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3

Abstract4

Quantile regression offers a powerful means of characterizing how covariate effects vary5

across the entire outcome distribution, but standard implementations can suffer from curve6

crossings or computational burdens. This study proposes an approach that builds condi-7

tional quantile curves sequentially—starting from the median and expanding outward—with8

constrained priors to enforce non-crossing by construction. Posterior inference is carried9

out via an adaptive Metropolis algorithm, eliminating the need for closed-form full con-10

ditionals and improving mixing as the posterior concentrates. Here we report a subset of11

results—single-predictor simulations under normal, right-skewed Gamma, and heteroscedas-12

tic errors across varying sample sizes. Results showed that proposed approach consistently13

attains lower bias and RMSE than both frequentist fits and Gibbs quantile regression, and14

achieves superior convergence efficiency. An empirical application to the 2023 Philippine15

FIES—modeling log educational spending on log household income—demonstrates the pro-16

posed approach’s ability to produce coherent, non-crossing quantile estimates that uncover17

increasing income elasticities across spending levels. These results highlight its practical18

utility for distributional analysis where monotonicity and computational efficiency are es-19

sential.20

1 Introduction21

Quantile regression is a statistical method used for estimating conditional quantile functions.22

Unlike traditional regression methods that focus on conditional means or medians, quantile23

regression examines the relationship between covariates and the response variable across various24

points in the distribution.25

Quantile regression was formally introduced as a method for modeling these conditional
quantiles of a response variable in relation to covariates in a linear framework [7]. In a linear
quantile regression model, the relationship between the p-th quantile of the response variable
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and the covariates is defined as qp(xi) = x⊤
i βp, where βp is a vector of unknown parameters.

The model can be expressed as

yi = x⊤
i βp + ϵi (1)

where ϵi is the error term (i = 1, . . . , n) with probability density function fp(·) satisfying the

condition
∫ 0
−∞ fp(ϵi) dϵi = p. In the classical frequentist approach, referred to as such in this

paper, quantile regression estimates are obtained by minimizing the following objective function

n∑
i=1

ρp(yi − x⊤
i βp), (2)

where ρp(u) = u(p−I(u < 0)), and I(·) is the indicator function. Inference in quantile regression26

involves several sophisticated methods to address challenges such as the non-smooth objective27

function, dependence on conditional densities, and potential heteroskedasticity [8].28

Bayesian quantile regression offers an alternative that incorporates prior information and
enables direct probabilistic interpretation of parameter uncertainty. Although it does not en-
tirely eliminate the challenges posed by quantile regression, this framework can mitigate some
of the estimation difficulties through prior specification and posterior inference. The Bayesian
quantile regression approach was introduced by Yu and Moyeed [17]. Their work showed that
the set of parameters minimizing the absolute value of residuals in Equation (2) also maximizes
the likelihood function formed by combining the independently distributed Asymmetric Laplace
Distribution (ALD) density function, defined as

fp(ϵi) = p(1− p) exp{−ρp(ϵi)}, (3)

where ρp(·) denotes the same function introduced in Equation (2), and the parameter p deter-29

mines the skewness of the distribution. Since the use of asymmetric Laplace distribution leads30

to a not analytically tractable posterior for βp, Markov chain Monte Carlo (MCMC) methods31

were utilized for posterior inference, particularly a random walk Metropolis algorithm with a32

Gaussian proposal density centered at the current parameter value.33

However, Kozumi and Kobayashi highlighted the practical limitations of employing the34

random walk Metropolis sampler for Bayesian quantile regression [9]. They proposed an efficient35

Gibbs sampling algorithm for Bayesian quantile regression, utilizing a location-scale mixture36

representation of the asymmetric Laplace distribution. Their method outperformed the random37

walk Metropolis sampler by reducing Monte Carlo errors, bias, and root mean squared error,38

demonstrating robust finite-sample performance even when the error distribution deviates from39

the assumed asymmetric Laplace distribution. However, in general, the Gibbs sampler has been40

shown to face significant computational challenges in high-dimensional parameter spaces [14].41

Quantile line crossing is another concern, where estimated quantile curves intersect, violating42

the fundamental monotonicity constraint of quantiles and undermining the interpretability of43

results. Although there are frequentist [2] and Bayesian [13] methods to alleviate this issue, the44

use of constrained priors, such as those discussed by Stark [15], remains largely unexplored in45

this context.46

Due to the computational demands of Gibbs sampling in high-dimensional spaces and its47

limitations on prior specification, another MCMC approach is needed to address these issues.48

The Independent-Kernel Metropolis–Hastings (IK-MH) algorithm, as employed by Chen and49

So [4], converges rapidly when its proposal closely aligns with the true posterior. In contrast50

to Gibbs sampling, which requires closed-form full conditional distributions, thus constraining51

prior choices, IK-MH offers greater flexibility in specifying priors. Moreover, because IK-MH52

38 TMJM THE MINDANAWAN JOURNAL OF MATHEMATICS

Vol. 7 (2025), no. 1, pp. 37–48

https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm


Bayesian Quantile Regression with Adaptive MCMC

does not rely on the current state to generate proposals, it reduces sequential dependencies and53

improves computational efficiency [6].54

This study employs the IK-MH algorithm to sequentially model quantile regression across55

different quantile levels. In order to prevent quantile line crossing—a common challenge in56

quantile estimation—constrained priors, informed by the median (0.5 quantile) estimates, will57

be utilized. The IK-MH algorithm is expected to enhance convergence speed compared to58

traditional approaches, making it especially valuable when modeling multiple quantiles. Finally,59

the performance of the IK-MH method will be compared with that of Gibbs sampling and60

frequentist quantile regression in terms of estimation accuracy, computational efficiency, and61

robustness. The results presented here are initial and focus solely on the single predictor case.62

2 Bayesian Posterior Inference63

2.1 Independent-Kernel Metropolis–Hastings (IK-MH) algorithm64

Chen and So [4] utilized a hybrid adaptive MCMC method, combining the Random Walk65

Metropolis-Hastings (RW-MH) and Independent Kernel Metropolis-Hastings (IK-MH) algo-66

rithms. During the initial burn-in phase, the RW-MH algorithm is used, allowing the estimation67

of the sample mean µα and sample variance Ωα. Afterward, the IK-MH algorithm is applied,68

using the estimated µα and Ωα for more effective proposals. The algorithm is as follows.69

Algorithm 1 Adaptive Metropolis-Hastings Algorithm

Input: Set initial values θ(0) and number of iterations J .
Output: A sequence of posterior samples {θ(1), . . . , θ(J)}.
For i = 1 to M (RW-MH stage):
1. Generate a candidate point θ∗ = θ(i−1) + ϵ, where ϵ ∼ N(0, σ).
2. Accept θ∗ with probability

r = min

(
1,

π(θ∗)

π(θ(i−1))

)
,

3. Otherwise, set θ(i) = θ(i−1).
After burn-in (IK-MH stage):
3. Compute the sample mean µα and sample variance Ωα from the burn-in samples.
4. Generate a candidate point θ∗ = µα + ϵ, where ϵ ∼ N(0,Ωα).
5. Accept θ∗ with probability

r = min

(
1,

π(θ∗)g(θ(i−1))

π(θ(i−1))g(θ∗)

)
,

where g(·) is the proposal distribution. Otherwise, set θ(i) = θ(i−1).
6. Save θ(i).
End For

In the IK-MH algorithm, proposals are generated from a distribution that does not depend70

on the current state, thereby allowing the Markov chain to make larger jumps across the param-71

eter space and reduce autocorrelation [12, 16]. When the proposal distribution is well aligned72

with the target posterior, both the acceptance rate and the average step size tend to be high,73

facilitating efficient mixing and lowering the number of iterations needed to achieve a given74

precision. Nonetheless, the performance of IK–MH is highly sensitive to the choice of proposal75
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distribution, and careful calibration or adaptation of this distribution is essential for robust76

results.77

Due to its adaptive nature, the Independent-Kernel Metropolis–Hastings algorithm is in-78

herently non-Markovian but maintains correct ergodic properties [6]. Also, adaptive MCMC79

methods have been shown to perform competitively with traditional Metropolis–Hastings ap-80

proaches while offering ease of implementation. Recent studies [3, 11] demonstrate the practi-81

cal effectiveness of adaptive MCMC techniques in Bayesian modelling for applications such as82

integer-valued transfer function models and zero-inflated count data. These studies highlights83

the enhance sampling efficiency and convergence rates of this adaptive process which will be84

use in modellling multi-quantile regression models.85

These advantages suggest that adaptive MCMC and specifically the IK MH algorithm is a86

promising tool for quantile regression applications. It can efficiently sample from complex pos-87

terior distributions and enforce monotonicity. Recent studies above also highlight the enhanced88

sampling efficiency and improved convergence rates of this adaptive process. These properties89

make the IK MH algorithm ideally suited for modeling multi-quantile regression models and90

high-dimensional data.91

3 Simulation92

This section details the simulation design used to evaluate the performance of the proposed93

quantile regression methods. Synthetic datasets were generated according to the following94

linear quantile regression model:95

yi = β0 + β1 xi1 + ϵi, for i = 1, 2, . . . , n, (4)

where xi1 follows a standard normal distribution. The regression coefficients β0 and β1 vary96

monotonically across quantiles. Specifically, for p = (0.10, 0.25, 0.50, 0.75, 0.90), the true pa-97

rameter values were98

β0 = (−2, −1, 0, 1, 2) and β1 = (−0.50, −0.25, 0, 0.25, 0.50).

Three distributions were considered for the error term ϵi. First, a standard normal distribution99

ϵi ∼ N (0, 1) was used to represent symmetric, homoscedastic errors. Second, a right-skewed100

Gamma(0.25, 2) distribution was employed. Finally, heteroscedastic errors were introduced101

via ϵi = xi1 ηi with ηi ∼ N (0, 1). Each of these error structures was examined for sample102

sizes n ∈ {100, 200, 500}, and every combination of distribution and sample size was replicated103

M = 100 times. This design enables a thorough comparison of the frequentist, Gibbs, and104

adaptive MCMC quantile regression approaches under varying sample sizes and error structures.105

The implementation of the methodology described in this section is available at https://106

github.com/ConradMaisog/SMQR-Using-Adaptive-MCMC.107

3.1 Priors and MCMC Specifications108

For the Gibbs and adaptive MCMC methods, informative priors were placed on βi and σ.
In the Gibbs approach, all quantiles p share the same priors, namely βi ∼ N (0, 1) and σ ∼
Inverse Gamma(6, 5), which are standard choices in Bayesian regression. By contrast, the
adaptive MCMC technique imposes priors on βi that depend on the specific quantile p. At
the median quantile p = 0.50, the prior is specified as βi ∼ N (0, 1). For lower quantiles such as
p = 0.25, a flipped exponential prior −Exp(1) is used, constrained so that βp does not exceed
the coefficient at the next higher quantile. Similarly, for higher quantiles such as p = 0.75,
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a truncated Exp(1) prior is assigned, ensuring that βp remains above the estimate from the
previous lower quantile. Formally, if βp′ is the anchor coefficient at an adjacent quantile p′, then

βp
∣∣ βp′ ∼


λ exp

[
λ
(
βp − βp′

)]
, if p < p′ and βp ≤ βp′ ,

λ exp
[
−λ

(
βp − βp′

)]
, if p > p′ and βp ≥ βp′ ,

0, otherwise,

(5)

where λ = 1 is chosen to maintain a scale comparable to the N (0, 1) prior. By proceeding109

outward from the median, the adaptive MCMC framework enforces an ordered relationship110

among neighboring quantiles while preserving variance similar to the Gibbs-based priors.111

Step sizes for β0, β1, and σ in the adaptive MCMC algorithm were set to 0.4, 0.25, and 0.25,112

respectively, and remained fixed across all replications. These values were identified through a113

preliminary investigation aimed at optimizing algorithmic stability and performance.114

3.2 Simulation Results115

As shown in Table 1, the frequentist, Gibbs, and adaptive MCMC quantile regression methods116

were evaluated in terms of absolute bias and root-mean squared error (RMSE) across various117

error distributions and sample sizes for each quantile. In most settings, the adaptive MCMC118

approach yielded the lowest RMSE, particularly at quantiles away from the median (p ̸= 0.50).119

Although the bias associated with the adaptive MCMC estimates was not consistently the120

smallest across all conditions, this can largely be attributed to the constant step sizes used for121

all replications. As recommended by standard MCMC methodology [5, 12], step sizes must122

be carefully tuned to balance mixing efficiency and convergence. Even with fixed step sizes,123

however, the adaptive MCMC approach consistently outperformed the other methods in most124

scenarios. These results underscore the potential of the adaptive MCMC method to yield more125

reliable and precise quantile estimates across different conditions.126

Table 2 presents the inefficiency factors (IF) and Monte Carlo standard errors (MCSE)127

for both Gibbs sampling and an adaptive MCMC algorithm, evaluated under various error128

distributions and sample sizes for each quantile. At a relatively small sample size n = 100, Gibbs129

sampling produces lower inefficiency factors, suggesting improved chain mixing and reduced130

autocorrelation. However, at a larger sample size n = 500, the adaptive MCMC algorithm131

demonstrates lower inefficiency factors, indicating that it is more effective at navigating the132

increasingly complex posterior distribution. This outcome highlights the ability of the adaptive133

MCMC method to adjust to conditions where the posterior becomes more sharply peaked134

and exhibits stronger inter-parameter correlations. Such conditions render adaptive MCMC135

particularly effective, as also noted in [6].136

Figure 1 provides spaghetti plots for the slope coefficient (β1) across 100 replications under137

three error distributions (standard normal, right-skewed Gamma, heteroscedastic) and three138

sample sizes (100, 200, 500), since crossings for the intercept (β0) were minimal. Each line139

connects estimated β1 across quantiles, with red indicating a lower-quantile estimate exceed-140

ing a higher one indication non-monotonicity and blue indicating monotonicity. These plots141

offer a concise visual tally of monotonicity violations without inspecting individual replications.142

Frequentist quantile regression methods generate numerous red lines across all settings, demon-143

strating persistent quantile crossing. Gibbs sampling also fails to enforce ordering, particularly144

under skewed and heteroscedastic errors. In contrast, the proposed approach employing con-145

strained priors yields exclusively blue lines across every scenario. This demonstrates that the146

constrained-prior framework consistently enforces monotonic quantile estimates regardless of147

error structure or sample size.148
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Table 1: Bias and RMSE of regression coefficients across quantiles and sample sizes under
different error distributions.

n Error1 Quantile
β0 β1

Frequentist2 Gibbs2
Adaptive

MCMC2
Frequentist2 Gibbs2

Adaptive

MCMC2

100

SN

0.10 0.099 (0.256) 0.005 (0.153) 0.054 (0.133) 0.027 (0.423) 0.290 (0.321) 0.022 (0.101)

0.25 0.024 (0.160) 0.028 (0.098) 0.021 (0.091) 0.010 (0.272) 0.137 (0.175) 0.017 (0.108)

0.50 0.004 (0.121) 0.000 (0.067) 0.009 (0.068) 0.049 (0.290) 0.019 (0.125) 0.001 (0.100)

0.75 0.016 (0.150) 0.015 (0.091) 0.016 (0.086) 0.068 (0.375) 0.120 (0.174) 0.016 (0.114)

0.90 0.110 (0.252) 0.015 (0.163) 0.044 (0.125) 0.086 (0.429) 0.295 (0.316) 0.027 (0.114)

RSG

0.10 0.001 (0.004) 0.116 (0.122) 0.173 (0.177) 0.000 (0.005) 0.122 (0.134) 0.071 (0.079)

0.25 0.012 (0.069) 0.006 (0.046) 0.008 (0.044) 0.007 (0.074) 0.056 (0.077) 0.045 (0.062)

0.50 0.023 (0.054) 0.076 (0.088) 0.086 (0.096) 0.023 (0.087) 0.007 (0.055) 0.003 (0.056)

0.75 0.102 (0.183) 0.077 (0.116) 0.081 (0.125) 0.049 (0.331) 0.109 (0.155) 0.025 (0.095)

0.90 0.259 (0.660) 0.050 (0.196) 0.073 (0.187) 0.095 (0.774) 0.298 (0.338) 0.030 (0.137)

H

0.10 0.138 (0.395) 0.058 (0.208) 0.049 (0.158) 0.079 (0.609) 0.296 (0.351) 0.022 (0.200)

0.25 0.027 (0.182) 0.025 (0.091) 0.024 (0.082) 0.022 (0.437) 0.146 (0.224) 0.020 (0.154)

0.50 0.000 (0.067) 0.001 (0.049) 0.002 (0.050) 0.038 (0.308) 0.033 (0.149) 0.035 (0.135)

0.75 0.025 (0.153) 0.020 (0.096) 0.014 (0.096) 0.051 (0.352) 0.148 (0.207) 0.042 (0.171)

0.90 0.147 (0.338) 0.014 (0.175) 0.055 (0.182) 0.039 (0.574) 0.283 (0.335) 0.063 (0.203)

200

SN

0.10 0.058 (0.119) 0.030 (0.095) 0.021 (0.091) 0.018 (0.234) 0.185 (0.218) 0.036 (0.099)

0.25 0.020 (0.114) 0.000 (0.078) 0.002 (0.056) 0.001 (0.233) 0.087 (0.154) 0.018 (0.101)

0.50 0.002 (0.073) 0.000 (0.050) 0.002 (0.051) 0.007 (0.199) 0.007 (0.110) 0.016 (0.114)

0.75 0.002 (0.089) 0.004 (0.070) 0.009 (0.065) 0.026 (0.224) 0.094 (0.160) 0.047 (0.115)

0.90 0.042 (0.137) 0.007 (0.109) 0.022 (0.092) 0.048 (0.237) 0.192 (0.238) 0.065 (0.125)

RSG

0.10 0.000 (0.000) 0.037 (0.038) 0.114 (0.116) 0.000 (0.001) 0.023 (0.027) 0.048 (0.052)

0.25 0.003 (0.009) 0.013 (0.017) 0.010 (0.021) 0.000 (0.012) 0.011 (0.024) 0.030 (0.039)

0.50 0.013 (0.040) 0.051 (0.059) 0.067 (0.075) 0.006 (0.060) 0.004 (0.048) 0.007 (0.053)

0.75 0.056 (0.146) 0.054 (0.108) 0.038 (0.088) 0.028 (0.229) 0.095 (0.152) 0.027 (0.103)

0.90 0.196 (0.467) 0.009 (0.196) 0.035 (0.152) 0.034 (0.583) 0.263 (0.325) 0.019 (0.170)

H

0.10 0.093 (0.277) 0.013 (0.146) 0.038 (0.121) 0.112 (0.437) 0.145 (0.266) 0.002 (0.163)

0.25 0.011 (0.106) 0.003 (0.076) 0.007 (0.060) 0.016 (0.284) 0.091 (0.204) 0.009 (0.156)

0.50 0.002 (0.038) 0.004 (0.029) 0.000 (0.033) 0.020 (0.254) 0.011 (0.155) 0.022 (0.154)

0.75 0.026 (0.109) 0.016 (0.075) 0.008 (0.066) 0.049 (0.281) 0.059 (0.169) 0.017 (0.175)

0.90 0.069 (0.244) 0.011 (0.149) 0.039 (0.124) 0.040 (0.426) 0.173 (0.284) 0.022 (0.175)

500

SN

0.10 0.019 (0.085) 0.012 (0.062) 0.012 (0.059) 0.026 (0.198) 0.059 (0.157) 0.035 (0.116)

0.25 0.000 (0.052) 0.004 (0.042) 0.004 (0.045) 0.017 (0.145) 0.055 (0.128) 0.033 (0.109)

0.50 0.002 (0.045) 0.002 (0.035) 0.003 (0.036) 0.014 (0.119) 0.015 (0.094) 0.009 (0.096)

0.75 0.010 (0.052) 0.001 (0.042) 0.000 (0.042) 0.001 (0.149) 0.046 (0.118) 0.025 (0.098)

0.90 0.020 (0.069) 0.010 (0.062) 0.023 (0.060) 0.022 (0.179) 0.097 (0.170) 0.052 (0.107)

RSG

0.10 0.000 (0.000) 0.006 (0.007) 0.048 (0.048) 0.000 (0.000) 0.002 (0.004) 0.016 (0.019)

0.25 0.001 (0.002) 0.009 (0.010) 0.012 (0.013) 0.000 (0.004) 0.001 (0.007) 0.009 (0.014)

0.50 0.004 (0.012) 0.022 (0.025) 0.032 (0.035) 0.002 (0.033) 0.001 (0.028) 0.001 (0.026)

0.75 0.021 (0.058) 0.028 (0.048) 0.034 (0.052) 0.004 (0.143) 0.035 (0.112) 0.022 (0.091)

0.90 0.030 (0.159) 0.000 (0.098) 0.014 (0.091) 0.056 (0.347) 0.128 (0.247) 0.017 (0.147)

H

0.10 0.036 (0.127) 0.012 (0.104) 0.005 (0.074) 0.069 (0.245) 0.129 (0.232) 0.025 (0.155)

0.25 0.005 (0.053) 0.002 (0.041) 0.005 (0.041) 0.014 (0.189) 0.024 (0.157) 0.001 (0.135)

0.50 0.001 (0.017) 0.000 (0.014) 0.003 (0.016) 0.013 (0.144) 0.009 (0.120) 0.017 (0.124)

0.75 0.011 (0.048) 0.012 (0.035) 0.011 (0.042) 0.004 (0.173) 0.028 (0.139) 0.003 (0.132)

0.90 0.023 (0.111) 0.004 (0.084) 0.009 (0.073) 0.017 (0.223) 0.071 (0.187) 0.039 (0.134)

1 SN for Standard Normal; RSG for Right-Skewed Gamma; and H for Heteroscedastic
2 |Bias| (RMSE)
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Table 2: Inefficiency factor and Monte Carlo Standard Errors of regression coefficients across
quantiles and sample sizes under different error distributions.

n Error1 Quantile
β0 β1

Gibbs2
Adaptive

MCMC2
Gibbs2

Adaptive

MCMC2

100

SN

0.10 4.870 (0.004) 5.898 (0.005) 2.595 (0.003) 6.192 (0.003)

0.25 3.431 (0.004) 5.273 (0.004) 1.926 (0.003) 7.363 (0.002)

0.50 3.071 (0.003) 3.404 (0.003) 1.993 (0.002) 3.243 (0.003)

0.75 3.406 (0.004) 5.040 (0.004) 2.132 (0.003) 6.782 (0.002)

0.90 4.574 (0.004) 5.304 (0.005) 2.622 (0.003) 6.579 (0.003)

RSG

0.10 4.596 (0.002) 7.310 (0.003) 3.479 (0.002) 6.388 (0.002)

0.25 1.746 (0.001) 5.454 (0.002) 1.591 (0.002) 5.416 (0.002)

0.50 2.240 (0.002) 4.130 (0.002) 1.614 (0.002) 3.998 (0.002)

0.75 4.401 (0.003) 5.691 (0.004) 2.358 (0.002) 6.430 (0.002)

0.90 5.717 (0.005) 5.939 (0.006) 2.872 (0.003) 7.442 (0.003)

H

0.10 5.851 (0.004) 6.276 (0.005) 2.711 (0.003) 7.505 (0.002)

0.25 3.855 (0.003) 6.109 (0.003) 2.314 (0.003) 6.041 (0.002)

0.50 2.328 (0.002) 3.359 (0.003) 2.125 (0.003) 3.339 (0.003)

0.75 3.399 (0.003) 5.905 (0.003) 2.262 (0.003) 6.955 (0.002)

0.90 5.559 (0.004) 6.413 (0.005) 2.606 (0.003) 6.821 (0.002)

200

SN

0.10 5.905 (0.003) 4.222 (0.004) 4.121 (0.002) 5.396 (0.002)

0.25 4.608 (0.002) 3.843 (0.003) 3.064 (0.002) 5.171 (0.002)

0.50 4.188 (0.002) 3.348 (0.002) 2.889 (0.002) 2.925 (0.002)

0.75 4.101 (0.002) 3.887 (0.003) 2.950 (0.002) 5.250 (0.002)

0.90 5.573 (0.003) 4.732 (0.004) 4.030 (0.002) 6.104 (0.002)

RSG

0.10 4.523 (0.001) 5.888 (0.002) 3.418 (0.001) 4.575 (0.002)

0.25 1.796 (0.001) 3.557 (0.001) 1.729 (0.001) 3.715 (0.001)

0.50 3.290 (0.001) 4.013 (0.002) 2.363 (0.001) 3.416 (0.001)

0.75 6.528 (0.002) 4.455 (0.003) 3.814 (0.002) 5.042 (0.002)

0.90 9.021 (0.004) 4.976 (0.005) 4.611 (0.003) 6.183 (0.002)

H

0.10 8.029 (0.003) 4.364 (0.004) 4.330 (0.002) 5.166 (0.002)

0.25 4.617 (0.002) 4.406 (0.002) 3.677 (0.002) 4.951 (0.002)

0.50 3.091 (0.002) 2.963 (0.002) 2.981 (0.002) 2.989 (0.002)

0.75 5.008 (0.002) 4.158 (0.002) 3.436 (0.002) 4.954 (0.002)

0.90 7.467 (0.003) 4.397 (0.004) 4.339 (0.002) 5.523 (0.002)

500

SN

0.10 7.275 (0.002) 3.083 (0.002) 5.968 (0.001) 3.960 (0.002)

0.25 5.379 (0.001) 3.208 (0.002) 4.565 (0.001) 3.416 (0.002)

0.50 5.295 (0.001) 2.452 (0.002) 4.076 (0.001) 2.810 (0.001)

0.75 6.192 (0.001) 3.182 (0.002) 4.865 (0.001) 3.667 (0.002)

0.90 7.658 (0.001) 3.470 (0.002) 5.712 (0.001) 4.326 (0.002)

RSG

0.10 3.067 (0.000) 6.508 (0.001) 2.600 (0.000) 5.006 (0.001)

0.25 2.132 (0.000) 4.382 (0.001) 1.850 (0.000) 3.830 (0.001)

0.50 4.848 (0.001) 4.043 (0.001) 3.415 (0.001) 3.869 (0.001)

0.75 7.828 (0.001) 3.361 (0.002) 5.587 (0.001) 3.585 (0.001)

0.90 10.313 (0.002) 3.841 (0.003) 7.723 (0.002) 4.395 (0.002)

H

0.10 8.847 (0.002) 3.263 (0.003) 6.229 (0.001) 3.896 (0.002)

0.25 6.602 (0.001) 3.176 (0.002) 4.912 (0.001) 3.973 (0.002)

0.50 3.550 (0.001) 2.806 (0.001) 4.806 (0.001) 2.911 (0.002)

0.75 6.334 (0.001) 2.946 (0.002) 5.093 (0.001) 3.618 (0.002)

0.90 9.371 (0.002) 3.367 (0.003) 6.087 (0.001) 4.305 (0.002)

1 SN for Standard Normal; RSG for Right-Skewed Gamma; and H for Heteroscedastic
2 IF (MCSE)
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Figure 1: Slope coefficient β1 monotonicity check for quantile crossing.
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4 Application149

In order to illustrate the proposed methodology using real-world data, the adaptive MCMC
Bayesian quantile regression approach was applied to the Philippine Family Income and Expen-
diture Survey (FIES), a nationwide survey of households conducted triennially by the Philippine
Statistics Authority (PSA). The 2023 dataset was employed to investigate the effect of household
income on educational expenditures. For this analysis, the sample was restricted to households
in Region 4 reporting non-zero educational spending, based on preliminary findings suggesting
the presence of quantile crossing. A total of 4,083 observations met these inclusion criteria. A
simple linear quantile regression model is fitted for quantiles p = 0.1 to 0.9, and is given by

log(Education) = β0 + β1 log(Income)

To fit the model, 10,000 iterations were used, discarding the initial 5,000 iterations as a burn-in150

period. The same prior specifications adopted in the simulation study were also used here.151

The results below present a comparison between the frequentist estimation procedure and the152

proposed Bayesian approach.153

Figure 2: Fitted Quantile Regression Lines

Figure 2 shows the fitted quantile regression lines using both frequentist and adaptive MCMC154

Bayesian approaches. Both methods reveal a positive association between log income and155

log education expenditure, which is in line with results reported in the literature, see [1, 10].156

However, the frequentist estimates exhibit quantile crossing, especially at the distribution tails.157

In contrast, the Bayesian estimates maintain proper ordering across quantiles, addressing the158

crossing issue. This highlights the improved interpretability and robustness of the adaptive159

MCMC approach in estimating conditional quantiles.160

Table 3 presents a comparison of the objective function values defined in Equation 2 for both161

the frequentist and adaptive MCMC methods. Although the frequentist estimator is designed to162

minimize the objective function, the adaptive MCMC approach yields comparable values across163

most quantiles, with particularly close values around p = 0.5. Notably, larger discrepancies164

are observed at the extreme quantiles, where the Bayesian technique successfully addresses the165

issue of quantile-line crossing.166
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Table 3: Objective function minimization results comparing frequentist and adaptive MCMC

Method
Quantile

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Frequentist 1261.022 2125.449 2678.813 2974.562 3042.276 2886.613 2517.305 1923.418 1117.779

aMCMC 1302.432 2138.102 2680.485 2975.563 3043.289 2887.062 2525.758 1956.306 1155.441

These findings indicate that the adaptive MCMC Bayesian quantile regression approach167

applied to the 2023 FIES data captures the positive relationship between household income and168

educational expenditures while effectively addressing the quantile crossing problem observed in169

the frequentist estimates. The presence of quantile crossing in the frequentist results, especially170

at the extremes, raises concerns about the validity of inferences for the lowest and highest171

income groups. In contrast, the adaptive MCMC method maintains the correct ordering of172

quantile curves and achieves reasonably accurate empirical coverage across the distribution, as173

shown in Table 3.174

Although both methods approach nominal coverage rates, the frequentist estimates slightly175

outperform the Bayesian approach in achieving exact empirical coverage. However, the Bayesian176

method offers better curve ordering and stability—critical for drawing reliable policy conclu-177

sions. For instance, the consistently lower coverage at the 0.1 and 0.2 quantiles implies some178

underestimation of uncertainty for low-income households, which underscores the importance179

of incorporating robust prior information in future modeling.180

From a policy perspective, the results suggest that households across all income levels in-181

crease educational spending as income rises, but the impact differs by income group. Well-182

ordered quantile estimates make it clear that lower-income households allocate a lesser propor-183

tion of income to education as income increases, suggesting that targeted subsidies or conditional184

cash transfers could be particularly effective for these groups. For higher-income households,185

the relationship remains positive but more stable, indicating that broad-based incentives may186

have limited marginal impact. These insights provide evidence-based guidance for policymakers187

aiming to design equitable educational support mechanisms.188

5 Conclusion189

This study introduced a Bayesian quantile regression framework that employs an adaptive190

MCMC approach and compared it against standard frequentist and Gibbs-based methods. By191

applying a constrained prior to each quantile parameter, monotonicity was rigorously enforced,192

eliminating the possibility of quantile crossing in linear settings. Empirical findings showed that193

the proposed method yields lower bias and RMSE while also exhibiting superior chain mixing,194

particularly at larger sample sizes. The approach was also applied to real-world data from the195

Philippine Family Income and Expenditure Survey (FIES), where the fitted quantile regression196

lines did not exhibit any quantile crossing and had results aligned with existing literature on197

household income and educational expenditure. These findings underscore the robustness and198

practical utility of this approach in multi-quantile regression, where preserving monotonicity199

across quantiles is essential for both interpretability and modeling accuracy, while also enabling200

fast mixing without compromising estimation accuracy.201

This study directly supports Sustainable Development Goal 4, specifically Target 4.3, which202

aims for equal access to affordable and quality technical, vocational, and higher education. Using203

Bayesian quantile regression on education spending data from the Philippine Family Income and204

Expenditure Survey (FIES), the study clearly shows how household income affects education205
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expenses at various spending levels. These results can guide policymakers in addressing in-206

equalities in educational funding—particularly by targeting financial assistance to lower-income207

households, to make income gains translate more directly into increased educational investment208

which then helps ensure fairer and more inclusive access to education.209
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