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Abstract

Quantile regression offers a powerful means of characterizing how covariate effects vary
across the entire outcome distribution, but standard implementations can suffer from curve
crossings or computational burdens. This study proposes an approach that builds condi-
tional quantile curves sequentially—starting from the median and expanding outward—with
constrained priors to enforce non-crossing by construction. Posterior inference is carried
out via an adaptive Metropolis algorithm, eliminating the need for closed-form full con-
ditionals and improving mixing as the posterior concentrates. Here we report a subset of
results—single-predictor simulations under normal, right-skewed Gamma, and heteroscedas-
tic errors across varying sample sizes. Results showed that proposed approach consistently
attains lower bias and RMSE than both frequentist fits and Gibbs quantile regression, and
achieves superior convergence efficiency. An empirical application to the 2023 Philippine
FIES—modeling log educational spending on log household income—demonstrates the pro-
posed approach’s ability to produce coherent, non-crossing quantile estimates that uncover
increasing income elasticities across spending levels. These results highlight its practical
utility for distributional analysis where monotonicity and computational efficiency are es-
sential.

1 Introduction

Quantile regression is a statistical method used for estimating conditional quantile functions.
Unlike traditional regression methods that focus on conditional means or medians, quantile
regression examines the relationship between covariates and the response variable across various
points in the distribution.

Quantile regression was formally introduced as a method for modeling these conditional
quantiles of a response variable in relation to covariates in a linear framework [7]. In a linear
quantile regression model, the relationship between the p-th quantile of the response variable
and the covariates is defined as g,(x;) = x;-r,@p, where 3, is a vector of unknown parameters.
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The model can be expressed as
vi =% By + e (1)

where ¢; is the error term (i = 1,...,n) with probability density function f,(-) satisfying the
condition fi)oo fp(ei) de; = p. In the classical frequentist approach, referred to as such in this
paper, quantile regression estimates are obtained by minimizing the following objective function

Z pp(Yi — XiTﬁp)v (2)
i=1

where p,(u) = u(p—I(u < 0)), and I(-) is the indicator function. Inference in quantile regression
involves several sophisticated methods to address challenges such as the non-smooth objective
function, dependence on conditional densities, and potential heteroskedasticity [8].

Bayesian quantile regression offers an alternative that incorporates prior information and
enables direct probabilistic interpretation of parameter uncertainty. Although it does not en-
tirely eliminate the challenges posed by quantile regression, this framework can mitigate some
of the estimation difficulties through prior specification and posterior inference. The Bayesian
quantile regression approach was introduced by Yu and Moyeed [17]. Their work showed that
the set of parameters minimizing the absolute value of residuals in Equation (2) also maximizes
the likelihood function formed by combining the independently distributed Asymmetric Laplace
Distribution (ALD) density function, defined as

fo(ei) = p(1 — p) exp{—pp(e)}, (3)

where p,(-) denotes the same function introduced in Equation (2), and the parameter p deter-
mines the skewness of the distribution. Since the use of asymmetric Laplace distribution leads
to a not analytically tractable posterior for 3,, Markov chain Monte Carlo (MCMC) methods
were utilized for posterior inference, particularly a random walk Metropolis algorithm with a
Gaussian proposal density centered at the current parameter value.

However, Kozumi and Kobayashi highlighted the practical limitations of employing the
random walk Metropolis sampler for Bayesian quantile regression [9]. They proposed an efficient
Gibbs sampling algorithm for Bayesian quantile regression, utilizing a location-scale mixture
representation of the asymmetric Laplace distribution. Their method outperformed the random
walk Metropolis sampler by reducing Monte Carlo errors, bias, and root mean squared error,
demonstrating robust finite-sample performance even when the error distribution deviates from
the assumed asymmetric Laplace distribution. However, in general, the Gibbs sampler has been
shown to face significant computational challenges in high-dimensional parameter spaces [14].

Quantile line crossing is another concern, where estimated quantile curves intersect, violating
the fundamental monotonicity constraint of quantiles and undermining the interpretability of
results. Although there are frequentist [2] and Bayesian [13] methods to alleviate this issue, the
use of constrained priors, such as those discussed by Stark [15], remains largely unexplored in
this context.

Due to the computational demands of Gibbs sampling in high-dimensional spaces and its
limitations on prior specification, another MCMC approach is needed to address these issues.
The Independent-Kernel Metropolis—Hastings (IK-MH) algorithm, as employed by Chen and
So [4], converges rapidly when its proposal closely aligns with the true posterior. In contrast
to Gibbs sampling, which requires closed-form full conditional distributions, thus constraining
prior choices, IK-MH offers greater flexibility in specifying priors. Moreover, because IK-MH
does not rely on the current state to generate proposals, it reduces sequential dependencies and
improves computational efficiency [6].
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This study employs the IK-MH algorithm to sequentially model quantile regression across
different quantile levels. In order to prevent quantile line crossing—a common challenge in
quantile estimation—constrained priors, informed by the median (0.5 quantile) estimates, will
be utilized. The IK-MH algorithm is expected to enhance convergence speed compared to
traditional approaches, making it especially valuable when modeling multiple quantiles. Finally,
the performance of the IK-MH method will be compared with that of Gibbs sampling and
frequentist quantile regression in terms of estimation accuracy, computational efficiency, and
robustness. The results presented here are initial and focus solely on the single predictor case.

2 Bayesian Posterior Inference

2.1 Independent-Kernel Metropolis—Hastings (IK-MH) algorithm

Chen and So [4] utilized a hybrid adaptive MCMC method, combining the Random Walk
Metropolis-Hastings (RW-MH) and Independent Kernel Metropolis-Hastings (IK-MH) algo-
rithms. During the initial burn-in phase, the RW-MH algorithm is used, allowing the estimation
of the sample mean u, and sample variance €2,. Afterward, the IK-MH algorithm is applied,
using the estimated u, and 2, for more effective proposals. The algorithm is as follows.

Algorithm 1 Adaptive Metropolis-Hastings Algorithm

Input: Set initial values #(®) and number of iterations .J.
Output: A sequence of posterior samples {#(1), ..., 6())}.

For i =1 to M (RW-MH stage):

1. Generate a candidate point 8* = 80~ 4 ¢ where € ~ N(0, ).

2. Accept 0* with probability
r = min (1 7#(9*) )
o Tw(pl-1) )7

3. Otherwise, set (1) = g(i—1),

After burn-in (IK-MH stage):

3. Compute the sample mean p, and sample variance €, from the burn-in samples.
4. Generate a candidate point 6* = 114 + €, where € ~ N (0, Q).

5. Accept 0* with probability

e )

where g(-) is the proposal distribution. Otherwise, set () = (=1,
6. Save 00,
End For

In the IK-MH algorithm, proposals are generated from a distribution that does not depend
on the current state, thereby allowing the Markov chain to make larger jumps across the param-
eter space and reduce autocorrelation [12, 16]. When the proposal distribution is well aligned
with the target posterior, both the acceptance rate and the average step size tend to be high,
facilitating efficient mixing and lowering the number of iterations needed to achieve a given
precision. Nonetheless, the performance of IK-MH is highly sensitive to the choice of proposal
distribution, and careful calibration or adaptation of this distribution is essential for robust
results.
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Due to its adaptive nature, the Independent-Kernel Metropolis—Hastings algorithm is in-
herently non-Markovian but maintains correct ergodic properties [6]. Also, adaptive MCMC
methods have been shown to perform competitively with traditional Metropolis—Hastings ap-
proaches while offering ease of implementation. Recent studies [3, 11] demonstrate the practi-
cal effectiveness of adaptive MCMC techniques in Bayesian modelling for applications such as
integer-valued transfer function models and zero-inflated count data. These studies highlights
the enhance sampling efficiency and convergence rates of this adaptive process which will be
use in modellling multi-quantile regression models.

These advantages suggest that adaptive MCMC and specifically the IK MH algorithm is a
promising tool for quantile regression applications. It can efficiently sample from complex pos-
terior distributions and enforce monotonicity. Recent studies above also highlight the enhanced
sampling efficiency and improved convergence rates of this adaptive process. These properties
make the IK MH algorithm ideally suited for modeling multi-quantile regression models and
high-dimensional data.

3 Simulation

This section details the simulation design used to evaluate the performance of the proposed
quantile regression methods. Synthetic datasets were generated according to the following
linear quantile regression model:

Yi = 50 + ﬂlxil + €, for i = 1a2a"'7n’ (4)

where z;1 follows a standard normal distribution. The regression coeflicients 5y and (1 vary
monotonically across quantiles. Specifically, for p = (0.10,0.25,0.50,0.75,0.90), the true pa-
rameter values were

Bo= (-2 —-1,0,1,2) and f; = (—0.50, —0.25, 0, 0.25, 0.50).

Three distributions were considered for the error term ¢;. First, a standard normal distribution
€; ~ N(0,1) was used to represent symmetric, homoscedastic errors. Second, a right-skewed
Gamma(0.25,2) distribution was employed. Finally, heteroscedastic errors were introduced
via € = xjn; with 1; ~ N(0,1). Each of these error structures was examined for sample
sizes n € {100,200, 500}, and every combination of distribution and sample size was replicated
M = 100 times. This design enables a thorough comparison of the frequentist, Gibbs, and
adaptive MCMC quantile regression approaches under varying sample sizes and error structures.
The implementation of the methodology described in this section is available at https://
github.com/ConradMaisog/SMQR-Using-Adaptive-MCMC.

3.1 Priors and MCMC Specifications

For the Gibbs and adaptive MCMC methods, informative priors were placed on f; and o.
In the Gibbs approach, all quantiles p share the same priors, namely §; ~ N (0,1) and o ~
Inverse Gamma(6,5), which are standard choices in Bayesian regression. By contrast, the
adaptive MCMC technique imposes priors on [; that depend on the specific quantile p. At
the median quantile p = 0.50, the prior is specified as 3; ~ N (0,1). For lower quantiles such as
p = 0.25, a flipped exponential prior —Exp(1) is used, constrained so that 3, does not exceed
the coefficient at the next higher quantile. Similarly, for higher quantiles such as p = 0.75,
a truncated Exp(1) prior is assigned, ensuring that (, remains above the estimate from the
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previous lower quantile. Formally, if 8,/ is the anchor coefficient at an adjacent quantile p’, then

A exp[/\ (/Bp - 5p’)], if p<p' and Bp < Bys
Pp ‘ By ~ A eXP[_A (/Bp - 5p/)}, if p>p" and B, > By, (5)

0, otherwise,

where A = 1 is chosen to maintain a scale comparable to the N(0,1) prior. By proceeding
outward from the median, the adaptive MCMC framework enforces an ordered relationship
among neighboring quantiles while preserving variance similar to the Gibbs-based priors.

Step sizes for By, B1, and o in the adaptive MCMC algorithm were set to 0.4, 0.25, and 0.25,
respectively, and remained fixed across all replications. These values were identified through a
preliminary investigation aimed at optimizing algorithmic stability and performance.

3.2 Simulation Results

As shown in Table 1, the frequentist, Gibbs, and adaptive MCMC quantile regression methods
were evaluated in terms of absolute bias and root-mean squared error (RMSE) across various
error distributions and sample sizes for each quantile. In most settings, the adaptive MCMC
approach yielded the lowest RMSE, particularly at quantiles away from the median (p # 0.50).
Although the bias associated with the adaptive MCMC estimates was not consistently the
smallest across all conditions, this can largely be attributed to the constant step sizes used for
all replications. As recommended by standard MCMC methodology [5, 12], step sizes must
be carefully tuned to balance mixing efficiency and convergence. Even with fixed step sizes,
however, the adaptive MCMC approach consistently outperformed the other methods in most
scenarios. These results underscore the potential of the adaptive MCMC method to yield more
reliable and precise quantile estimates across different conditions.

Table 2 presents the inefficiency factors (IF) and Monte Carlo standard errors (MCSE)
for both Gibbs sampling and an adaptive MCMC algorithm, evaluated under various error
distributions and sample sizes for each quantile. At a relatively small sample size n = 100, Gibbs
sampling produces lower inefficiency factors, suggesting improved chain mixing and reduced
autocorrelation. However, at a larger sample size n = 500, the adaptive MCMC algorithm
demonstrates lower inefficiency factors, indicating that it is more effective at navigating the
increasingly complex posterior distribution. This outcome highlights the ability of the adaptive
MCMC method to adjust to conditions where the posterior becomes more sharply peaked
and exhibits stronger inter-parameter correlations. Such conditions render adaptive MCMC
particularly effective, as also noted in [6].

Figure 1 provides spaghetti plots for the slope coefficient (31) across 100 replications under
three error distributions (standard normal, right-skewed Gamma, heteroscedastic) and three
sample sizes (100, 200, 500), since crossings for the intercept () were minimal. Each line
connects estimated (1 across quantiles, with red indicating a lower-quantile estimate exceed-
ing a higher one indication non-monotonicity and blue indicating monotonicity. These plots
offer a concise visual tally of monotonicity violations without inspecting individual replications.
Frequentist quantile regression methods generate numerous red lines across all settings, demon-
strating persistent quantile crossing. Gibbs sampling also fails to enforce ordering, particularly
under skewed and heteroscedastic errors. In contrast, the proposed approach employing con-
strained priors yields exclusively blue lines across every scenario. This demonstrates that the
constrained-prior framework consistently enforces monotonic quantile estimates regardless of
error structure or sample size.
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Table 1: Bias and RMSE of regression coefficients across quantiles and sample sizes under
different error distributions.

n Error! Quantile Po B1
Flrequentist2 Gibbs? Adaptive Frequentist2 Gibbs? Adaptive
MCMC? MCMC?
0.10 0.099 (0.256) 0.005 (0.153) 0.054 (0.133) 0.027 (0.423) 0.290 (0.321) 0.022 (0.101)
0.25 0.024 (0.160) 0.028 (0.098) 0.021 (0.091) 0.010 (0.272) 0.137 (0.175) 0.017 (0.108)
SN 0.50 0.004 (0.121) 0.000 (0.067) 0.009 (0.068) 0.049 (0.290) 0.019 (0.125) 0.001 (0.100)
0.75 0.016 (0.150) 0.015 (0.091) 0.016 (0.086) 0.068 (0.375) 0.120 (0.174) 0.016 (0.114)
0.90 0.110 (0.252) 0.015 (0.163) 0.044 (0.125) 0.086 (0.429) 0.295 (0.316) 0.027 (0.114)
0.10 0.001 (0.004) 0.116 (0.122) 0.173 (0.177) 0.000 (0.005) 0.122 (0.134) 0.071 (0.079)
0.25 0.012 (0.069) 0.006 (0.046) 0.008 (0.044) 0.007 (0.074) 0.056 (0.077) 0.045 (0.062)
100  RSG 0.50 0.023 (0.054) 0.076 (0.088) 0.086 (0.096) 0.023 (0.087) 0.007 (0.055) 0.003 (0.056)
0.75 0.102 (0.183) 0.077 (0.116) 0.081 (0.125) 0.049 (0.331) 0.109 (0.155) 0.025 (0.095)
0.90 0.259 (0.660) 0.050 (0.196) 0.073 (0.187) 0.095 (0.774) 0.298 (0.338) 0.030 (0.137)
0.10 0.138 (0.395) 0.058 (0.208) 0.049 (0.158) 0.079 (0.609) 0.296 (0.351) 0.022 (0.200)
0.25 0.027 (0.182) 0.025 (0.091) 0.024 (0.082) 0.022 (0.437) 0.146 (0.224) 0.020 (0.154)
H 0.50 0.000 (0.067) 0.001 (0.049) 0.002 (0.050) 0.038 (0.308) 0.033 (0.149) 0.035 (0.135)
0.75 0.025 (0.153) 0.020 (0.096) 0.014 (0.096) 0.051 (0.352) 0.148 (0.207) 0.042 (0.171)
0.90 0.147 (0.338) 0.014 (0.175) 0.055 (0.182) 0.039 (0.574) 0.283 (0.335) 0.063 (0.203)
0.10 0.058 (0.119) 0.030 (0.095) 0.021 (0.091) 0.018 (0.234) 0.185 (0.218) 0.036 (0.099)
0.25 0.020 (0.114) 0.000 (0.078) 0.002 (0.056) 0.001 (0.233) 0.087 (0.154) 0.018 (0.101)
SN 0.50 0.002 (0.073) 0.000 (0.050) 0.002 (0.051) 0.007 (0.199) 0.007 (0.110) 0.016 (0.114)
0.75 0.002 (0.089) 0.004 (0.070) 0.009 (0.065) 0.026 (0.224) 0.094 (0.160) 0.047 (0.115)
0.90 0.042 (0.137) 0.007 (0.109) 0.022 (0.092) 0.048 (0.237) 0.192 (0.238) 0.065 (0.125)
0.10 0.000 (0.000) 0.037 (0.038) 0.114 (0.116) 0.000 (0.001) 0.023 (0.027) 0.048 (0.052)
0.25 0.003 (0.009) 0.013 (0.017) 0.010 (0.021) 0.000 (0.012) 0.011 (0.024) 0.030 (0.039)
200 RSG 0.50 0.013 (0.040) 0.051 (0.059) 0.067 (0.075) 0.006 (0.060) 0.004 (0.048) 0.007 (0.053)
0.75 0.056 (0.146) 0.054 (0.108) 0.038 (0.088) 0.028 (0.229) 0.095 (0.152) 0.027 (0.103)
0.90 0.196 (0.467) 0.009 (0.196) 0.035 (0.152) 0.034 (0.583) 0.263 (0.325) 0.019 (0.170)
0.10 0.093 (0.277) 0.013 (0.146) 0.038 (0.121) 0.112 (0.437) 0.145 (0.266) 0.002 (0.163)
0.25 0.011 (0.106) 0.003 (0.076) 0.007 (0.060) 0.016 (0.284) 0.091 (0.204) 0.009 (0.156)
H 0.50 0.002 (0.038) 0.004 (0.029) 0.000 (0.033) 0.020 (0.254) 0.011 (0.155) 0.022 (0.154)
0.75 0.026 (0.109) 0.016 (0.075) 0.008 (0.066) 0.049 (0.281) 0.059 (0.169) 0.017 (0.175)
0.90 0.069 (0.244) 0.011 (0.149) 0.039 (0.124) 0.040 (0.426) 0.173 (0.284) 0.022 (0.175)
0.10 0.019 (0.085) 0.012 (0.062) 0.012 (0.059) 0.026 (0.198) 0.059 (0.157) 0.035 (0.116)
0.25 0.000 (0.052) 0.004 (0.042) 0.004 (0.045) 0.017 (0.145) 0.055 (0.128) 0.033 (0.109)
SN 0.50 0.002 (0.045) 0.002 (0.035) 0.003 (0.036) 0.014 (0.119) 0.015 (0.094) 0.009 (0.096)
0.75 0.010 (0.052) 0.001 (0.042) 0.000 (0.042) 0.001 (0.149) 0.046 (0.118) 0.025 (0.098)
0.90 0.020 (0.069) 0.010 (0.062) 0.023 (0.060) 0.022 (0.179) 0.097 (0.170) 0.052 (0.107)
0.10 0.000 (0.000) 0.006 (0.007) 0.048 (0.048) 0.000 (0.000) 0.002 (0.004) 0.016 (0.019)
0.25 0.001 (0.002) 0.009 (0.010) 0.012 (0.013) 0.000 (0.004) 0.001 (0.007) 0.009 (0.014)
500  RSG 0.50 0.004 (0.012) 0.022 (0.025) 0.032 (0.035) 0.002 (0.033) 0.001 (0.028) 0.001 (0.026)
0.75 0.021 (0.058) 0.028 (0.048) 0.034 (0.052) 0.004 (0.143) 0.035 (0.112) 0.022 (0.091)
0.90 0.030 (0.159) 0.000 (0.098) 0.014 (0.091) 0.056 (0.347) 0.128 (0.247) 0.017 (0.147)
0.10 0.036 (0.127) 0.012 (0.104) 0.005 (0.074) 0.069 (0.245) 0.129 (0.232) 0.025 (0.155)
0.25 0.005 (0.053) 0.002 (0.041) 0.005 (0.041) 0.014 (0.189) 0.024 (0.157) 0.001 (0.135)
H 0.50 0.001 (0.017) 0.000 (0.014) 0.003 (0.016) 0.013 (0.144) 0.009 (0.120) 0.017 (0.124)
0.75 0.011 (0.048) 0.012 (0.035) 0.011 (0.042) 0.004 (0.173) 0.028 (0.139) 0.003 (0.132)
0.90 0.023 (0.111) 0.004 (0.084) 0.009 (0.073) 0.017 (0.223) 0.071 (0.187) 0.039 (0.134)

1 SN for Standard Normal; RSG for Right-Skewed Gamma; and H for Heteroscedastic
? |Bias| (RMSE)
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Table 2: Inefficiency factor and Monte Carlo Standard Errors of regression coefficients across
quantiles and sample sizes under different error distributions.

n Error! Quantile Po B1
Gibbs2 Adaptive Gibbs? Adaptive
MCMC? MCMC?
0.10 4.870 (0.004) 5.898 (0.005) 2.595 (0.003) 6.192 (0.003)
0.25 3.431 (0.004) 5.273 (0.004) 1.926 (0.003) 7.363 (0.002)
SN 0.50 3.071 (0.003) 3.404 (0.003) 1.993 (0.002) 3.243 (0.003)
0.75 3.406 (0.004) 5.040 (0.004) 2.132 (0.003) 6.782 (0.002)
0.90 4.574 (0.004) 5.304 (0.005) 2.622 (0.003) 6.579 (0.003)
0.10 4.596 (0.002) 7.310 (0.003) 3.479 (0.002) 6.388 (0.002)
0.25 1.746 (0.001) 5.454 (0.002) 1.591 (0.002) 5.416 (0.002)
100  RSG 0.50 2.240 (0.002) 4.130 (0.002) 1.614 (0.002) 3.998 (0.002)
0.75 4.401 (0.003) 5.691 (0.004) 2.358 (0.002) 6.430 (0.002)
0.90 5.717 (0.005) 5.939 (0.006) 2.872 (0.003) 7.442 (0.003)
0.10 5.851 (0.004) 6.276 (0.005) 2.711 (0.003) 7.505 (0.002)
0.25 3.855 (0.003) 6.109 (0.003) 2.314 (0.003) 6.041 (0.002)
H 0.50 2.328 (0.002) 3.359 (0.003) 2.125 (0.003) 3.339 (0.003)
0.75 3.399 (0.003) 5.905 (0.003) 2.262 (0.003) 6.955 (0.002)
0.90 5.559 (0.004) 6.413 (0.005) 2.606 (0.003) 6.821 (0.002)
0.10 5.905 (0.003) 4.222 (0.004) 4.121 (0.002) 5.396 (0.002)
0.25 4.608 (0.002) 3.843 (0.003) 3.064 (0.002) 5.171 (0.002)
SN 0.50 4.188 (0.002) 3.348 (0.002) 2.889 (0.002) 2.925 (0.002)
0.75 4.101 (0.002) 3.887 (0.003) 2.950 (0.002) 5.250 (0.002)
0.90 5.573 (0.003) 4.732 (0.004) 4.030 (0.002) 6.104 (0.002)
0.10 4.523 (0.001) 5.888 (0.002) 3.418 (0.001) 4.575 (0.002)
0.25 1.796 (0.001) 3.557 (0.001) 1.729 (0.001) 3.715 (0.001)
200  RSG 0.50 3.290 (0.001) 4.013 (0.002) 2.363 (0.001) 3.416 (0.001)
0.75 6.528 (0.002) 4.455 (0.003) 3.814 (0.002) 5.042 (0.002)
0.90 9.021 (0.004) 4.976 (0.005) 4.611 (0.003) 6.183 (0.002)
0.10 8.029 (0.003) 4.364 (0.004) 4.330 (0.002) 5.166 (0.002)
0.25 4.617 (0.002) 4.406 (0.002) 3.677 (0.002) 4.951 (0.002)
H 0.50 3.091 (0.002) 2.963 (0.002) 2.981 (0.002) 2.989 (0.002)
0.75 5.008 (0.002) 4.158 (0.002) 3.436 (0.002) 4.954 (0.002)
0.90 7.467 (0.003) 4.397 (0.004) 4.339 (0.002) 5.523 (0.002)
0.10 7.275 (0.002) 3.083 (0.002) 5.968 (0.001) 3.960 (0.002)
0.25 5.379 (0.001) 3.208 (0.002) 4.565 (0.001) 3.416 (0.002)
SN 0.50 5.295 (0.001) 2.452 (0.002) 4.076 (0.001) 2.810 (0.001)
0.75 6.192 (0.001) 3.182 (0.002) 4.865 (0.001) 3.667 (0.002)
0.90 7.658 (0.001) 3.470 (0.002) 5.712 (0.001) 4.326 (0.002)
0.10 3.067 (0.000) 6.508 (0.001) 2.600 (0.000) 5.006 (0.001)
0.25 2.132 (0.000) 4.382 (0.001) 1.850 (0.000) 3.830 (0.001)
500  RSG 0.50 4.848 (0.001) 4.043 (0.001) 3.415 (0.001) 3.869 (0.001)
0.75 7.828 (0.001) 3.361 (0.002) 5.587 (0.001) 3.585 (0.001)
0.90 10.313 (0.002) 3.841 (0.003) 7.723 (0.002) 4.395 (0.002)
0.10 8.847 (0.002) 3.263 (0.003) 6.229 (0.001) 3.896 (0.002)
0.25 6.602 (0.001) 3.176 (0.002) 4.912 (0.001) 3.973 (0.002)
H 0.50 3.550 (0.001) 2.806 (0.001) 4.806 (0.001) 2.911 (0.002)
0.75 6.334 (0.001) 2.946 (0.002) 5.093 (0.001) 3.618 (0.002)
0.90 9.371 (0.002) 3.367 (0.003) 6.087 (0.001) 4.305 (0.002)

1 SN for Standard Normal; RSG for Right-Skewed Gamma; and H for Heteroscedastic
2 IF (MCSE)
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Figure 1: Slope coefficient $; monotonicity check for quantile crossing.

THE MINDANAWAN JOURNAL OF MATHEMATICS

4  TMIM

Vol. 7 (2025), no. 1, pp. 3748


https://journals.msuiit.edu.ph/tmjm
https://journals.msuiit.edu.ph/tmjm

Bayesian Quantile Regression with Adaptive MCMC

4 Application

In order to illustrate the proposed methodology using real-world data, the adaptive MCMC
Bayesian quantile regression approach was applied to the Philippine Family Income and Expen-
diture Survey (FIES), a nationwide survey of households conducted triennially by the Philippine
Statistics Authority (PSA). The 2023 dataset was employed to investigate the effect of household
income on educational expenditures. For this analysis, the sample was restricted to households
in Region 4 reporting non-zero educational spending, based on preliminary findings suggesting
the presence of quantile crossing. A total of 4,083 observations met these inclusion criteria. A
simple linear quantile regression model is fitted for quantiles p = 0.1 to 0.9, and is given by

log(Education) = Sy + 1 log(Income)

To fit the model, 10,000 iterations were used, discarding the initial 5,000 iterations as a burn-in
period. The same prior specifications adopted in the simulation study were also used here.
The results below present a comparison between the frequentist estimation procedure and the
proposed Bayesian approach.

Frequentist Adaptive MCMC

Log Education
©
Log Education

y g v T T v y y y T T T
11 12 13 14 15 16 11 12 13 14 15 16
Log Income Log Income

Quantile (tau) — 041 — 02 — 03 — 04 — 05 — 0.6 — 07 — 08 — 0.9

Figure 2: Fitted Quantile Regression Lines

Figure 2 shows the fitted quantile regression lines using both frequentist and adaptive MCMC
Bayesian approaches. Both methods reveal a positive association between log income and
log education expenditure, which is in line with results reported in the literature, see [1, 10].
However, the frequentist estimates exhibit quantile crossing, especially at the distribution tails.
In contrast, the Bayesian estimates maintain proper ordering across quantiles, addressing the
crossing issue. This highlights the improved interpretability and robustness of the adaptive
MCMC approach in estimating conditional quantiles.

Table 3 presents a comparison of the objective function values defined in Equation 2 for both
the frequentist and adaptive MCMC methods. Although the frequentist estimator is designed to
minimize the objective function, the adaptive MCMC approach yields comparable values across
most quantiles, with particularly close values around p = 0.5. Notably, larger discrepancies
are observed at the extreme quantiles, where the Bayesian technique successfully addresses the
issue of quantile-line crossing.
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Table 3: Objective function minimization results comparing frequentist and adaptive MCMC

Quantile
Method
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequentist 1261.022 2125.449 2678.813 2974.562 3042.276 2886.613 2517.305 1923.418 1117.779
aMCMC 1302.432 2138.102 2680.485 2975.563 3043.289 2887.062 2525.758 1956.306 1155.441

These findings indicate that the adaptive MCMC Bayesian quantile regression approach
applied to the 2023 FIES data captures the positive relationship between household income and
educational expenditures while effectively addressing the quantile crossing problem observed in
the frequentist estimates. The presence of quantile crossing in the frequentist results, especially
at the extremes, raises concerns about the validity of inferences for the lowest and highest
income groups. In contrast, the adaptive MCMC method maintains the correct ordering of
quantile curves and achieves reasonably accurate empirical coverage across the distribution, as
shown in Table 3.

Although both methods approach nominal coverage rates, the frequentist estimates slightly
outperform the Bayesian approach in achieving exact empirical coverage. However, the Bayesian
method offers better curve ordering and stability—critical for drawing reliable policy conclu-
sions. For instance, the consistently lower coverage at the 0.1 and 0.2 quantiles implies some
underestimation of uncertainty for low-income households, which underscores the importance
of incorporating robust prior information in future modeling.

From a policy perspective, the results suggest that households across all income levels in-
crease educational spending as income rises, but the impact differs by income group. Well-
ordered quantile estimates make it clear that lower-income households allocate a lesser propor-
tion of income to education as income increases, suggesting that targeted subsidies or conditional
cash transfers could be particularly effective for these groups. For higher-income households,
the relationship remains positive but more stable, indicating that broad-based incentives may
have limited marginal impact. These insights provide evidence-based guidance for policymakers
aiming to design equitable educational support mechanisms.

5 Conclusion

This study introduced a Bayesian quantile regression framework that employs an adaptive
MCMC approach and compared it against standard frequentist and Gibbs-based methods. By
applying a constrained prior to each quantile parameter, monotonicity was rigorously enforced,
eliminating the possibility of quantile crossing in linear settings. Empirical findings showed that
the proposed method yields lower bias and RMSE while also exhibiting superior chain mixing,
particularly at larger sample sizes. The approach was also applied to real-world data from the
Philippine Family Income and Expenditure Survey (FIES), where the fitted quantile regression
lines did not exhibit any quantile crossing and had results aligned with existing literature on
household income and educational expenditure. These findings underscore the robustness and
practical utility of this approach in multi-quantile regression, where preserving monotonicity
across quantiles is essential for both interpretability and modeling accuracy, while also enabling
fast mixing without compromising estimation accuracy.

This study directly supports Sustainable Development Goal 4, specifically Target 4.3, which
aims for equal access to affordable and quality technical, vocational, and higher education. Using
Bayesian quantile regression on education spending data from the Philippine Family Income and
Expenditure Survey (FIES), the study clearly shows how household income affects education
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expenses at various spending levels. These results can guide policymakers in addressing in-
equalities in educational funding—particularly by targeting financial assistance to lower-income
households, to make income gains translate more directly into increased educational investment
which then helps ensure fairer and more inclusive access to education.
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