθωpAqα0β

2
1βc`

NpSI3c γδθωpAqα0β
2
1βc ` NpδRSI2c θ

2ωpAqα0β
2
1βc´

NpIuSγ
2θωpAqβu ` NpIuSγ

2δθωpAqβu ` NRSγδθ2ωpAqβu´

NpRSγδθ2ωpAqβu ` NIuSγ
2δωpAqα0βu ´ NpδIuSγθωpAqα0βu`

NIuSγ
2θωpAqα0βu ´ NSγδθωpAqα0βu ` NpSγδθωpAqα0βu`

NRSγδθωpAqα0βu ´ NpRSγδθωpAqα0βu ` NIuSγδθωpAqα0βu`

NpIuSγδθωpAqα0βu ` NRSδθ2ωpAqα0βu ´ NpRSδθ2ωpAqα0βu´

2NpIuSIcγ
2θωpAqβ1βu ` 2NpIuSIcγ

2δθωpAqβ1βu`

2NRSIcγδθ
2ωpAqβ1βu ´ 2NpRSIcγδθ

2ωpAqβ1βu`

2NIuSIcγ
2δωpAqα0β1βu ´ 2NpIuSIcγθωpAqα0β1βu`

2NIuSIcγ
2θωpAqα0β1βu ´ 2NSIcγδθωpAqα0β1βu`

2NpSIcγδθωpAqα0β1βu ` 2NRSIcγδθωpAqα0β1βu´

2NpRSIcγδθωpAqα0β1βu ` 2NIuSIcγδθωpAqα0β1βu`

2NpIuSIcγδθωpAqα0β1βu ` 2NRSIcδθ
2ωpAqα0β1βu´

2NpRSIcδθ
2ωpAqα0β1βu

¯

{N2 p1 ` Icβ1q
2
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a6 “

´

N2pδRSγ2θ2 ´ N2Rγ2δθ2α0 ´ N2pδRSγθ2α1 ` 2N2pδRSIcγ
2θ2β1´

2N2RIcγ
2δθ2α0β1 ` N2pδRSI2c γ

2θ2β2
1 ´ N2RI2c γ

2δθ2α0β
2
1´

NpδSIcγ
2θωpAqα0βc ` NpSIcγ

2δθωpAqα0βc ` NpδRSγθ2ωpAqα0βc´

2NpδSI2c γ
2θωpAqα0β1βc ` 2NpSI2c γ

2δθωpAqα0β1βc`

2NpδRSIcγδθ
2ωpAqα0β1βc ´ NpδSI

3
c γ

2θωpAqα0β
2
1βc`

NpSI3c γ
2δθωpAqα0β

2
1βc ` NpδRSI2c γθ

2ωpAqα0β
2
1βc´

NpδIuSγ
2θωpAqα0βu ` NpIuSγ

2δθωpAqα0βu ` NRSγδθ2ωpAqα0βu´

NpRSγδθ2ωpAqα0βu ´ 2NpδIuSIcγ
2θωpAqα0β1βu`

2NpIuSIcγ
2δθωpAqα0β1βu ` 2NRSIcγδθ

2ωpAqα0β1βu´

2NpRSIcγδθ
2ωpAqα0β1βu ´ NpδIuSI

2
c γ

2θωpAqα0β
2
1βu`

NpIuSI
2
c γ

2δθωpAqα0β
p2q

1 βu ` NRSI2c γδθ
2ωpAqα0β

2
1βu´

NpRSI2c γδθ
2ωpAqα0β

2
1βu

¯

{N2 p1 ` Icβ1q
2 .
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