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Abstract

This study presents a Bayesian approach to modeling dengue incidence in Iligan and
Tandag cities, Philippines, using integer-valued time series models. Recognizing the chal-
lenges posed by overdispersion, serial dependence, and excess zeros in dengue count data,
we compare five probabilistic models: Generalized Poisson (GP), Log-Generalized Poisson
(Log-GP), Negative Binomial (NB), Zero-Inflated Generalized Poisson (ZIGP), and Zero-
Inflated Negative Binomial (ZINB) INGARCHX models. These models incorporate rainfall
and temperature as lagged exogenous covariates. Parameter estimation is carried out using
Adaptive Markov Chain Monte Carlo (MCMC) methods, and model performance is assessed
via the Deviance Information Criterion (DIC) and residual diagnostics. Results reveal that
the ZINB-INGARCHX model is best suited for the zero-inflated Tandag dataset, while the
ZIGP-INGARCHX model provides the best fit for the overdispersed Iligan data. Find-
ings highlight the importance of flexible count models and lagged environmental drivers in
accurately capturing the dynamics of dengue transmission.

1 Introduction

Dengue fever, a mosquito-borne viral infection, poses a significant public health challenge in
tropical and subtropical regions worldwide. Transmitted primarily by Aedes aegypti mosquitoes,
the dengue virus causes symptoms ranging from mild fever to severe hemorrhagic conditions.
The proliferation of dengue is closely linked to environmental factors that influence mosquito
breeding and survival, such as temperature and rainfall [12].

The Philippines has experienced a notable increase in dengue cases in recent years. As of
February 15, 2025, the Department of Health (DOH) reported 43,732 cases, marking a 56% rise
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compared to the 27,995 cases recorded during the same period in the previous year [9]. This
upward trend underscores the urgent need for effective surveillance and intervention strategies
to mitigate the disease’s impact.

In Higan City, located in Lanao del Norte, the DOH recorded 758 dengue cases in 2024,
highlighting the city’s vulnerability to outbreaks [8]. Similarly, Tandag City in Surigao del Sur
reported 233 cases in the same year, reflecting a significant disease burden [10]. These figures
emphasize the necessity for localized studies to understand and address the specific factors
contributing to dengue transmission in these areas.

Accurate modeling of dengue incidence is crucial for predicting outbreaks and implementing
timely interventions. Traditional models, such as the Autoregressive Integrated Moving Average
(ARIMA), have been used to forecast dengue cases based on climatic variables [1]. However,
dengue time series data often exhibit distinct features such as overdispersion, serial dependence,
and an excess of zero counts, which challenge the assumptions of standard statistical methods.

To address these issues, researchers have proposed the use of zero-inflated and overdispersed
count models. For example, Bayesian zero-inflated spatio-temporal models have been applied
to dengue data in the Caraga region, successfully capturing both meteorological influences and
spatial dependencies [17].

In parallel, hybrid machine learning approaches have also shown potential in handling zero-
inflated structures and enhancing prediction accuracy [20]. Recent studies continue to highlight
the value of Bayesian frameworks for dengue forecasting, including interdisciplinary spatiotem-
poral models that integrate lagged climatic covariates and use MCMC-based inference [2].

The methodological foundation of this study is motivated by the works of [16, 6]. These
studies developed integer-valued transfer function models that address the unique features of
count data, such as serial dependence, overdispersion, and zero-inflation. They also incorporate
the influence of exogenous covariates with possible lagged effects.Their frameworks emphasized
multiple transfer function models (MTFM) and demonstrated strong empirical performance in
the Philippine context. In particular, it was found that rainfall and temperature had lagged
effects of one and three weeks, respectively, and that zero-inflated models such as ZIGP MTFM
and ZINB MTFM outperformed simpler alternatives in terms of predictive accuracy.

Motivated by these findings, this study applies and compares five probabilistic time se-
ries models—Generalized Poisson (GP) INGARCHX, Log-Generalized Poisson (Log-GP) IN-
GARCHX, Negative Binomial (NB) INGARCHX, Zero-Inflated Generalized Poisson (ZIGP)
INGARCHX, and Zero-Inflated Negative Binomial (ZINB) INGARCHX. These models are de-
signed to accommodate serial dependence, overdispersion, and excess zeros, and incorporate
lagged effects of environmental variables such as rainfall and temperature. By employing Adap-
tive Markov Chain Monte Carlo (MCMC) estimation, the study aims to identify robust mod-
eling techniques for forecasting dengue incidence in Iligan City and Tandag City, ultimately
contributing to more effective public health responses.

This study provides the first direct comparison of these five INGARCHX variants within a
Philippine regional health context, demonstrating their ability to capture local dengue dynamics.
In addition, the adaptive MCMC procedure serves not only to estimate model parameters but
also to identify optimal lag structures for rainfall and temperature, offering practical value for
data-driven disease forecasting.

2 Methodology

This study builds upon the modeling philosophy of [16, 6] by extending their framework to focus
on core count-based INGARCHX models. While their original approach emphasized transfer
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function dynamics, we implement a unified structure based on zero-inflated autoregressive count
time series models that directly incorporate lagged exogenous effects.

In particular, we construct and analyze five variants within the INGARCHX framework:
Generalized Poisson (GP), Log-Generalized Poisson (Log-GP), Negative Binomial (NB), Zero-
Inflated Generalized Poisson (ZIGP), and Zero-Inflated Negative Binomial (ZINB). These mod-
els capture key features such as overdispersion, excess zeros, and temporal dependence while
allowing for environmental covariates like rainfall and temperature to influence the conditional
mean through lagged effects.

All models are estimated using an adaptive Markov Chain Monte Carlo (MCMC) algorithm
that follows a two-phase strategy, combining Random Walk Metropolis-Hastings and Indepen-
dent Kernel Metropolis-Hastings schemes to enhance convergence and sampling efficiency. This
Bayesian framework allows us to perform full posterior inference and model comparison using
the Deviance Information Criterion (DIC), thereby identifying the most appropriate model for
each city.

This adaptive MCMC approach aligns with recent advances in Bayesian climate-based
dengue forecasting that use MCMC-driven estimation for spatiotemporal models with lagged
rainfall and temperature effects [2]. Similarly, recent studies such as the ARBOALVO frame-
work apply Bayesian MCMC methods to handle spatial structure and environmental drivers in
dengue time series [14], demonstrating the ongoing relevance of flexible MCMC estimation for
vector-borne disease forecasting.

2.1 General Model Structure

Let {Y;} denote the weekly dengue case counts, and let F;_; be the information set available up
to time ¢ — 1, that is, Fy—1 = {Y¥},Yi—1,...; Xy, Xi—1,...}. The general form of a zero-inflated
INGARCHX model is given by:

Yi| Fiei~p-do+ (1—=p)- f(M), (1)

where dy is a degenerate distribution at zero, p € [0,1) is the zero-inflation parameter, and
f(A¢) is a count distribution (e.g., generalized Poisson or negative binomial) with time-varying
mean \;. The evolution of the conditional mean A follows an INGARCHX(1,1) form:

At =00+ ar1Yi—1 + Bidi—1 +wi X —p, +waXoip,, (2)

where X1; and Xo; represent rainfall and temperature, respectively, and by, by are their
corresponding lag (delay) parameters. The parameters ag > 0, 1,81 > 0, and a1 + 81 < 1
are constrained to ensure stationarity. When the zero-inflation parameter p = 0, the general
model reduces to its standard INGARCHX form with either a Poisson or Negative Binomial
innovation.

Figure 1 illustrates the structure of the Zero-Inflated INGARCHX(1,1) model, showing how
past counts, lagged climate covariates, and the zero-inflation mechanism interact to generate
the predicted dengue counts.
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Figure 1: Schematic diagram of the Zero-Inflated INGARCHX(1,1) Model.

As shown in Figure 1, the Zero-Inflated INGARCHX(1,1) framework combines historical
dengue incidence, lagged rainfall and temperature, and an autoregressive structure to calculate
the conditional mean. This conditional mean then determines the parameters of the chosen
count distribution while the zero-inflation component p adjusts for excess zeros in the data. This
structure ensures that both temporal dependence and climate-driven variability are incorporated
when modeling weekly dengue counts, addressing key features such as overdispersion and the
prevalence of zero-case weeks, especially in low-incidence periods.

2.2 Specific Models
Zero-Inflated Negative Binomial INGARCHX (1,1)

This formulation is based on the studies of Chen, Liu, and Pingal [6], which introduced a zero-
inflated negative binomial INGARCHX framework for modeling overdispersed and zero-inflated
count data with exogenous covariates. In this model, the conditional distribution of Y; is defined
as:

Y;f‘ft_lNp'(50—|—(1—p)-NB()\t,7”), (3)
At =g+ a1Yi_1 4+ Bid—1 +wir Xy p—p, +waXo i p,. (4)

Here, p is the zero-inflation probability, A; is the conditional mean of the negative binomial
distribution at time ¢, and r is the dispersion (shape) parameter that captures the extra-Poisson
variation typical of dengue case counts. The autoregressive structure, defined by «q, a1, and
51, allows the model to capture the time-dependent nature of disease incidence, while satisfying
the constraints g > 0 and a1 + 51 < 1 to ensure positivity and stationarity of the process.
The coefficients w; and wo quantify the influence of lagged rainfall and temperature (X;,; and
Xo,), with corresponding delays b; and b, allowing the model to reflect realistic incubation
and transmission lags. When the zero-inflation parameter p = 0, this flexible structure reduces
to the standard negative binomial INGARCHX model of Pingal and Chen [16].
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Zero-Inflated Generalized Poisson INGARCHX (1,1)

This formulation is based on the study of [6], which proposed a zero-inflated generalized Poisson
INGARCHX model to accommodate both overdispersion and zero-inflation in count time series.
The model assumes that, conditional on past values, Y; follows:

Yi| Fie1~p-00+ (1 —p) - GP(ky, ), (5)
1 _

Kt = 1_? (M +wi Xy b, +w2Xoiop,), (6)

At =ag+a1Yi—1 + BrAi—1. (7)

Here, v is the dispersion parameter of the generalized Poisson distribution. The remaining
parameters retain the same interpretations as in the ZINB-INGARCHX model. Notably, when
the zero-inflation parameter p = 0, the model reduces to the generalized Poisson INGARCHX
model introduced by [16], capturing overdispersion without zero-inflation.

2.3 Model Assumptions

Assumptions in ZI-INGARCHX(1,1) models are crucial because they define the underlying
data generation process and directly impact the model’s ability to accurately capture the char-
acteristics of the data. Meeting these assumptions ensures the model’s validity, reliability, and
interpretability. The following assumptions support all versions of the ZI-INGARCHX(1,1)
models described above:

1. Two-stage data-generation. The weekly dengue counts Y; follow a mixture model
where it is conditional on the past information F;_;. In this setup, a structural zero
generated with probability p € [0,1), and the count is drawn from a standard count
distribution f(\;) with time-varying mean \;. The zero-inflation parameter p captures
the proportion of structual zero unexplained by the count model.

2. Autoregressive dependence. The conditional mean )\; evolves over time according to
the INGARCHZX(1,1) specification:

At =g+ a1Yi—1 + Bid—1 +wi Xy —p, +waXoip,,

where X7 and Xp; denote exogenous covariates (e.g., rainfall and temperature), and
b1, b are their respective delays. The model captures dependence on past observations
and past conditional means.

3. Stationarity and ergodicity. The parameters a1, 31 > 0 are constrained such that
a1 + 1 < 1, ensuring that the process {\;} is strictly stationary and ergodic. This
guarantees that the process stabilizes over time, allowing valid inference and long-run
behavior analysis.

4. Exogenous covariates. The inclusion of exogenous variables X1 ;, and Xy, transform
the model into INGARCHX framework by allowing these covariates in the linear predictor
A¢. For the identity link function, there must be restriction w'X,_p > 0so that \; remains
nonnegative. For \; with log-link, no sign restriction for w and X;_;.

5. Properly specified maximum lags. The maximum lag parameter is selected to en-
sure that the influence of exogenous covariates is temporally aligned with the dependent
variable. The proper choice of lag is crucial for capturing the real-life delay between the
changes in covariates and their impact on dengue incidence. Incorrect lag specification
may lead to misleading conclusions about the covariate effects.
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6. Independence of errors. Conditional on the past information F;_1, the innovations
are assumed to be serially uncorrelated:

Et 1 Es | fmin(t,s)flv for all ¢ # S.

This implies that the residuals should not exhibit temporal autocorrelation. Diagnostic
tools such as autocorrelation plots, Ljung—Box tests, and posterior predictive checks can
be used to verify this assumption. If violated, model respecification (e.g., increased lag
order or improved covariate modeling) may be necessary.

2.4 Likelihood Function

Let Y = {Y1,Ys,...,Y,} denote the observed time series, and X the corresponding matrix of
exogenous variables. Let 0 represent the complete set of model parameters. The likelihood
function depends on the assumed distribution for the count component.

Likelihood Function for ZIGP-INGARCHX(1,1)

For the ZIGP-INGARCHX (1,1) model, where the count component follows a Generalized
Poisson distribution with dispersion parameter 1, the conditional likelihood function is given
by:

Lucp(Y | X,0) =[] {p+ (1 — p)exp(—r1)}

Y:=0

KKt )Yt
<I[{a-p M ep et o} ®)
Y >0

Likelihood Function for ZINB-INGARCHX (1,1)

For the ZINB-INGARCHX (1,1) model, where the count component follows a Negative Binomial
distribution with mean A\; and shape parameter » > 0, the conditional likelihood function is
given by:

Lang(Y | X,0) =[] {p+(1 -7 <T47:)\t>r}

Y:=0

e [ L

These likelihoods accommodate both overdispersion and excess zeros, while dynamically
evolving through lagged observations and exogenous meteorological influences.

2.5 Prior Specification

Under the Bayesian framework, prior distributions are specified for all model parameters to
reflect prior beliefs and facilitate regularization. The following prior assumptions are adopted,
following the specification structure in [16], who demonstrated their effectiveness in modeling
zero-inflated count time series with environmental covariates:
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— Time series coefficients (o, aq,51) are assigned a constrained uniform prior over the region
{ag >0, a1,81 > 0, a1 + B1 < 1}, ensuring positivity and stationarity of the conditional mean
process.

— Zero-inflation parameter p and dispersion parameter 1 (in the generalized Poisson model) are
given independent Uniform(0,1) priors, reflecting non-informative beliefs over their plausible
ranges.

— Shape parameter r (in the ZINB model) and the regression coefficients (w;,ws), which quantify
the effects of exogenous covariates such as rainfall and temperature, are each assigned Gamma
priors with common shape and rate hyperparameters ¢; and cs.

— Delay parameters by and by, which determine the lag structure of the covariate effects, are
modeled using discrete uniform distributions over the set {1,2,3}, allowing equal probability
for each candidate lag length.

2.6 Bayesian Estimation and Computation

The posterior distribution of the model parameters @ given the observed data Y and covariates
X is obtained via Bayes’ theorem:

p(0Y,X)x L(Y | X,6)-p(0), (10)

where L(Y | X, 0) is the likelihood function and p(@) denotes the joint prior distribution
of the parameters.

Posterior inference is carried out using Markov Chain Monte Carlo (MCMC) sampling.
Given the non-standard forms of the full conditional distributions, we adopt a two-phase Adap-
tive MCMC procedure for efficient sampling. The first phase employs the Random-Walk
Metropolis-Hastings (RWMH) algorithm to explore the posterior surface and adapt the pro-
posal distribution based on empirical variance. The second phase uses an Independent Kernel
Metropolis-Hastings (IKMH) scheme, which refines sampling by using a fixed proposal density
centered on the approximated posterior mode. This strategy, originally proposed by Chen and
So [3], is known for enhancing convergence, improving mixing, and reducing computational
inefficiency in high-dimensional or non-standard models.

The strength of adaptive MCMC methods has been demonstrated in several Bayesian
time series applications, including nonlinear INGARCHX models and count data modeling
with threshold and regime-switching dynamics. In particular, [5] successfully applied adaptive
MCMC to model negative binomial INGARCHX processes with covariates, while [4] extended
this framework to Markov-switching structures for dengue incidence, showing high computa-
tional efficiency and reliable convergence diagnostics.

Each MCMC chain runs for N = 20,000 iterations, with the first M = 8,000 discarded
as burn-in. The remaining N — M = 12,000 samples are used for posterior summaries and
diagnostics, including trace plots, autocorrelation functions, Geweke’s convergence test [11],
and inefficiency factors [7].

Since the delay parameter by is discrete, its conditional posterior distribution follows a
multinomial form with posterior probabilities given by:

. LY | X, b= 5,0 .
ploe=7|Y,X,0,,) = Zb‘)(ﬁ(’Y!X b i\l’;) TR R
i=1 y Ok = 1, U\py,

This allows the algorithm to estimate optimal lag values for each exogenous variable in a
data-driven manner within the Bayesian inference framework.
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2.7 Model Selection and Diagnostic Checking

Model comparison is conducted using the Deviance Information Criterion (DIC), introduced
by Spiegelhalter et al. [18], which provides a Bayesian generalization of the Akaike Information
Criterion (AIC). It is especially useful for hierarchical models and when posterior distributions
are obtained via Markov Chain Monte Carlo (MCMC) methods.

The deviance is defined as:
D(0) = —2log L(Y | 0) + 2log p(Y), (11)

where L£(Y | 6) is the likelihood of the observed data given the parameters. The DIC is then
computed as:

DIC = D(6) + pp, (12)

where D(0) is the posterior mean of the deviance, and pp = D(0) — D(0) is the effective number
of parameters, with @ being the posterior mean of the parameters. A model with the lowest
DIC value is preferred, indicating a better balance between model fit and complexity.

Model adequacy is further evaluated using standardized Pearson residuals to detect potential
misspecification. Convergence and sampling efficiency of the MCMC chains are assessed through
the Geweke diagnostic and inefficiency factors. Additionally, visual inspection using trace plots
and autocorrelation function (ACF) plots is conducted to assess mixing behavior and confirm
convergence.

For the model identified as best based on the DIC, in-sample prediction is carried out to
assess its ability to replicate the observed data. This allows further validation of the model’s
adequacy and practical relevance in capturing the underlying dynamics of dengue incidence.

We calculate the standardized residual proposed by [13], for diagnostic checking:

Y- E(Yi | Y1, %)
VVar (Ve [ Vo1, %)

e (13)

where F (Y; | V-1, Xi—p) represents the conditional mean and Var (Y; | Vi1, X;_p) represents
the conditional variance of the model. The mean of e; must be zero, and its variance should be
one and not exhibit autocorrelation.

2.8 Data and Meteorological Variables

This study analyzes dengue hemorrhagic fever (DHF) incidence in Tandag City, Surigao del
Sur, and Iligan City, Lanao del Norte — two urban centers in Mindanao, Philippines, that
exhibit contrasting dengue transmission patterns. Weekly DHF case data were collected from
regional health offices, covering multiple years to capture seasonal and interannual variation.
To account for environmental drivers, the models also include weekly cumulative rainfall and
average temperature as exogenous covariates, given their known influence on mosquito breeding
conditions and dengue spread.
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Figure 2: Weekly time series plot of dengue fever cases in Tandag City (2008-2024) and Iligan
City (2010-2024).

The two datasets in Figure 2 were selected due to their contrasting distributional charac-
teristics: Tandag City exhibits zero-inflation in reported dengue cases, while Iligan City shows
evidence of zero-deflation. This contrast allows for a robust evaluation of the proposed model’s
ability to account for varying zero-count behaviors in disease incidence data.

Weekly dengue case counts were obtained from the Department of Health (DOH) in CARAGA
Region and Region 10, Philippines. The Tandag City data spans from January 2008 to Decem-
ber 2024, while the Iligan City data covers January 2010 to December 2024.

Table 1 summarizes the descriptive statistics of the weekly dengue case counts in Tandag
City and Iligan City. A key characteristic of the data in both locations is the presence of
overdispersion, as evidenced by the fact that the sample variance substantially exceeds the
mean in both cases—particularly in Iligan City, where the variance is nearly twenty times the
mean. This property violates the equidispersion assumption of the Poisson model and thus
motivates the use of more flexible count models such as the Negative Binomial and Generalized
Poisson.
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Table 1: Descriptive statistics of weekly dengue cases

City Mean Variance Min @Q; Median Q3 Max Zeros (%)

Tandag City 4.034 41.958 0 0 2 ) 66 30.43

Iligan City 16.800 327.288 0 ) 11 23 148 2.82
(a.1) Tandag City Dengue Cases Distribution (a.2) lligan City Dengue Cases Distribution
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Figure 3: (a) Distribution of dengue cases in Tandag City and Iligan City, and (b) Segmented
analysis highlights mean and variance of dengue cases per segment, emphasizing variability
across different time periods.

Figure 3 complements these summary statistics by visualizing the distributional character-
istics and temporal patterns of the two time series. Subplots (a.1) and (a.2) show the overall
distribution of weekly dengue counts in Tandag and Iligan, respectively, highlighting the differ-
ence in zero counts and spread. The segmented plots (b.1) and (b.2) further illustrate how the
mean and variance fluctuate over different periods, emphasizing local variability and the need
to account for changing patterns in transmission. The high proportion of zeros in Tandag City
(30.43%) is clearly visible, supporting a zero-inflated modeling approach to capture structural
or excess zeros. In contrast, Iligan City has relatively few zero weeks (2.82%), although strong
overdispersion remains a dominant feature. Together, these insights reinforce the importance
of choosing model structures that reflect the contrasting transmission characteristics of the two
locations.

To incorporate meteorological influences on dengue transmission, weekly cumulative rainfall
and average temperature data were obtained from [15]. These climate variables have been widely
recognized as significant environmental drivers of dengue outbreaks, as they directly affect the
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lifecycle of the Aedes mosquito vector and the dynamics of virus transmission. Rainfall creates
breeding habitats for mosquitoes through the accumulation of stagnant water, while temperature
influences mosquito biting rates, development cycles, and viral replication within the vector [12].
As such, both rainfall and temperature have been extensively used as exogenous covariates in
time series models of dengue incidence.

Table 2 presents the descriptive statistics of the weekly rainfall and temperature for the two
study sites—Tandag City and Iligan City. These statistics provide an overview of the central
tendency and range of the meteorological variables used in the analysis. To complement this,
Figure 4 visualizes the temporal trends of these variables, highlighting seasonal patterns and
variability across the two cities. The top panels depict the weekly rainfall and temperature for
Tandag City (2008-2024), while the bottom panels correspond to Iligan City (2010-2024).

Table 2: Descriptive summary of meteorological variables

Location Rainfall (mm) Temperature (°C)
Median Mean Min Max Median Mean Min Max

OpenWeather (Tandag) 49.89 65.20 0 770.02 26.43 26.38 24.12 28.45
OpenWeather (Iligan) 41.30 48.35 0.05 268.63  28.62 28.60 25.54 30.35

The meteorological profiles of Iligan City and Tandag City reveal both similarities and
differences that affect dengue dynamics. While both cities experience seasonal rainfall and warm
temperatures, Tandag shows higher rainfall variability and extreme weather events, whereas
Iligan maintains consistently higher average temperatures. This variation supports the model’s
flexibility to account for diverse climatic drivers.

Tandag City: Weekly Rainfall Tandag City: Weekly Temperature
800

Rainfall (mm)
Temperature (°C)

2010 2015 2020 2025 2010 2015 2020 2025

lligan City: Weekly Rainfall lligan City: Weekly Temperature

Rainfall (mm)
Temperature (°C)

2010 2015 2020 2025 2010 2015 2020 2025
Year Year

Figure 4: Weekly rainfall and temperature trends in Tandag City and Iligan City. The top row
shows the rainfall and temperature in Tandag (2008-2024), while the bottom row displays the
corresponding variables in Iligan (2010-2024).
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As shown in both the Table 2 and the Figure 4, rainfall in Tandag exhibits higher variability
and extreme values compared to Iligan. In contrast, temperature in Iligan remains consistently
higher across the observed period. Given these disparities in scale and distribution, all covariates
were standardized prior to modeling to ensure comparability and numerical stability during
estimation.

The following transformation was used:

X@t — min(XLt)
s

Tip = t=1,...,n; 1=12,

where S;S;i) denotes the standard deviation of the original covariate X;. This scaled version
z;, ensures that rainfall and temperature are on a similar scale, aiding in efficient parameter

estimation within the Bayesian framework.

3 Checking Assumptions

Before fitting the models, it is important to check if the data meet the assumptions. Checking
these assumptions helps make sure the model accurately represents how the counts and zeros
are produced, that the autoregressive terms properly capture patterns over time, and that the
process is stable enough for reliable analysis and forecasting.

3.1 Two-stage data-generation

In the weekly dengue data from Tandag City and Iligan City, the zeros in the data appear to arise
from both structural and sampling mechanisms. Structural zeros likely occur during weeks when
environmental conditions, such as low rainfall or cooler temperatures, do not help in mosquito
breeding and virus transmission or when there is public health interventions (e.g., fogging,
community cleanup drives) effectively suppress outbreaks. On the other hand, sampling zeros
may result from inherent randomness in case occurrence, particularly during transition weeks
between low- and high-transmission seasons, or from underreporting due to delayed diagnostics
or limited health facility access. Hence, the two-stage data-generation assumption is met.

3.2 Autoregressive dependence

The assumption of autoregressive dependence is satisfied in the weekly dengue case data for both
Tandag City and Iligan City. As shown in the ACF plots in Figure 5, the lagged autocorrelation
coefficients slowly decay and remain significantly outside the confidence limits 95%. This suggest
temporal dependence in the data. This is further supported by the results of the Ljung-Box
test in Table 3 where both cities produce extremely high chi-square statistics and p-values less
than 2.2e-16, confirming statistically significant autocorrelation between multiple lags. These
findings justify the use of an INGARCHX framework.

Table 3: Ljung-Box test for detecting autocorrelation in the weekly dengue time series data.

Location X2 df p-value

Tandag City 3033.1 10 <2.2e-16
Iligan City 37704 30 <2.2e-16
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ACF: Tandag City Weekly Dengue Cases ACF: lligan City Weekly Dengue Cases
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Figure 5: ACF functions for Tandag City and Iligan City dengue time series. The blue dashed
lines mark approximate 95% significance bounds; bars outside these bounds indicate statistically
significant lagged dependence.

3.3 Stationarity and ergodicity

The stationarity assumption is supported by the results of the Augmented Dickey—Fuller (ADF)
test applied to the weekly dengue case series in both Tandag City and Iligan City presented
in Table 4. The ADF test statistics are —5.3306 and —5.705, respectively, with both have p-
values less than 0.01. These results provide strong evidence against the presence of a unit root,
indicating that the time series are stationary. Stationarity is a key requirement for the validity
of the INGARCHX model. This ensures that the temporal dynamics of the conditional mean
process \; are stable over time and do not exhibit uncontrolled drift.

Table 4: Stationary test using Augmented Dickey-Fuller test for the weekly dengue time series
data.

Location Statistic Lag Order p-value
Tandag City -5.3306 9 <0.01
Nligan City -5.705 9 <0.01

3.4 Exogenous variables and maximum lag

In this study, rainfall and average temperature are incorporated as exogenous variables to
account for environmental effects of dengue transmission. These meteorological factors are
known to influence mosquito breeding and virus dynamics. To capture these delayed effects
appropriately, a maximum lag of three weeks is imposed on both covariates. This choice is
guided by the paper of [16], which identified a three-week lag as the optimal period reflecting
the biological and ecological response time between weather conditions and reported dengue
cases.

4 Results and Discussion

This section presents the empirical results from the Bayesian estimation of five count time
series models applied to dengue incidence data in Tandag and Iligan cities. The models in-
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clude the Generalized Poisson INGARCHX (GP-INGARCHX), Log-linear GP-INGARCHX
(Log GP-INGARCHX), Negative Binomial INGARCHX (NB-INGARCHX), Zero-Inflated GP-
INGARCHX (ZIGP-INGARCHX), and Zero-Inflated Negative Binomial INGARCHX (ZINB-
INGARCHX). The primary evaluation criterion for model performance is the Deviance Infor-
mation Criterion (DIC), where a lower DIC value indicates a better trade-off between model
complexity and goodness-of-fit. Additionally, convergence diagnostics, parameter estimates,
and model residuals are analyzed to assess model adequacy.

Table 5: Parameter Estimates and DIC by Model and City

City Model @ o 8 p w1 wo r P by by DIC
GP-INGARCHX 0.0125 0.2953  0.4950 - 0.0997 0.0713 - 0.3447 1 1 3421.068
Log GP-INGARCHX 0.0025 0.6308 0.1053 - 0.0168  0.0101 - 0.3702 3 1 3759.726

Tandag NB-INGARCHX 0.0295 0.0226 0.2079 - 3.2843  7.5393  1.0013 - 1 3 5745.523
ZIGP-INGARCHX 0.0339 0.4453 0.5054 0.0060 0.0759  0.0597 - 0.3436 1 1 3418.300
ZINB-INGARCHX 0.0080 0.1363 0.5419 0.0078 0.0266 0.0300  2.9985 - 1 1 3406.990
GP-INGARCHX 0.0422 0.3585 0.3282 - 0.1850  0.1281 - 0.4114 3 1 4784.618
Log GP-INGARCHX 0.0053 0.7214 0.0970 - 0.0204  0.0091 - 0.4139 3 1 4903.175

Tligan NB-INGARCHX 0.0959 0.0247 0.2311 - 4.5307 11.1470 1.0012 - 3 3 6759.287
ZIGP-INGARCHX 0.1060 0.6046 0.3375 0.0026 0.1226 0.1184 - 0.4098 3 1 4774.750
ZINB-INGARCHX 0.0128 0.0800 0.3867 0.0096 0.0154 0.0244 7.0924 - 1 1 4787.283

Table 5 shows the parameter estimates and DIC values for different models applied to the
dengue incidence data in both cities. For Tandag, the ZINB-INGARCHX model achieved
the lowest DIC (3406.99), suggesting it best captures the zero-inflation and overdispersion in the
data. In Iligan, the ZIGP-INGARCHX model yielded the best fit with a DIC of 4774.750.
Models that do not account for zero-inflation, such as GP and NB variants, yielded substan-
tially higher DICs, highlighting the importance of zero-inflation mechanisms and distributional
flexibility in modeling dengue time series data.

Table 6 presents the posterior estimates and convergence diagnostics for the Zero-Inflated
INGARCHX(1,1) models fitted to the Tandag and Iligan dengue data. For Tandag’s ZINB-
INGARCHX model, the intercept (oy = 0.0080) represents the baseline expected number of
dengue cases when there is no past information and no climate effect. This very low value
means that when conditions are neutral, the expected weekly count is near zero, which is
realistic for Tandag. The parameter (a3 = 0.1363) implies that for every additional dengue case
reported in the previous week, the expected number of cases this week increases by about 0.136.
This shows that dengue cases in Tandag tend to cluster for short periods rather than appearing
in isolation. Meanwhile, the past mean effect (5 = 0.5419) means that what was expected last
week still has a strong effect on what is expected this week. This indicates that dengue case
numbers in Tandag generally continue over time rather than changing suddenly from week to
week.

The dispersion parameter (r = 2.9985) confirms that the negative binomial distribution
captures extra variation in the counts beyond what a simple Poisson process would predict. The
zero-inflation parameter (p = 0.0078) is very low, meaning there is almost no extra probability
of having additional zero-case weeks once the count model is in place. The rainfall effect
(w1 = 0.0266) means that for every unit increase in rainfall, the expected number of cases rises
by about 0.027, while the temperature effect (wy = 0.0300) means that each unit increase in
temperature raises the expected number by about 0.030. These effects confirm that rainfall and
temperature help create conditions for mosquitoes to breed and transmit dengue. The identified
lags (b1 = 1, by = 1) show that both rainfall and temperature influence dengue cases with about
a one-week delay, matching known mosquito life cycles.

In Tligan’s ZIGP-INGARCHX model, the intercept (ag = 0.1060) shows a higher baseline
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Table 6: MCMC Results and Diagnostics for the ZINB-INGARCHX (Tandag) and ZIGP-
INGARCHX (Iligan) Models

Model Param. Mean Med. Std. Pas Po7.5 Z IF

Tandag Data (ZINB-INGARCHX)

ap 0.0080 0.0076 0.0048 0.0006 0.0183 -0.8109 4.64
o 0.1363 0.1363 0.0098 0.1182 0.1561 0.9484 4.43
B 0.5419 0.5424 0.0284 0.4858 0.5969 -1.5897 3.26
r 2.9985 2.9977 0.0739 2.8544 3.1458 0.2266 3.62
0.0078 0.0061 0.0067 0.0002 0.0253 0.7815 4.90
w1 0.0266 0.0265 0.0079 0.0119 0.0423 1.8384 2.92
wa 0.0300 0.0301 0.0041 0.0221 0.0382 0.7635 4.21

b1 1

ba 1

Iligan Data (ZIGP-INGARCHX)

o 0.1060 0.0968 0.0689 0.0059 0.2629 0.7837 4.32
o 0.6046 0.6043 0.0238 0.5577 0.6518 -0.3492 2.69
B 0.3375 0.3381 0.0257 0.2865 0.3880 0.9559 2.57
Y 0.4098 0.4098 0.0166 0.3771 0.4431 -1.4240 4.03
p 0.0026 0.0019 0.0023 0.0001 0.0085 -1.1768 4.82
w1 0.1226  0.1210 0.0416 0.0464 0.2095 -1.5496 2.87
wo 0.1184 0.1187 0.0198 0.0799 0.1570 0.5625 3.76
by 3

bo 1

risk than Tandag, meaning that even with no past cases or climate triggers, Iligan has a greater
expected dengue count. The parameter (o; = 0.6046) means that for every additional dengue
case last week, the expected number of cases this week increases by about 0.605. This implies
that dengue outbreaks in Iligan are more strongly clustered and can spread more quickly. The
past mean effect (5 = 0.3375) means that last week’s expected cases still have a notable effect
on this week’s expected value, which helps smooth sudden spikes or drops.

The dispersion parameter (¢ = 0.4098) captures the extra variability typical of dengue
counts under the generalized Poisson. The zero-inflation parameter (p = 0.0026) is low, showing
that few extra zeros remain once the count model is included. For Iligan, rainfall (w; = 0.1226)
and temperature (we = 0.1184) both have larger positive effects, meaning that higher rainfall
and temperatures strongly increase expected dengue cases. The lag for rainfall (b; = 3) means
its impact appears after about three weeks, while the temperature effect (by = 1) appears after
one week, both consistent with mosquito breeding and virus incubation.

The inefficiency factors (IFs) for both cities are well below 5, showing that the adaptive
MCMC sampling mixed well and produced reliable estimates. Notably, the IFs for rainfall and
temperature are low for both Tandag (w1 = 2.92, wy = 4.21) and Iligan (w1 = 2.87, wy = 3.76),
confirming stable and efficient posterior estimation.

These results show that past cases, expected trends, and climate conditions combine to
predict weekly dengue counts, with realistic time lags and overdispersion handled by the chosen
model. This aligns with known transmission patterns and shows that dengue case patterns tend
to continue over time rather than change suddenly.

Finally, the identified lags—b; = 1 and b = 1 for Tandag, and by = 3, by = 1 for Iligan—are
consistent with known biological mechanisms, where rainfall creates mosquito breeding grounds
within a week, and temperature influences mosquito-virus dynamics with slightly delayed effects.
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Together, these results highlight both the statistical adequacy and biological plausibility of the
proposed models.

The performance of the Bayesian Zero-Inflated Negative Binomial INGARCHX (ZINB-
INGARCHX) model is evaluated to assess its adequacy in modeling weekly dengue incidence in
Tandag City, incorporating rainfall and temperature as exogenous predictors. As illustrated in
Figure 6, the model closely captures the temporal dynamics of dengue outbreaks, with predicted
values aligning well with observed case counts, including both outbreak peaks and periods of
low transmission.
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Figure 6: Model diagnostics for the ZINB-INGARCHX model applied to dengue incidence in
Tandag City. Upper panel: in-sample prediction plot; Lower panel: standardized residuals and
autocorrelation function (ACF) of the residuals.

The residual diagnostics shown in the lower panel of Figure 6 further validate the model’s
adequacy. The standardized residuals fluctuate randomly around zero, and the ACF bars fall
within the 95% confidence bounds, indicating no significant autocorrelation. These results
confirm that the ZINB-INGARCHX model effectively captures temporal dependence and ran-
domness, supporting its suitability for surveillance and predictive applications.

A similar diagnostic evaluation is conducted for Iligan City using the Zero-Inflated Gen-
eralized Poisson INGARCHX (ZIGP-INGARCHX) model. Figure 7 summarizes its predictive
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accuracy and residual behavior.
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Figure 7: Model diagnostics for the ZIGP-INGARCHX model applied to dengue incidence in
Iligan City. Upper panel: in-sample prediction plot; Lower panel: standardized residuals and
autocorrelation function (ACF) of residuals.

The upper panel in Figure 7 indicates that the model successfully captures the observed
weekly dengue cases, reflecting its responsiveness to underlying epidemic trends and environ-
mental factors. Meanwhile, the residuals in the lower panel exhibit no discernible pattern
and show no significant autocorrelation, as the ACF values remain within the 95% confidence
bounds. These diagnostics affirm the reliability of the ZIGP-INGARCHX model in capturing
the overdispersion and zero-inflation characteristics of the Iligan dataset, while accounting for
delayed climatic influences.

Conclusion

This study confirms the effectiveness of zero-inflated Bayesian count time series models, partic-
ularly the INGARCHX framework, for capturing dengue dynamics in Iligan and Tandag cities.
By integrating lagged rainfall and temperature, the models account for key environmental in-
fluences. Building on the frameworks of [16, 6], this approach addresses overdispersion, serial
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dependence, and zero-inflation in local count data. Results show that the ZINB-INGARCHX
model best fits Tandag’s highly zero-inflated data, while the ZIGP-INGARCHX model suits
Iligan’s overdispersed but low-zero pattern. The adaptive MCMC estimation achieved good
convergence and reliable posterior inference.

Beyond methodology, this study supports global sustainability goals [19], including SDG
#3 (health), SDG #11 (resilient communities), and SDG #13 (climate action) by modeling
how climatic factors shape disease risk. The results emphasize the value of flexible count models
and Bayesian approaches for location-specific dengue forecasting.

However, this work has limitations. Reported case and weather data may include measure-
ment errors or underreporting. The models were validated only in-sample, which is appropriate
for this initial methodological comparison focused on identifying the best-fitting structures and
demonstrating their capacity to replicate observed local patterns. Nevertheless, other factors
such as human movement or vector control were not included. To strengthen future work,
real-time out-of-sample forecasting, integration of mobility and socio-economic data, and pilot
testing as an early warning system with local health agencies are recommended.

5 Appendix
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Figure 8: Trace and autocorrelation (ACF) plots for the posterior samples of parameter esti-
mates in the ZINB-INGARCHX model for Tandag City, incorporating two exogenous variables:
rainfall and temperature. These plots are used to assess convergence and mixing behavior of
the MCMC algorithm.
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Figure 9: Trace and autocorrelation (ACF) plots for the posterior samples of parameter esti-
mates in the ZIGP-INGARCHX model for Iligan City, incorporating two exogenous variables:
rainfall and temperature. These plots are used to assess convergence and mixing behavior of
the MCMC algorithm.
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