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Abstract

This study develops a mathematical model to analyze the effects of chemical exposure on
organism population dynamics. Using a set of TK-TD differential equations, the model ex-
amines the interactions between chemical concentration, damage, and population survival.
Numerical simulations validate the theoretical results and explore the system’s behavior
under different scenarios. The findings provide insights into the long-term impacts of chem-
ical stress on population resilience and demonstrate the utility of mathematical models for
environmental risk assessment.

1 Introduction

Chemical pollutants in the environment have significant impacts on organisms, affecting their
physiological, behavioral, and ecological functions. These pollutants, which enter ecosystems
through pathways such as soil, water, and air, can cause acute effects like organ failure or
mortality, as well as chronic impacts, including developmental delays, impaired reproduction,
and increased susceptibility to diseases, see [10]. Furthermore, exposure to these chemicals
can lead to broader ecological consequences, disrupting populations and ecosystems, resulting
in long-term health issues and ecological imbalances that harm biodiversity and ecosystem
stability, see [11].

The toxicity of a chemical pollutant depends on several factors, including its concentra-
tion, persistence, and the organism’s ability to metabolize or eliminate it. Pollutants such as
pesticides, heavy metals, and industrial chemicals can accumulate within organisms, disrupt-
ing biochemical pathways and triggering damage that can be difficult to reverse, see [1]. For
instance, chronic exposure to sub-lethal doses of contaminants can impair vital physiological
processes, resulting in reduced growth rates, diminished fertility, and altered behaviors critical
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for survival, see [3]. These impacts highlight the necessity of studying the interaction between
chemical pollutants and biological systems.

Ecotoxicological studies have long focused on quantifying the relationships between expo-
sure levels, internal pollutant concentrations, and subsequent biological responses. These studies
have revealed threshold concentrations for toxicity and identified key physiological and environ-
mental factors that influence the effects of pollutants on living organisms, see [5]. This field
also provides critical insights into how organisms respond to varying doses over time, making
it possible to predict long-term outcomes and potential risks to populations and ecosystems.
However, bridging these findings into practical tools for predicting the cumulative effects of
pollutants remains a pressing challenge.

Addressing this challenge requires an integrative approach that combines experimental ob-
servations, ecotoxicological principles, and mathematical modeling. By developing frameworks
that simulate the dynamics of pollutant absorption, damage accrual, and survival outcomes,
researchers can gain a deeper understanding of how contaminants influence biological systems.
Such models provide valuable tools for advancing ecotoxicology, enabling predictions of pollu-
tant impacts across different contexts and informing strategies for environmental management.

The rest of this paper is structured as follows: In section 2, we presents the toxicokinetic-
toxicodynamic (TK-TD) model, along with a detailed description of the associated parameters.
Section 3 provides a rigorous mathematical analysis, demonstrating the uniqueness, nonnega-
tivity, and boundedness of the solution, as well as investigating the equilibrium points and their
stability. Section 4 discusses the results of the simulations, highlighting their consistency with
the analytical predictions. Finally, in section 5, we offer our discussion.

2 Mathematical model and its study

2.1 Description of the model

The model employed in this study is based on a toxicokinetic-toxicodynamic (TK-TD) frame-
work, specifically inspired by the General Unified Threshold Model of Survival (GUTS), see
[8]. The TK component describes how a chemical substance is absorbed, distributed, and elim-
inated within an organism, while the TD component captures how chemical exposure impacts
the organism’s survival and reproduction, see [6]. This model simulates the effects of a chemi-
cal substance on a population by describing three interrelated dynamic variables: the internal
concentration of the chemical within the organisms (C), the damage inflicted by the substance
(D), and the cumulative risk posed to the population (H). The flowchart of the model is shown
in Figure 1, and the parameters are outlined in Table 1.
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Figure 1: Schematic representation of the GUTS-model.

The model is governed by the following system of ordinary differential equations:

dC

dt
= (k0Cout − k1C(t))1t≤tc − k2C(t)1t>tc (1)

dD

dt
= kaC(t)− krD(t) (2)

dH

dt
= khmax(D(t)−Dc, 0) + h(t) (3)

Each equation corresponds to a distinct biological process. The first equation models the
internal concentration of the chemical, influenced by external exposure (Cout), absorption rate
(k0), and decay rates (k1 and k2), with the decay switching at a specific threshold time or
critical time (tc). The second equation tracks the accumulation and decay of damage, driven by
the absorption rate into the organism (ka) and the natural repair mechanisms (kr). Finally, the
third equation describes the cumulative risk to the population, which depends on the growth
rate of risk (kh) above a threshold damage level (Dc) and an external hazard function (h).

Table 1: Description of the parameters

Parameters Description

tc Critical time
Cout External concentration
k0 Absorption rate constant
k1 Elimination rate constant (t ≤ tc)
k2 Elimination rate constant (t > tc)
ka Damage accumulation rate constant
kr Damage recovery constant
kh Mortality rate
Dc Threshold effects
h(t) Hazard function

The model extends to predict the organism population size N(t) over time. The survival
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probability S(t) is determined by the cumulative risk H(t) as follows:

S(t) = exp(−H(t)), and N(t) = S(t)N0.

where N0 is the initial population size. This formulation reflects the combined influence of risk
accumulation and initial population size on long-term survival.

3 Qualitative Analysis

In this section, the model is qualitatively analyzed to investigate the well-posedness and stability
of the equilibrium points.

3.1 Well-posedness

In analyzing the interactions between chemical accumulation, damage, and population dynamics
of organisms, it is vital to ensure the model produces a single, well-defined solution for any given
initial conditions and that all variables remain nonnegative and bounded. This guarantees the
reliability of the model’s predictions and the consistency of numerical simulations. The following
theorems establish these foundational aspects:

Theorem 3.1. Given a nonnegative and bounded initial datum, the system of equations (1)
- (3) has a unique global in time solution. Moreover the solution remains nonnegative and
bounded for all time t ≥ 0.

Proof. Since the right-hand side of the system of equations (1) - (3) is continuous with contin-
uous partial derivatives, by Cauchy-Lipschitz’s theorem, the system of equations (1) - (3) has a
local in time unique solution.

The variables C(t), D(t), and H(t) represent physical or biological quantities. These quanti-
ties are inherently non-negative since negative values would not have any physical or biological
meaning. Hence, we assume that C(0) ≥ 0, D(0) ≥ 0, and H(0) ≥ 0. Consider the equation
(1), for t ≤ tc,

dC

dt
= k0Cout − k1C(t).

This implies that
dC

dt
+ k1C(t) = k0Cout.

The solution to this linear first order equation in C is given by

C(t) = C(0)e−k1t +
k0Cout

k1
(ek1t − 1)e−k1t

= C(0)e−k1t +
k0Cout

k1
(1− e−k1t).

Since C(0) ≥ 0, it follows that C(t) ≥ 0. Notice that

|C(t)| ≤ max

{
C(0),

k0Cout

k1

}
.

Hence, C(t) is bounded. For t > tc, the system (1) becomes

dC

dt
+ k2C(t) = 0,
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and

C(t) = C(tc)e
−k2(t−tc),

where

C(tc) = C(0)e−k1tc +
k0Cout

k1
(1− e−k1tc) ≥ 0.

Hence, C(t) ≥ 0. Since the solution C(t) decays exponentially to zero, C(t) is bounded.
Now, from equation (2) of the model, we get

dD

dt
+ krD(t) = kaC(t).

Solving the above equation using the same method, we have

D(t) = D(0)e−krt + kae
−krt

∫ t

0
ekrτC(τ) dτ.

Since D(0) ≥ 0, C(τ) ≥ 0, it follows that D(t) ≥ 0 for all time t. Moreover, D(t) is bounded
since C(t) is bounded. Finally, from the last equation (3) of the system,

dH

dt
= khmax(D(t)−Dc, 0) + h(t).

Integrating both sides from 0 to t, we have

H(t)−H(0) =

∫ t

0
(khmax(D(τ)−Dc, 0) + h(τ)) dτ

H(t) = H(0) +

∫ t

0
(khmax(D(τ)−Dc, 0) + h(τ)) dτ

Note that H(0) ≥ 0, max(D(τ) − Dc, 0) ≥ 0, and h(t) ≥ 0, hence H(t) ≥ 0 for all time t.
Furthermore H(t) is bounded since D(t) and max(D(τ)−Dc, 0) are bounded.

3.2 Qualitative Behavior

The equilibrium is solution to the system that is constant for any time t. That is, a solution

(C∗, D∗, H∗)

such that
dC

dt
=

dD

dt
=

dH

dt
= 0.

Analyzing equilibrium points is essential to understanding the long-term behavior of the
system, as they represent steady-state conditions where the dynamic variables no longer change
over time. These points provide insights into the stability of the system and the potential impact
of chemical exposure on organism populations. In this section that hazard does not occurs by
assuming h ≡ 0. The following theorem identifies the equilibrium points of the system.

Theorem 3.2. System (1) - (3) has two equilibrium points (C∗, D∗, H∗), given by, for t ≤ tc,

x0 =

(
k0
k1

Cout,
kak0
krk1

Cout, H0

)
,

and for t > tc
x0 = (0, 0, H0).
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Proof. Let (C∗, D∗, H∗) be an equilibrium point. Then,
dC

dt
=

dD

dt
=

dH

dt
= 0. That is,

0 = (k0Cout − k1C
∗)1t≤tc − k2C

∗1t>tc (4)

0 = kaC
∗ − krD

∗ (5)

0 = khmax(D∗ −Dc, 0). (6)

Case 1: t ≤ tc.
From equation (4), and (5), we obtain

C∗ =
k0
k1

Cout , D∗ =
kak0
krk1

Cout

From equation (6), if
kak0
krk1

Cout ≤ Dc, then max(D∗ − Dc, 0) = 0. On the other hand, if

kak0
krk1

Cout > Dc, then max(D∗ −Dc, 0) = D∗ −Dc > 0, and there is no equilibrium in this case.

Case 2: t > tc.
From equation (4), (5) and (6), we get

C∗ = 0 , D∗ = 0.

Then max(D∗ −Dc, 0) = 0 and the third equation is satisfied.

3.3 Stability Analysis

Understanding the stability of equilibrium points is essential for assessing how the system re-
sponds to small disturbances and provides insights into the resilience of the population under
chemical stress. The following theorems confirm the stability of the equilibrium points.

Theorem 3.3. If tc = +∞, the equilibrium point

x0 =

(
k0
k1

Cout,
k1k0
krk1

Cout, H0

)
,

is locally asymptotically stable.

Proof. The Jacobian matrix if tc = +∞ is given by

J (x1, x2, x3) =

−k1 0 0
ka −kr 0
0 kh 0

 .

Evaluating the Jacobian matrix at the equilibrium point x0 gives us

J ∗(x1, x2, x3) =

−k1 0 0
ka −kr 0
0 kh 0

 .

Let the eigenvalues be λ1, λ2, λ3 of the Jacobian matrix. Solving the eigenvalues of J (x1, x2, x3),
we have

det|J ∗ − Iλ| = det

−k1 − λ 0 0
ka −kr − λ 0
0 kh −λ


= (−k1 − λ) · det

[
−kr − λ 0

kh −λ

]
− 0 · det

[
ka 0
0 −λ

]
+ 0 · det

[
ka −kr − λ
0 kh

]
= (−k1 − λ)(−kr − λ)(−λ).
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Hence, the eigenvalues of J (x1, x2, x3) are

λ1 = −k1 , λ2 = −kr , λ3 = 0.

Since the eigenvalues are either negative or zero, the equilibrium

x0 =

(
k0
k1

Cout,
k1k0
krk1

Cout, H0

)
,

is locally asymptotically stable.

Theorem 3.4. If tc is finite, the equilibrium point x0 = (0, 0, H0) is locally asymptotically
stable.

Proof. The Jacobian matrix is given by

J (x1, x2, x3) =

−k2 0 0
ka −kr 0
0 kh 0

 .

Using the same method with the previous theorem, the eigenvalues of J (x1, x2, x3) are

λ1 = −k2 , λ2 = −kr , λ3 = 0.

Since the eigenvalues are either negative or zero, the equilibrium

x0 = (0, 0, H0),

is locally asymptotically stable.

4 Numerical simulations

The numerical simulations in this study are conducted to verify the results of the mathematical
analysis. By solving the system of equations numerically, we can observe the dynamics of
chemical concentration, damage, and population survival over time. These simulations help
confirm the accuracy and consistency of the theoretical predictions, providing a clear picture
of how the system behaves under various conditions. The parameter values were thoughtfully
chosen to capture moderate environmental effects, see [4, 9]. The summary of the assumed
values is shown in Table 2.

Table 2: Assumed values of parameters.

Parameters Description Assumed Value

Cout External concentration 1.25
k0 Absorption rate constant 0.5
k1 Elimination rate constant (t ≤ tc) 0.2
k2 Elimination rate constant (t > tc) 0.1
ka Damage accumulation rate constant 0.3
kr Damage recovery constant 0.2
kh Mortality rate 0.4
Dc Threshold effects 5
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The assumed parameter values in Table 2 provide the foundation for analyzing how the
model responds under various scenarios. To validate the agreement between the simulations
and the theoretical analysis, we explore specific cases that represent different environmental
and chemical exposure conditions. These cases allow for a detailed examination of the system’s
dynamics.

Case 1: tc = +∞, and h = 0.

In the first case, we examine the situation where the critical time tc is infinitely large, and
no additional baseline hazard is introduced.

Figure 2: Temporal evolution of internal concentration C(t), damage D(t), and cumulative risk
H(t), all converging to their respective equilibrium values.

Figure 2 shows that C(t) rises initially due to Cout, then decays with k1 at a steady state.
Moreover, it stabilizes near its equilibrium value:

C∗ =
k0
k1

Cout =
0.5

0.2
· 1.25 = 3.125.

For D(t), it grows as the chemical concentration is absorbed (ka · C(t)), then decays with kr.
The growth slows over time as C(t) approaches equilibrium. D(t) approaches to an equilibrium
value as well:

D∗ =
kak0
k1kr

Cout =
0.3 · 0.5
0.2 · 0.2

· 1.25 = 4.6875.

Since D∗ < Dc = 5.0, no additional cumulative risk is triggered. Hence, H remains 0 all the
time. This result agrees with Theorem 3.3.
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Figure 3: Time-based evolution of survival rate S(t) and organism population, showing no
survival loss or population decline due to the absence of cumulative hazard.

Figure 3 shows that S(t) remains constant at 1, as H(t) = 0. The organism population
experiences no survival loss due to chemical exposure in this case. For the number of population
of organism, it remained unchanged over time. With no hazard accumulation, the population
is unaffected.

Case 2: tc = +∞, and h = 2.0
1+exp(−0.1(t−60)) .

In the second case, we introduce a logistic hazard function for h(t), which models an in-
creasing hazard rate peaking around t = 60.

Figure 4: Temporal evolution of internal concentration C(t), damage D(t), and cumulative risk
H(t) in the presence of a logistic hazard function.

Figure 4 shows that the hazard function h(t) causes a sharp rise in cumulative risk H(t)
despite D(t) staying below Dc, the logistic hazard contributes significantly to cumulative risk
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with a value of H(t) = 179.953. While the behavior of C(t), and D(t) are similar with the
previous case, with equilibrium approaching

C∗ = 3.125, and D∗ = 4.6875,

respectively.

Figure 5: Dynamics of organism population N(t) and survival probability S(t) over time. The
exponential decay of survival probability drives changes in population.

Figure 5 shows the decline in both the survival rate S(t) and the population of organism N .
S(t) drops near t = 60, asymptotically approaching 0 as H(t) grows unbounded. The logistic
hazard clearly has strong effects on organism survival. As the survival rate decreases and H(t)
increases, the population decreases, unable to sustain itself under high cumulative risk.

Case 3: tc = +∞, h = 0 and D∗ > Dc.

The third case considers the scenario where the damage exceeds the threshold Dc.
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Figure 6: Time series plots of C(t), D(t), and H(t): C(t) stabilizes due to decay dynamics, D(t)
reflects cumulative damage, and H(t) rises only when D(t) > Dc.

As shown in Figure 6, C(t) rises initially due to the external concentration Cout, then
stabilizes at C∗ = 3.125. Similarly, D(t) reaches its equilibrium value D∗ = 4.6875. However,
since D∗ exceeds Dc = 5, the cumulative risk H(t) begins to increase after the threshold is
crossed.

Figure 7: PopulationN(t) and survival probability S(t) over time: S(t) declines with cumulative
risk, driving a reduction in N(t).

Figure 7 shows that as the cumulative riskH(t) increases, S(t) declines exponentially,causing
a reduction in the organism population. This result demonstrates the crucial role of damage
thresholds in determining whether the cumulative risk reaches levels sufficient to impact the
survival and growth of the population.

Case 4: tc = 4, and h(t) = 0.

In this case, we introduce a finite critical time tc = 4, and again assume no baseline hazard
(h(t) = 0)
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Figure 8: Temporal evolution of internal concentration, damage, and cumulative risk for a finite
critical time and no baseline hazard.

The dynamics of C(t) and D(t) are shown in Figures 8. Initially, C(t) increases due to the
external concentration Cout, and after tc = 4, the elimination rate switches to a slower value
k2, causing C(t) to decrease gradually. Similarly, D(t) increases initially but eventually slows
down as the chemical is eliminated from the organism.

Figure 9: Time evolution of the survival rate S(t) and organism population shows no decline in
survival or population due to the lack of cumulative hazard.

Since H(t) = 0, S(t) remains at 1, and so N is constant too. The survival of organism is
less sensitive to damage under this case, as the fixed h(t) = 0 eliminates any baseline hazard
contribution.

Case 5: tc = 4, and h = 2.0
1+exp(−0.1(t−60)) .

The final case introduces both a finite tc = 4 and a logistic hazard function for h(t).
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Figure 10: Evolution of internal concentration, damage, and cumulative risk over time for a
finite critical time with the introduction of a logistic hazard function.

Figure 10 shows the plot for C(t) and D(t) that remains unchanged compared to the pre-
vious case. However, for H(t), it increases due to the influence of the hazard function (h(t)),
accumulating over time.The sharp rise reflects the significant impact of the hazard function on
cumulative risk, potentially affecting survival.

Figure 11: Exponential decline in survival rate S(t) asH(t) increases, leading to a corresponding
decrease in organism population N(t).

As H(t) increases, Figure 11 illustrates an exponential decrease in the survival rate S(t).
High hazard rates sharply reduce survival, highlighting the severity of the chemical’s toxic
effects. As S(t) declines, the organism population N(t) also decreases, emphasizing the direct
link between survival and population dynamics.

The analysis in Section 3 is consistent with the results from simulations across cases 1
to 5, demonstrating that the model reliably captures the dynamics of organism populations
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exposed to varying concentrations of chemical substances. This alignment between theoretical
analysis and simulation outcomes reinforces the model’s validity, illustrating its effectiveness
in quantifying the toxic effects of chemical exposure on organism dynamics. Furthermore, the
agreement between analysis and simulation underscores the model’s robustness in simulating
complex environmental stressors, making it a valuable tool for predicting the impact of chemical
pollutants on ecosystems.

5 Discussion

The presented plots collectively describe the dynamics of internal concentration (C), damage
(D), cumulative risk (H), survival probability (S), and population size (N) within a modeled
toxicokinetic-toxicodynamic framework. The C plot illustrates the evolution of internal con-
centration over time, showing an initial rise due to external input (Cout) followed by a decline
governed by the decay rate constants k1 and k2. The damage D plot reflects a lagged response
to C, as the absorption rate (ka) and decay rate (kr) modulate the accumulation and clearance
of damage.

Cumulative risk (H) only increases when D surpasses the threshold (Dc), as observed in
the H plot. This threshold-dependent growth highlights the nonlinear nature of risk accumu-
lation. The survival probability (S(t) = exp(−H(t)) decreases exponentially as cumulative risk
increases, directly impacting the organism population size (N(t) = N0S(t)). The N plot in-
dicates the decline of the organism population over time, emphasizing the cascading effect of
internal processes on population-level outcomes.

When the hazard function (h) is set to zero, the simulations reveal the intrinsic dynamics
of the system, providing a baseline for understanding the behavior driven solely by internal
processes. This allows for isolating the effects of key parameters, such as k0, k1, k2, and Dc, on
the system’s dynamics.

Notably, the simulations agree with the analytical expectations derived from the model.
For instance, the equilibrium values for C and D align with theoretical predictions based on
the model parameters, further validating the consistency between simulation outputs and the
underlying mathematical framework. The results also illustrate the cascading effects of toxic
exposure, supporting the hypothesized relationships between internal concentration, damage,
risk, and population outcomes.
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