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5

Abstract6

This study presents a Bayesian approach to modeling dengue incidence in Iligan and7

Tandag cities, Philippines, using integer-valued time series models. Recognizing the chal-8

lenges posed by overdispersion, serial dependence, and excess zeros in dengue count data,9

we compare five probabilistic models: Generalized Poisson (GP), Log-Generalized Poisson10

(Log-GP), Negative Binomial (NB), Zero-Inflated Generalized Poisson (ZIGP), and Zero-11

Inflated Negative Binomial (ZINB) INGARCHX models. These models incorporate rainfall12

and temperature as lagged exogenous covariates. Parameter estimation is carried out using13

Adaptive Markov Chain Monte Carlo (MCMC) methods, and model performance is assessed14

via the Deviance Information Criterion (DIC) and residual diagnostics. Results reveal that15

the ZINB-INGARCHX model is best suited for the zero-inflated Tandag dataset, while the16

ZIGP-INGARCHX model provides the best fit for the overdispersed Iligan data. Find-17

ings highlight the importance of flexible count models and lagged environmental drivers in18

accurately capturing the dynamics of dengue transmission.19

1 Introduction20

Dengue fever, a mosquito-borne viral infection, poses a significant public health challenge in21

tropical and subtropical regions worldwide. Transmitted primarily by Aedes aegypti mosquitoes,22

the dengue virus causes symptoms ranging from mild fever to severe hemorrhagic conditions.23

The proliferation of dengue is closely linked to environmental factors that influence mosquito24

breeding and survival, such as temperature and rainfall [12].25

The Philippines has experienced a notable increase in dengue cases in recent years. As of26

February 15, 2025, the Department of Health (DOH) reported 43,732 cases, marking a 56% rise27
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compared to the 27,995 cases recorded during the same period in the previous year [9]. This28

upward trend underscores the urgent need for effective surveillance and intervention strategies29

to mitigate the disease’s impact.30

In Iligan City, located in Lanao del Norte, the DOH recorded 758 dengue cases in 2024,31

highlighting the city’s vulnerability to outbreaks [8]. Similarly, Tandag City in Surigao del Sur32

reported 233 cases in the same year, reflecting a significant disease burden [10]. These figures33

emphasize the necessity for localized studies to understand and address the specific factors34

contributing to dengue transmission in these areas.35

Accurate modeling of dengue incidence is crucial for predicting outbreaks and implementing36

timely interventions. Traditional models, such as the Autoregressive Integrated Moving Average37

(ARIMA), have been used to forecast dengue cases based on climatic variables [1]. However,38

dengue time series data often exhibit distinct features such as overdispersion, serial dependence,39

and an excess of zero counts, which challenge the assumptions of standard statistical methods.40

To address these issues, researchers have proposed the use of zero-inflated and overdispersed41

count models. For example, Bayesian zero-inflated spatio-temporal models have been applied42

to dengue data in the Caraga region, successfully capturing both meteorological influences and43

spatial dependencies [17].44

In parallel, hybrid machine learning approaches have also shown potential in handling zero-45

inflated structures and enhancing prediction accuracy [20]. Recent studies continue to highlight46

the value of Bayesian frameworks for dengue forecasting, including interdisciplinary spatiotem-47

poral models that integrate lagged climatic covariates and use MCMC-based inference [2].48

The methodological foundation of this study is motivated by the works of [16, 6]. These49

studies developed integer-valued transfer function models that address the unique features of50

count data, such as serial dependence, overdispersion, and zero-inflation. They also incorporate51

the influence of exogenous covariates with possible lagged effects.Their frameworks emphasized52

multiple transfer function models (MTFM) and demonstrated strong empirical performance in53

the Philippine context. In particular, it was found that rainfall and temperature had lagged54

effects of one and three weeks, respectively, and that zero-inflated models such as ZIGP MTFM55

and ZINB MTFM outperformed simpler alternatives in terms of predictive accuracy.56

Motivated by these findings, this study applies and compares five probabilistic time se-57

ries models—Generalized Poisson (GP) INGARCHX, Log-Generalized Poisson (Log-GP) IN-58

GARCHX, Negative Binomial (NB) INGARCHX, Zero-Inflated Generalized Poisson (ZIGP)59

INGARCHX, and Zero-Inflated Negative Binomial (ZINB) INGARCHX. These models are de-60

signed to accommodate serial dependence, overdispersion, and excess zeros, and incorporate61

lagged effects of environmental variables such as rainfall and temperature. By employing Adap-62

tive Markov Chain Monte Carlo (MCMC) estimation, the study aims to identify robust mod-63

eling techniques for forecasting dengue incidence in Iligan City and Tandag City, ultimately64

contributing to more effective public health responses.65

This study provides the first direct comparison of these five INGARCHX variants within a66

Philippine regional health context, demonstrating their ability to capture local dengue dynamics.67

In addition, the adaptive MCMC procedure serves not only to estimate model parameters but68

also to identify optimal lag structures for rainfall and temperature, offering practical value for69

data-driven disease forecasting.70

2 Methodology71

This study builds upon the modeling philosophy of [16, 6] by extending their framework to focus72

on core count-based INGARCHX models. While their original approach emphasized transfer73
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function dynamics, we implement a unified structure based on zero-inflated autoregressive count74

time series models that directly incorporate lagged exogenous effects.75

In particular, we construct and analyze five variants within the INGARCHX framework:76

Generalized Poisson (GP), Log-Generalized Poisson (Log-GP), Negative Binomial (NB), Zero-77

Inflated Generalized Poisson (ZIGP), and Zero-Inflated Negative Binomial (ZINB). These mod-78

els capture key features such as overdispersion, excess zeros, and temporal dependence while79

allowing for environmental covariates like rainfall and temperature to influence the conditional80

mean through lagged effects.81

All models are estimated using an adaptive Markov Chain Monte Carlo (MCMC) algorithm82

that follows a two-phase strategy, combining Random Walk Metropolis-Hastings and Indepen-83

dent Kernel Metropolis-Hastings schemes to enhance convergence and sampling efficiency. This84

Bayesian framework allows us to perform full posterior inference and model comparison using85

the Deviance Information Criterion (DIC), thereby identifying the most appropriate model for86

each city.87

This adaptive MCMC approach aligns with recent advances in Bayesian climate-based88

dengue forecasting that use MCMC-driven estimation for spatiotemporal models with lagged89

rainfall and temperature effects [2]. Similarly, recent studies such as the ARBOALVO frame-90

work apply Bayesian MCMC methods to handle spatial structure and environmental drivers in91

dengue time series [14], demonstrating the ongoing relevance of flexible MCMC estimation for92

vector-borne disease forecasting.93

2.1 General Model Structure94

Let {Yt} denote the weekly dengue case counts, and let Ft−1 be the information set available up95

to time t − 1, that is, Ft−1 = {Yt, Yt−1, . . . ;Xt, Xt−1, . . .}. The general form of a zero-inflated96

INGARCHX model is given by:97

Yt | Ft−1 ∼ ρ · δ0 + (1− ρ) · f(λt), (1)

where δ0 is a degenerate distribution at zero, ρ ∈ [0, 1) is the zero-inflation parameter, and98

f(λt) is a count distribution (e.g., generalized Poisson or negative binomial) with time-varying99

mean λt. The evolution of the conditional mean λt follows an INGARCHX(1,1) form:100

λt = α0 + α1Yt−1 + β1λt−1 + ω1X1,t−b1 + ω2X2,t−b2 , (2)

where X1,t and X2,t represent rainfall and temperature, respectively, and b1, b2 are their101

corresponding lag (delay) parameters. The parameters α0 > 0, α1, β1 ≥ 0, and α1 + β1 < 1102

are constrained to ensure stationarity. When the zero-inflation parameter ρ = 0, the general103

model reduces to its standard INGARCHX form with either a Poisson or Negative Binomial104

innovation.105

Figure 1 illustrates the structure of the Zero-Inflated INGARCHX(1,1) model, showing how106

past counts, lagged climate covariates, and the zero-inflation mechanism interact to generate107

the predicted dengue counts.108
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Figure 1: Schematic diagram of the Zero-Inflated INGARCHX(1,1) Model.

As shown in Figure 1, the Zero-Inflated INGARCHX(1,1) framework combines historical109

dengue incidence, lagged rainfall and temperature, and an autoregressive structure to calculate110

the conditional mean. This conditional mean then determines the parameters of the chosen111

count distribution while the zero-inflation component ρ adjusts for excess zeros in the data. This112

structure ensures that both temporal dependence and climate-driven variability are incorporated113

when modeling weekly dengue counts, addressing key features such as overdispersion and the114

prevalence of zero-case weeks, especially in low-incidence periods.115

2.2 Specific Models116

Zero-Inflated Negative Binomial INGARCHX (1,1)117

This formulation is based on the studies of Chen, Liu, and Pingal [6], which introduced a zero-118

inflated negative binomial INGARCHX framework for modeling overdispersed and zero-inflated119

count data with exogenous covariates. In this model, the conditional distribution of Yt is defined120

as:121

Yt | Ft−1 ∼ ρ · δ0 + (1− ρ) ·NB(λt, r), (3)
122

λt = α0 + α1Yt−1 + β1λt−1 + ω1X1,t−b1 + ω2X2,t−b2 . (4)

Here, ρ is the zero-inflation probability, λt is the conditional mean of the negative binomial123

distribution at time t, and r is the dispersion (shape) parameter that captures the extra-Poisson124

variation typical of dengue case counts. The autoregressive structure, defined by α0, α1, and125

β1, allows the model to capture the time-dependent nature of disease incidence, while satisfying126

the constraints α0 > 0 and α1 + β1 < 1 to ensure positivity and stationarity of the process.127

The coefficients ω1 and ω2 quantify the influence of lagged rainfall and temperature (X1,t and128

X2,t), with corresponding delays b1 and b2, allowing the model to reflect realistic incubation129

and transmission lags. When the zero-inflation parameter ρ = 0, this flexible structure reduces130

to the standard negative binomial INGARCHX model of Pingal and Chen [16].131
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Zero-Inflated Generalized Poisson INGARCHX (1,1)132

This formulation is based on the study of [6], which proposed a zero-inflated generalized Poisson133

INGARCHX model to accommodate both overdispersion and zero-inflation in count time series.134

The model assumes that, conditional on past values, Yt follows:135

Yt | Ft−1 ∼ ρ · δ0 + (1− ρ) ·GP(κt, ψ), (5)
136

κt =
1− ψ

1− ρ
(λt + ω1X1,t−b1 + ω2X2,t−b2) , (6)

137

λt = α0 + α1Yt−1 + β1λt−1. (7)

Here, ψ is the dispersion parameter of the generalized Poisson distribution. The remaining138

parameters retain the same interpretations as in the ZINB-INGARCHX model. Notably, when139

the zero-inflation parameter ρ = 0, the model reduces to the generalized Poisson INGARCHX140

model introduced by [16], capturing overdispersion without zero-inflation.141

2.3 Model Assumptions142

Assumptions in ZI-INGARCHX(1,1) models are crucial because they define the underlying143

data generation process and directly impact the model’s ability to accurately capture the char-144

acteristics of the data. Meeting these assumptions ensures the model’s validity, reliability, and145

interpretability. The following assumptions support all versions of the ZI–INGARCHX(1,1)146

models described above:147

1. Two-stage data-generation. The weekly dengue counts Yt follow a mixture model148

where it is conditional on the past information Ft−1. In this setup, a structural zero149

generated with probability ρ ∈ [0, 1), and the count is drawn from a standard count150

distribution f(λt) with time-varying mean λt. The zero-inflation parameter ρ captures151

the proportion of structual zero unexplained by the count model.152

2. Autoregressive dependence. The conditional mean λt evolves over time according to153

the INGARCHX(1,1) specification:154

λt = α0 + α1Yt−1 + β1λt−1 + ω1X1,t−b1 + ω2X2,t−b2 ,

where X1,t and X2,t denote exogenous covariates (e.g., rainfall and temperature), and155

b1, b2 are their respective delays. The model captures dependence on past observations156

and past conditional means.157

3. Stationarity and ergodicity. The parameters α1, β1 ≥ 0 are constrained such that158

α1 + β1 < 1, ensuring that the process {λt} is strictly stationary and ergodic. This159

guarantees that the process stabilizes over time, allowing valid inference and long-run160

behavior analysis.161

4. Exogenous covariates. The inclusion of exogenous variables X1,b1 and X2,b2 transform162

the model into INGARCHX framework by allowing these covariates in the linear predictor163

λt. For the identity link function, there must be restriction ω⊤Xt−b > 0 so that λt remains164

nonnegative. For λt with log-link, no sign restriction for ω and Xt−b.165

5. Properly specified maximum lags. The maximum lag parameter is selected to en-166

sure that the influence of exogenous covariates is temporally aligned with the dependent167

variable. The proper choice of lag is crucial for capturing the real-life delay between the168

changes in covariates and their impact on dengue incidence. Incorrect lag specification169

may lead to misleading conclusions about the covariate effects.170
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6. Independence of errors. Conditional on the past information Ft−1, the innovations
are assumed to be serially uncorrelated:

εt ⊥ εs | Fmin(t,s)−1, for all t ̸= s.

This implies that the residuals should not exhibit temporal autocorrelation. Diagnostic171

tools such as autocorrelation plots, Ljung–Box tests, and posterior predictive checks can172

be used to verify this assumption. If violated, model respecification (e.g., increased lag173

order or improved covariate modeling) may be necessary.174

2.4 Likelihood Function175

Let Y = {Y1, Y2, . . . , Yn} denote the observed time series, and X the corresponding matrix of176

exogenous variables. Let θ represent the complete set of model parameters. The likelihood177

function depends on the assumed distribution for the count component.178

Likelihood Function for ZIGP-INGARCHX(1,1)179

For the ZIGP-INGARCHX (1,1) model, where the count component follows a Generalized180

Poisson distribution with dispersion parameter ψ, the conditional likelihood function is given181

by:182

LZIGP(Y | X,θ) =
∏
Yt=0

{ρ+ (1− ρ) exp(−κt)}

×
∏
Yt>0

{
(1− ρ) · κt(κt + ψYt)

Yt−1

Yt!
exp (−(κt + ψYt))

}
, (8)

Likelihood Function for ZINB-INGARCHX (1,1)183

For the ZINB-INGARCHX (1,1) model, where the count component follows a Negative Binomial184

distribution with mean λt and shape parameter r > 0, the conditional likelihood function is185

given by:186

LZINB(Y | X,θ) =
∏
Yt=0

{
ρ+ (1− ρ)

(
r

r + λt

)r}

×
∏
Yt>0

{
(1− ρ) ·

(
Yt + r − 1

Yt

)(
r

r + λt

)r ( λt
r + λt

)Yt
}
, (9)

These likelihoods accommodate both overdispersion and excess zeros, while dynamically187

evolving through lagged observations and exogenous meteorological influences.188

2.5 Prior Specification189

Under the Bayesian framework, prior distributions are specified for all model parameters to190

reflect prior beliefs and facilitate regularization. The following prior assumptions are adopted,191

following the specification structure in [16], who demonstrated their effectiveness in modeling192

zero-inflated count time series with environmental covariates:193
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– Time series coefficients (α0, α1, β1) are assigned a constrained uniform prior over the region194

{α0 > 0, α1, β1 ≥ 0, α1 + β1 < 1}, ensuring positivity and stationarity of the conditional mean195

process.196

– Zero-inflation parameter ρ and dispersion parameter ψ (in the generalized Poisson model) are197

given independent Uniform(0, 1) priors, reflecting non-informative beliefs over their plausible198

ranges.199

– Shape parameter r (in the ZINB model) and the regression coefficients (ω1, ω2), which quantify200

the effects of exogenous covariates such as rainfall and temperature, are each assigned Gamma201

priors with common shape and rate hyperparameters c1 and c2.202

– Delay parameters b1 and b2, which determine the lag structure of the covariate effects, are203

modeled using discrete uniform distributions over the set {1, 2, 3}, allowing equal probability204

for each candidate lag length.205

2.6 Bayesian Estimation and Computation206

The posterior distribution of the model parameters θ given the observed data Y and covariates207

X is obtained via Bayes’ theorem:208

p(θ | Y ,X) ∝ L(Y | X,θ) · p(θ), (10)

where L(Y | X,θ) is the likelihood function and p(θ) denotes the joint prior distribution209

of the parameters.210

Posterior inference is carried out using Markov Chain Monte Carlo (MCMC) sampling.211

Given the non-standard forms of the full conditional distributions, we adopt a two-phase Adap-212

tive MCMC procedure for efficient sampling. The first phase employs the Random-Walk213

Metropolis-Hastings (RWMH) algorithm to explore the posterior surface and adapt the pro-214

posal distribution based on empirical variance. The second phase uses an Independent Kernel215

Metropolis-Hastings (IKMH) scheme, which refines sampling by using a fixed proposal density216

centered on the approximated posterior mode. This strategy, originally proposed by Chen and217

So [3], is known for enhancing convergence, improving mixing, and reducing computational218

inefficiency in high-dimensional or non-standard models.219

The strength of adaptive MCMC methods has been demonstrated in several Bayesian220

time series applications, including nonlinear INGARCHX models and count data modeling221

with threshold and regime-switching dynamics. In particular, [5] successfully applied adaptive222

MCMC to model negative binomial INGARCHX processes with covariates, while [4] extended223

this framework to Markov-switching structures for dengue incidence, showing high computa-224

tional efficiency and reliable convergence diagnostics.225

Each MCMC chain runs for N = 20,000 iterations, with the first M = 8,000 discarded226

as burn-in. The remaining N − M = 12,000 samples are used for posterior summaries and227

diagnostics, including trace plots, autocorrelation functions, Geweke’s convergence test [11],228

and inefficiency factors [7].229

Since the delay parameter bk is discrete, its conditional posterior distribution follows a230

multinomial form with posterior probabilities given by:231

p
(
bk = j | Y,X,θ\bk

)
=

L(Y | X, bk = j,θ\bk)∑b0
i=1 L(Y | X, bk = i,θ\bk)

, j = 1, . . . , b0.

This allows the algorithm to estimate optimal lag values for each exogenous variable in a232

data-driven manner within the Bayesian inference framework.233

MSU-ILIGAN INSTITUTE OF TECHNOLOGY

http://doi.org/10.62071/tmjm.v7i1.774
93

https://msuiit.edu.ph
http://doi.org/10.62071/tmjm.v7i1.774
https://msuiit.edu.ph


K. M. Orejas, R. J. Martinez, A. C. Pingal, and K. Suaybaguio

2.7 Model Selection and Diagnostic Checking234

Model comparison is conducted using the Deviance Information Criterion (DIC), introduced235

by Spiegelhalter et al. [18], which provides a Bayesian generalization of the Akaike Information236

Criterion (AIC). It is especially useful for hierarchical models and when posterior distributions237

are obtained via Markov Chain Monte Carlo (MCMC) methods.238

The deviance is defined as:239

D(θ) = −2 logL(Y | θ) + 2 log p(Y), (11)

where L(Y | θ) is the likelihood of the observed data given the parameters. The DIC is then240

computed as:241

DIC = D(θ) + pD, (12)

where D(θ) is the posterior mean of the deviance, and pD = D(θ)−D(θ) is the effective number242

of parameters, with θ being the posterior mean of the parameters. A model with the lowest243

DIC value is preferred, indicating a better balance between model fit and complexity.244

Model adequacy is further evaluated using standardized Pearson residuals to detect potential245

misspecification. Convergence and sampling efficiency of the MCMC chains are assessed through246

the Geweke diagnostic and inefficiency factors. Additionally, visual inspection using trace plots247

and autocorrelation function (ACF) plots is conducted to assess mixing behavior and confirm248

convergence.249

For the model identified as best based on the DIC, in-sample prediction is carried out to250

assess its ability to replicate the observed data. This allows further validation of the model’s251

adequacy and practical relevance in capturing the underlying dynamics of dengue incidence.252

We calculate the standardized residual proposed by [13], for diagnostic checking:253

et =
Yt − E (Yt | Yt−1,Xt−b)√

Var (Yt | Yt−1,Xt−b)
, (13)

where E (Yt | Yt−1,Xt−b) represents the conditional mean and Var (Yt | Yt−1,Xt−b) represents254

the conditional variance of the model. The mean of et must be zero, and its variance should be255

one and not exhibit autocorrelation.256

2.8 Data and Meteorological Variables257

This study analyzes dengue hemorrhagic fever (DHF) incidence in Tandag City, Surigao del258

Sur, and Iligan City, Lanao del Norte — two urban centers in Mindanao, Philippines, that259

exhibit contrasting dengue transmission patterns. Weekly DHF case data were collected from260

regional health offices, covering multiple years to capture seasonal and interannual variation.261

To account for environmental drivers, the models also include weekly cumulative rainfall and262

average temperature as exogenous covariates, given their known influence on mosquito breeding263

conditions and dengue spread.264
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Figure 2: Weekly time series plot of dengue fever cases in Tandag City (2008–2024) and Iligan
City (2010–2024).

The two datasets in Figure 2 were selected due to their contrasting distributional charac-265

teristics: Tandag City exhibits zero-inflation in reported dengue cases, while Iligan City shows266

evidence of zero-deflation. This contrast allows for a robust evaluation of the proposed model’s267

ability to account for varying zero-count behaviors in disease incidence data.268

Weekly dengue case counts were obtained from the Department of Health (DOH) in CARAGA269

Region and Region 10, Philippines. The Tandag City data spans from January 2008 to Decem-270

ber 2024, while the Iligan City data covers January 2010 to December 2024.271

Table 1 summarizes the descriptive statistics of the weekly dengue case counts in Tandag272

City and Iligan City. A key characteristic of the data in both locations is the presence of273

overdispersion, as evidenced by the fact that the sample variance substantially exceeds the274

mean in both cases—particularly in Iligan City, where the variance is nearly twenty times the275

mean. This property violates the equidispersion assumption of the Poisson model and thus276

motivates the use of more flexible count models such as the Negative Binomial and Generalized277

Poisson.278
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Table 1: Descriptive statistics of weekly dengue cases

City Mean Variance Min Q1 Median Q3 Max Zeros (%)

Tandag City 4.034 41.958 0 0 2 5 66 30.43
Iligan City 16.800 327.288 0 5 11 23 148 2.82

(a.1) (a.2)

(b.1) (b.2)

Figure 3: (a) Distribution of dengue cases in Tandag City and Iligan City, and (b) Segmented
analysis highlights mean and variance of dengue cases per segment, emphasizing variability
across different time periods.

Figure 3 complements these summary statistics by visualizing the distributional character-279

istics and temporal patterns of the two time series. Subplots (a.1) and (a.2) show the overall280

distribution of weekly dengue counts in Tandag and Iligan, respectively, highlighting the differ-281

ence in zero counts and spread. The segmented plots (b.1) and (b.2) further illustrate how the282

mean and variance fluctuate over different periods, emphasizing local variability and the need283

to account for changing patterns in transmission. The high proportion of zeros in Tandag City284

(30.43%) is clearly visible, supporting a zero-inflated modeling approach to capture structural285

or excess zeros. In contrast, Iligan City has relatively few zero weeks (2.82%), although strong286

overdispersion remains a dominant feature. Together, these insights reinforce the importance287

of choosing model structures that reflect the contrasting transmission characteristics of the two288

locations.289

To incorporate meteorological influences on dengue transmission, weekly cumulative rainfall290

and average temperature data were obtained from [15]. These climate variables have been widely291

recognized as significant environmental drivers of dengue outbreaks, as they directly affect the292
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lifecycle of the Aedes mosquito vector and the dynamics of virus transmission. Rainfall creates293

breeding habitats for mosquitoes through the accumulation of stagnant water, while temperature294

influences mosquito biting rates, development cycles, and viral replication within the vector [12].295

As such, both rainfall and temperature have been extensively used as exogenous covariates in296

time series models of dengue incidence.297

Table 2 presents the descriptive statistics of the weekly rainfall and temperature for the two298

study sites—Tandag City and Iligan City. These statistics provide an overview of the central299

tendency and range of the meteorological variables used in the analysis. To complement this,300

Figure 4 visualizes the temporal trends of these variables, highlighting seasonal patterns and301

variability across the two cities. The top panels depict the weekly rainfall and temperature for302

Tandag City (2008–2024), while the bottom panels correspond to Iligan City (2010–2024).303

Table 2: Descriptive summary of meteorological variables

Location Rainfall (mm) Temperature (°C)

Median Mean Min Max Median Mean Min Max

OpenWeather (Tandag) 49.89 65.20 0 770.02 26.43 26.38 24.12 28.45
OpenWeather (Iligan) 41.30 48.35 0.05 268.63 28.62 28.60 25.54 30.35

The meteorological profiles of Iligan City and Tandag City reveal both similarities and304

differences that affect dengue dynamics. While both cities experience seasonal rainfall and warm305

temperatures, Tandag shows higher rainfall variability and extreme weather events, whereas306

Iligan maintains consistently higher average temperatures. This variation supports the model’s307

flexibility to account for diverse climatic drivers.308

Figure 4: Weekly rainfall and temperature trends in Tandag City and Iligan City. The top row
shows the rainfall and temperature in Tandag (2008–2024), while the bottom row displays the
corresponding variables in Iligan (2010–2024).
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As shown in both the Table 2 and the Figure 4, rainfall in Tandag exhibits higher variability309

and extreme values compared to Iligan. In contrast, temperature in Iligan remains consistently310

higher across the observed period. Given these disparities in scale and distribution, all covariates311

were standardized prior to modeling to ensure comparability and numerical stability during312

estimation.313

The following transformation was used:314

x∗i,t =
Xi,t −min(Xi,t)

S
(i)
x

, t = 1, . . . , n; i = 1, 2,

where S
(i)
x denotes the standard deviation of the original covariate Xi. This scaled version315

x∗i,t ensures that rainfall and temperature are on a similar scale, aiding in efficient parameter316

estimation within the Bayesian framework.317

3 Checking Assumptions318

Before fitting the models, it is important to check if the data meet the assumptions. Checking319

these assumptions helps make sure the model accurately represents how the counts and zeros320

are produced, that the autoregressive terms properly capture patterns over time, and that the321

process is stable enough for reliable analysis and forecasting.322

3.1 Two-stage data-generation323

In the weekly dengue data from Tandag City and Iligan City, the zeros in the data appear to arise324

from both structural and sampling mechanisms. Structural zeros likely occur during weeks when325

environmental conditions, such as low rainfall or cooler temperatures, do not help in mosquito326

breeding and virus transmission or when there is public health interventions (e.g., fogging,327

community cleanup drives) effectively suppress outbreaks. On the other hand, sampling zeros328

may result from inherent randomness in case occurrence, particularly during transition weeks329

between low- and high-transmission seasons, or from underreporting due to delayed diagnostics330

or limited health facility access. Hence, the two-stage data-generation assumption is met.331

3.2 Autoregressive dependence332

The assumption of autoregressive dependence is satisfied in the weekly dengue case data for both333

Tandag City and Iligan City. As shown in the ACF plots in Figure 5, the lagged autocorrelation334

coefficients slowly decay and remain significantly outside the confidence limits 95%. This suggest335

temporal dependence in the data. This is further supported by the results of the Ljung-Box336

test in Table 3 where both cities produce extremely high chi-square statistics and p-values less337

than 2.2e–16, confirming statistically significant autocorrelation between multiple lags. These338

findings justify the use of an INGARCHX framework.339

Table 3: Ljung-Box test for detecting autocorrelation in the weekly dengue time series data.

Location χ2 df p-value

Tandag City 3033.1 10 <2.2e-16
Iligan City 3770.4 30 <2.2e-16
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Figure 5: ACF functions for Tandag City and Iligan City dengue time series. The blue dashed
lines mark approximate 95% significance bounds; bars outside these bounds indicate statistically
significant lagged dependence.

3.3 Stationarity and ergodicity340

The stationarity assumption is supported by the results of the Augmented Dickey–Fuller (ADF)341

test applied to the weekly dengue case series in both Tandag City and Iligan City presented342

in Table 4. The ADF test statistics are –5.3306 and –5.705, respectively, with both have p-343

values less than 0.01. These results provide strong evidence against the presence of a unit root,344

indicating that the time series are stationary. Stationarity is a key requirement for the validity345

of the INGARCHX model. This ensures that the temporal dynamics of the conditional mean346

process λt are stable over time and do not exhibit uncontrolled drift.347

Table 4: Stationary test using Augmented Dickey-Fuller test for the weekly dengue time series
data.

Location Statistic Lag Order p-value

Tandag City -5.3306 9 <0.01
Iligan City -5.705 9 <0.01

3.4 Exogenous variables and maximum lag348

In this study, rainfall and average temperature are incorporated as exogenous variables to349

account for environmental effects of dengue transmission. These meteorological factors are350

known to influence mosquito breeding and virus dynamics. To capture these delayed effects351

appropriately, a maximum lag of three weeks is imposed on both covariates. This choice is352

guided by the paper of [16], which identified a three-week lag as the optimal period reflecting353

the biological and ecological response time between weather conditions and reported dengue354

cases.355

4 Results and Discussion356

This section presents the empirical results from the Bayesian estimation of five count time357

series models applied to dengue incidence data in Tandag and Iligan cities. The models in-358
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clude the Generalized Poisson INGARCHX (GP-INGARCHX), Log-linear GP-INGARCHX359

(Log GP-INGARCHX), Negative Binomial INGARCHX (NB-INGARCHX), Zero-Inflated GP-360

INGARCHX (ZIGP-INGARCHX), and Zero-Inflated Negative Binomial INGARCHX (ZINB-361

INGARCHX). The primary evaluation criterion for model performance is the Deviance Infor-362

mation Criterion (DIC), where a lower DIC value indicates a better trade-off between model363

complexity and goodness-of-fit. Additionally, convergence diagnostics, parameter estimates,364

and model residuals are analyzed to assess model adequacy.365

Table 5: Parameter Estimates and DIC by Model and City

City Model α0 α1 β ρ ω1 ω2 r ψ b1 b2 DIC

Tandag

GP-INGARCHX 0.0125 0.2953 0.4950 - 0.0997 0.0713 - 0.3447 1 1 3421.068
Log GP-INGARCHX 0.0025 0.6308 0.1053 - 0.0168 0.0101 - 0.3702 3 1 3759.726
NB-INGARCHX 0.0295 0.0226 0.2079 - 3.2843 7.5393 1.0013 - 1 3 5745.523
ZIGP-INGARCHX 0.0339 0.4453 0.5054 0.0060 0.0759 0.0597 - 0.3436 1 1 3418.300
ZINB-INGARCHX 0.0080 0.1363 0.5419 0.0078 0.0266 0.0300 2.9985 - 1 1 3406.990

Iligan

GP-INGARCHX 0.0422 0.3585 0.3282 - 0.1850 0.1281 - 0.4114 3 1 4784.618
Log GP-INGARCHX 0.0053 0.7214 0.0970 - 0.0204 0.0091 - 0.4139 3 1 4903.175
NB-INGARCHX 0.0959 0.0247 0.2311 - 4.5307 11.1470 1.0012 - 3 3 6759.287
ZIGP-INGARCHX 0.1060 0.6046 0.3375 0.0026 0.1226 0.1184 - 0.4098 3 1 4774.750
ZINB-INGARCHX 0.0128 0.0800 0.3867 0.0096 0.0154 0.0244 7.0924 - 1 1 4787.283

Table 5 shows the parameter estimates and DIC values for different models applied to the366

dengue incidence data in both cities. For Tandag, the ZINB-INGARCHX model achieved367

the lowest DIC (3406.99), suggesting it best captures the zero-inflation and overdispersion in the368

data. In Iligan, the ZIGP-INGARCHX model yielded the best fit with a DIC of 4774.750.369

Models that do not account for zero-inflation, such as GP and NB variants, yielded substan-370

tially higher DICs, highlighting the importance of zero-inflation mechanisms and distributional371

flexibility in modeling dengue time series data.372

Table 6 presents the posterior estimates and convergence diagnostics for the Zero-Inflated373

INGARCHX(1,1) models fitted to the Tandag and Iligan dengue data. For Tandag’s ZINB-374

INGARCHX model, the intercept (α0 = 0.0080) represents the baseline expected number of375

dengue cases when there is no past information and no climate effect. This very low value376

means that when conditions are neutral, the expected weekly count is near zero, which is377

realistic for Tandag. The parameter (α1 = 0.1363) implies that for every additional dengue case378

reported in the previous week, the expected number of cases this week increases by about 0.136.379

This shows that dengue cases in Tandag tend to cluster for short periods rather than appearing380

in isolation. Meanwhile, the past mean effect (β = 0.5419) means that what was expected last381

week still has a strong effect on what is expected this week. This indicates that dengue case382

numbers in Tandag generally continue over time rather than changing suddenly from week to383

week.384

The dispersion parameter (r = 2.9985) confirms that the negative binomial distribution385

captures extra variation in the counts beyond what a simple Poisson process would predict. The386

zero-inflation parameter (ρ = 0.0078) is very low, meaning there is almost no extra probability387

of having additional zero-case weeks once the count model is in place. The rainfall effect388

(ω1 = 0.0266) means that for every unit increase in rainfall, the expected number of cases rises389

by about 0.027, while the temperature effect (ω2 = 0.0300) means that each unit increase in390

temperature raises the expected number by about 0.030. These effects confirm that rainfall and391

temperature help create conditions for mosquitoes to breed and transmit dengue. The identified392

lags (b1 = 1, b2 = 1) show that both rainfall and temperature influence dengue cases with about393

a one-week delay, matching known mosquito life cycles.394

In Iligan’s ZIGP-INGARCHX model, the intercept (α0 = 0.1060) shows a higher baseline395
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Table 6: MCMC Results and Diagnostics for the ZINB-INGARCHX (Tandag) and ZIGP-
INGARCHX (Iligan) Models

Model Param. Mean Med. Std. P2.5 P97.5 Z IF

Tandag Data (ZINB-INGARCHX)

α0 0.0080 0.0076 0.0048 0.0006 0.0183 -0.8109 4.64

α1 0.1363 0.1363 0.0098 0.1182 0.1561 0.9484 4.43

β 0.5419 0.5424 0.0284 0.4858 0.5969 -1.5897 3.26

r 2.9985 2.9977 0.0739 2.8544 3.1458 0.2266 3.62

ρ 0.0078 0.0061 0.0067 0.0002 0.0253 0.7815 4.90

ω1 0.0266 0.0265 0.0079 0.0119 0.0423 1.8384 2.92

ω2 0.0300 0.0301 0.0041 0.0221 0.0382 0.7635 4.21

b1 1

b2 1

Iligan Data (ZIGP-INGARCHX)

α0 0.1060 0.0968 0.0689 0.0059 0.2629 0.7837 4.32

α1 0.6046 0.6043 0.0238 0.5577 0.6518 -0.3492 2.69

β 0.3375 0.3381 0.0257 0.2865 0.3880 0.9559 2.57

ψ 0.4098 0.4098 0.0166 0.3771 0.4431 -1.4240 4.03

ρ 0.0026 0.0019 0.0023 0.0001 0.0085 -1.1768 4.82

ω1 0.1226 0.1210 0.0416 0.0464 0.2095 -1.5496 2.87

ω2 0.1184 0.1187 0.0198 0.0799 0.1570 0.5625 3.76

b1 3

b2 1

risk than Tandag, meaning that even with no past cases or climate triggers, Iligan has a greater396

expected dengue count. The parameter (α1 = 0.6046) means that for every additional dengue397

case last week, the expected number of cases this week increases by about 0.605. This implies398

that dengue outbreaks in Iligan are more strongly clustered and can spread more quickly. The399

past mean effect (β = 0.3375) means that last week’s expected cases still have a notable effect400

on this week’s expected value, which helps smooth sudden spikes or drops.401

The dispersion parameter (ψ = 0.4098) captures the extra variability typical of dengue402

counts under the generalized Poisson. The zero-inflation parameter (ρ = 0.0026) is low, showing403

that few extra zeros remain once the count model is included. For Iligan, rainfall (ω1 = 0.1226)404

and temperature (ω2 = 0.1184) both have larger positive effects, meaning that higher rainfall405

and temperatures strongly increase expected dengue cases. The lag for rainfall (b1 = 3) means406

its impact appears after about three weeks, while the temperature effect (b2 = 1) appears after407

one week, both consistent with mosquito breeding and virus incubation.408

The inefficiency factors (IFs) for both cities are well below 5, showing that the adaptive409

MCMC sampling mixed well and produced reliable estimates. Notably, the IFs for rainfall and410

temperature are low for both Tandag (ω1 = 2.92, ω2 = 4.21) and Iligan (ω1 = 2.87, ω2 = 3.76),411

confirming stable and efficient posterior estimation.412

These results show that past cases, expected trends, and climate conditions combine to413

predict weekly dengue counts, with realistic time lags and overdispersion handled by the chosen414

model. This aligns with known transmission patterns and shows that dengue case patterns tend415

to continue over time rather than change suddenly.416

Finally, the identified lags—b1 = 1 and b2 = 1 for Tandag, and b1 = 3, b2 = 1 for Iligan—are417

consistent with known biological mechanisms, where rainfall creates mosquito breeding grounds418

within a week, and temperature influences mosquito-virus dynamics with slightly delayed effects.419
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Together, these results highlight both the statistical adequacy and biological plausibility of the420

proposed models.421

The performance of the Bayesian Zero-Inflated Negative Binomial INGARCHX (ZINB-422

INGARCHX) model is evaluated to assess its adequacy in modeling weekly dengue incidence in423

Tandag City, incorporating rainfall and temperature as exogenous predictors. As illustrated in424

Figure 6, the model closely captures the temporal dynamics of dengue outbreaks, with predicted425

values aligning well with observed case counts, including both outbreak peaks and periods of426

low transmission.427

Figure 6: Model diagnostics for the ZINB-INGARCHX model applied to dengue incidence in
Tandag City. Upper panel: in-sample prediction plot; Lower panel: standardized residuals and
autocorrelation function (ACF) of the residuals.

The residual diagnostics shown in the lower panel of Figure 6 further validate the model’s428

adequacy. The standardized residuals fluctuate randomly around zero, and the ACF bars fall429

within the 95% confidence bounds, indicating no significant autocorrelation. These results430

confirm that the ZINB-INGARCHX model effectively captures temporal dependence and ran-431

domness, supporting its suitability for surveillance and predictive applications.432

A similar diagnostic evaluation is conducted for Iligan City using the Zero-Inflated Gen-433

eralized Poisson INGARCHX (ZIGP-INGARCHX) model. Figure 7 summarizes its predictive434
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accuracy and residual behavior.435

Figure 7: Model diagnostics for the ZIGP-INGARCHX model applied to dengue incidence in
Iligan City. Upper panel: in-sample prediction plot; Lower panel: standardized residuals and
autocorrelation function (ACF) of residuals.

The upper panel in Figure 7 indicates that the model successfully captures the observed436

weekly dengue cases, reflecting its responsiveness to underlying epidemic trends and environ-437

mental factors. Meanwhile, the residuals in the lower panel exhibit no discernible pattern438

and show no significant autocorrelation, as the ACF values remain within the 95% confidence439

bounds. These diagnostics affirm the reliability of the ZIGP-INGARCHX model in capturing440

the overdispersion and zero-inflation characteristics of the Iligan dataset, while accounting for441

delayed climatic influences.442

Conclusion443

This study confirms the effectiveness of zero-inflated Bayesian count time series models, partic-444

ularly the INGARCHX framework, for capturing dengue dynamics in Iligan and Tandag cities.445

By integrating lagged rainfall and temperature, the models account for key environmental in-446

fluences. Building on the frameworks of [16, 6], this approach addresses overdispersion, serial447
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dependence, and zero-inflation in local count data. Results show that the ZINB-INGARCHX448

model best fits Tandag’s highly zero-inflated data, while the ZIGP-INGARCHX model suits449

Iligan’s overdispersed but low-zero pattern. The adaptive MCMC estimation achieved good450

convergence and reliable posterior inference.451

Beyond methodology, this study supports global sustainability goals [19], including SDG452

#3 (health), SDG #11 (resilient communities), and SDG #13 (climate action) by modeling453

how climatic factors shape disease risk. The results emphasize the value of flexible count models454

and Bayesian approaches for location-specific dengue forecasting.455

However, this work has limitations. Reported case and weather data may include measure-456

ment errors or underreporting. The models were validated only in-sample, which is appropriate457

for this initial methodological comparison focused on identifying the best-fitting structures and458

demonstrating their capacity to replicate observed local patterns. Nevertheless, other factors459

such as human movement or vector control were not included. To strengthen future work,460

real-time out-of-sample forecasting, integration of mobility and socio-economic data, and pilot461

testing as an early warning system with local health agencies are recommended.462

5 Appendix463

Figure 8: Trace and autocorrelation (ACF) plots for the posterior samples of parameter esti-
mates in the ZINB-INGARCHX model for Tandag City, incorporating two exogenous variables:
rainfall and temperature. These plots are used to assess convergence and mixing behavior of
the MCMC algorithm.
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Figure 9: Trace and autocorrelation (ACF) plots for the posterior samples of parameter esti-
mates in the ZIGP-INGARCHX model for Iligan City, incorporating two exogenous variables:
rainfall and temperature. These plots are used to assess convergence and mixing behavior of
the MCMC algorithm.
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