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5 Abstract

6 In this paper, we introduced and characterized a new class of open set called §-open
7 set. Notably, the collection of all z-open sets forms a topology. We then examined the
8 relationship between 6z-open sets and other well-known concepts, such as classical open
9 sets, f-open sets, and [S-open sets. Additionally, we defined and investigated the concepts
10 of fs-interior and fg-closure of a set, as well as #g-open functions, fg-closed functions,
11 03-continuous functions, and #z-connectedness. Finally, we present characterizations of 63-
12 continuous functions from an arbitrary topological space into the product space, along with
13 some versions of separation axioms.

uw 1 Introduction and Preliminaries

15 Over time, numerous mathematicians have been drawn to the idea of refining or expanding
16 classical topological concepts by replacing them with alternatives that possess either weaker or
17 stronger properties. This approach can be traced back to Levine [16] in 1963 when he introduced
18 the concepts of semi-open and semi-closed sets, as well as semi-continuity for functions. This
10 pioneering idea led to the development of new results, many of which serve as generalizations
20 of established theories.

21 In 1968, Velicko [21] introduced the concepts of #-closure and #-interior for subsets of a
2 topological space, and subsequently defined the notion of 6-continuity for functions in topological
23 spaces. Several authors then have obtained results related to f-open sets, see [1, 4, 5, 6, 7, 8].
2 Let (X,7) be a topological space and A C X. The #-closure and f-interior of A are,
25  respectively, denoted and defined by

2 Clp(A) ={x € X : Cl(U) N A # @ for every open set U containing '}
27 and
28 Intg(A) = {x € X : Cl(U) C A for some open set U containing =},
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where CIl(U) is the closure of U in X. A subset A of X is 6-closed if Cly(A) = A and #-open if
Intg(A) = A. Equivalently, A is f-open if and only if X \ A is f-closed. It is known that the
collection Ty of all f-open sets forms a topology on X, which is strictly coarser that 7.

In 1983, El-Monsef et al. [10] introduced the concept of S-open sets and expanded the
theory by defining and characterizing S-continuous functions and [-open mappings. Several
papers have studied the concepts of S-open sets and its corresponding topological concepts,
such as [3, 11, 18].

A subset A of a topological space (X, 7) is said to be f-open if A C Cl(Int(CI(A))). The
complement of S-open is called S-closed set. For a given subset A of a topological space (X, T),
BCI(A) = AU Int(Cl(Int(A))) [11]. Moreover, the union of all S-open sets in X that are
contained in A is called S-interior of A and is denoted by SInt(A) [11]. Equivalently, A is
B-open (resp., f-closed) if and only if A = BInt(A) (resp., A = BCI(A)). It is worth noting
that the collection of all S-open sets is not necessarily a topology on X.

A topological space (X, T) is said to be connected (resp., #-connected, S-connected [19]) if
X cannot be written as the union of two nonempty disjoint open (resp., 8-open, 3-open) sets.
Otherwise, (X, 7) is disconnected (resp., f-disconnected, S-disconnected). Furthermore, it has
been shown in [13] that S-connected = connected.

It is known that Inty(A) is the largest -open set contained in A and Cly(A) is the smallest
f-closed set containing A [14]. Moreover, x € Intyg(A) if and only if there exists an open set U
containing x such that Cl(U) C A and = € Clg(A) (resp., x € SCI(A)) if and only if for every
open set (resp., -open set) U containing =, CI(U) N A # @ [21] (resp., UN A # @ [11)).

Let A be an indexing set and {Y, : « € A} be a family of topological spaces. For each o € A,
let T, be the topology on Y,,. The Tychonoff topology on {Y,, : a € A} is the topology generated
by a subbase consisting of all sets (Uy,) = p,'(Us), where p, : [[{Ya : @ € A} — Y, the ath
coordinate projection map is defined by po((Y3)) = Yo, Ua ranges over all members of Ty, and
« ranges over all elements of A. Corresponding to U, C Y, denote p,'(U,) by (Uy). Similarly,
for finitely many indices ay, g, , o, and sets Uy, C Yo,,Uay C Yoy, - ,Uqs, C Y,,, the
subset

<Ua1> N <Ua2> n---N <Uan> :pgl(qu) ﬂp;l(UOQ) ARES ﬂp;l(Uan)

is denoted by (Ua,,Uay, -+ ,Ua,). We note that for each open set U, subset of Yy, (Uy) =
Pt (Us) = Uy ¥ [15.24 Y5 Hence, a basis for the Tychonoff topology consists of sets of the form
(Bay, Basy -+, Bay), where By, is open in Y, for every i € K = {1,2,--- ,k}.

Now, the projection map p, : [[{Yo : @ € A} — Y, is defined by p.((ys)) = ya for each
«a € A. It is known that every projection map is a continuous open surjection. Also, it is well
known that a function f from an arbitrary space X into the Cartesian product Y of the family
of spaces {Y,, : a € A} with the Tychonoff topology is continuous if and only if each coordinate
function p, o f is continuous, where p,, is the a-th coordinate projection map.

In this paper, we introduced the concept of 6g-open sets and explore their relationships
with other well-established concepts in topology, including classical open sets, #-open sets, and
B-open sets. Some topological concepts related to 63-open sets are also defined and studied.

2 03-Open and 03-Closed Functions

In this section, we define and characterize the concepts of fg-open and 6-closed functions.
Throughout this paper, if no confusion arise, let X and Y be topological spaces.

Definition 2.1. Let X be a topological space. A subset A of X is said to be 6g-open if for all
x € A, there exists an open set U containing x such that SCI(U) C A. A subset F' of X is said
to be O3-closed if its complement X \ F is 6g-open.
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Theorem 2.2. Let X be a topological space and A C X. Then the following holds:
(i) If A is O-open, then A is Og-open.
(i) If A is 03-open, then A is open.

Proof. (i) Let A be 6-open and let x € A. Then there exists an open set U containing x such
that CI(U) C A. Moreover, BCI(U) C CI(U) C A, see |2, Diagram I]. Thus, A is §g-open.

(ii) Suppose that A is #g-open and let © € A. By Definition 2.1, there exists an open set U
containing x such that SCI(U) C A. Observe that U C SCI(U) C A. Hence, A is open. O

Corollary 2.3. Let X be a topological space and A C X. Then the following holds:
(i) If A is O-closed, then A is 03-closed.
(ii) If A is 6g-closed, then A is closed.

Proof. (i) Suppose that A is #-closed. Then X \ A is 6-open so that by Theorem 2.2 (i), X \ A
is fg-open. Thus, X \ (X \ A) = A is f-closed.

(ii) Assume that A is #g-closed. Then X \ A is #g-open and by Theorem 2.2 (ii), X \ A is
open. Hence, X \ (X \ A) = A is closed. O

In view of [2, Diagram I], Theorem 2.2, and Corollary 2.3, the following remark holds.

Remark 2.4. The following diagram holds for any subset of a topological space:

f-open === 0g-open === open == (-open.

We note that the above diagram is also true for their respective closed sets. The reverse
implications of Remark 2.4 are not true as shown in the next examples.

Example 2.5. Let X be a topological space given by X = {a,b,c,d} with topology T =
{2, X, {a},{b},{c},{a,b},{a,c}, {b,c},{a,b,c}}. Thesets {a},{b},{c}, {a,b},{a,c}, and {b,c}

are ¢g-open but not f-open.

Example 2.6. Consider again the topological space X in Example 2.5. Observe that {a,b,c}
is open but not 6z-open.

Example 2.7. Consider the space X given in Example 2.5. Let A = {b, ¢,d}. Then A is S-open
not open.

Example 2.8. Consider the real line R with the standard topology Tgr. It is known that every
open interval (a,b) where a,b € R and a < b is open in R. Now, we will show that every open
interval is #-open.

Indeed, (a,b) is 6-open since for every x € (a,b), there exists ¢ > 0 such that

re€(r—c,x+¢e) CCl((r—¢e,x+¢)=[r—¢e,x+¢] C(a,b).

Since every #-open is g-open by Theorem 2.2 (i), (a,b) is also z-open. Therefore, Tr = Ty =
Jp, in R with the usual topology.

The following result is likely known, but despite a thorough search of the literature, we were
unable to find a suitable reference. For the sake of completeness, we provide the statement and
proof below.
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Lemma 2.9. Let X be a topological space and A, B C X. Then the following statements hold:
(i) If A C B, then BCI(A) C BCI(B).
(ii) BCI(AN B) C BCI(A) N BCL(B).

Proof. (i) Let A C B and = € BCI(A). Then for every -open set U containing x, U N A # @.
Since A C B, UN B # @. Thus, x € BCI(B). Accordingly, CI(A) C BCI(B).

(ii) Because AN B C A and AN B C B, we have SCI(AN B) C BCI(A) and SCI(ANB) C
BCI(B) by (i). It follows that SCI(AN B) C SCI(A) N BCI(B). O

Remark 2.10. Let X be a topological space. Then
(i) The arbitrary union of fg-open sets is 3-open.

(ii) The finite intersection of #z-open sets is 6z-open.

Proof. (i) Let {O : @ € A} be a collection of fg-open subsets of X and let z € |J O,. Then
acA
x € Oq, for some ag € A. Since O, is 0g-open, there exists an open set Iy, containing = such

that SCI(Fu,) € Oy € |J Oq. Thus, |J O, is O-open.
a€EA acA
(ii) Let Gy and G2 be fg-open sets and x € G1 N G2. Then there exist open sets Uy and U

with z € U; NUs such that SCI(U;) C Gy and SCI(Usz) C Ga. Now, U NUs is an open set that
contains x so that
BCZ(Ul N Ug) C BCZ(Ul) N ﬂCl(Ug) CG1NGy

by Lemma 2.9. Hence, G1 N Gy is 0g-open and the result follows. O

Hence, in view of Remark 2.10, the family of all 3-open subsets of a topological space X
forms a topology on X, denoted by Ty,.

Corollary 2.11. Let X be a topological space. Then
(i) The arbitrary intersection of 0g-closed sets is 6g-closed.

i e finite union o -closed sets is 0g-closed.
ii) The fi f 03-closed 03-closed

Proof. (i) Let {F, : o € A} be a family of fg-closed sets in X. Then X \ F, is fg-open for

all a € A. By Remark 2.10 (i), X\ (| Fo = U (X \ F,) is 6g-open. Therefore, () F, is
acA acA acA
6g-closed.

(ii) Let Fy and F, be fg-closed sets in X. Then X \ F; and X \ F» are fg-open. Since
X\ (F1UF) = (X \ Fi)Nn(X\ Fy) is §g-open by Remark 2.10 (ii), Fy U F, is #g-closed.
Therefore, the conclusion hold. O

Theorem 2.12. Let (X,T) be a topological space and A C X. Assume that A is open. If A is
B-closed, then A is 8g-open. In this case, T = Ty,.

Proof. Let A be both open and -closed. Then for all z € A, we have z € A C CI(A) = A C A.
Hence, A is 63-open and the claim holds. O

Definition 2.13. Let X be a topological space and A C X.

(1) The @s-interior of A, denoted by Intg,(A), is defined by Intg,(A) = (J{U : U is a g-open
set and U C A}. By Remark 2.10, Intg,(A) is the largest 0g-open set contained in A.
Moreover, z € Intg,(A) if and only if there exists a 6g-open sets U containing = such that
UCA.
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(ii) The @g-closure of A denoted by Clg,(A), is defined by Clp,(A) = (WF : F is a Op-
closed set and A C F'}. In view of Remark 2.10, Clg,(A) is the smallest f3-closed set

containing A. Moreover, z € Cly,(A) if and only if for every z-open set U containing z,
UNA+#a.

The statements in the succeeding remark can be obtained using arguments similar to those
in classical topology and are therefore omitted.

Remark 2.14. Let X be a topological space and A, B C X. Then the following statements
hold:

(1 Int,gﬁ( ) C A.
(ii) A C B implies that Intg,(A) C Inte,(B).
(iii) A is fg-open if and only if A = Intg,(A).
(iv) Inte,(A) = Intg,(Inte,(A)).
(v) Intg,(AN B) = Intg,(A) N Inty,(B).
(vi) AC Clg,(A).
(vii) A C B implies that Clg,(A) C Clg,(B).
(viii) A is Og-closed if and only if A = Cly,(A).

)

)

)

)

)

)

)

)
(ix) Clgy(A) = Cly,(Cly,(A)).
(x) Clg,(AU B) = Cly,(A) UCly,(B).
(xi) Intg, (X \ A) = X\ Cly,(A).
(xii) Clg, (X \ A) = X \ Intg,(A).
(xiii) x € Intg,(A) if and only if there exists an open set U containing x such that SCI(U) C A.
(xiv) z € Clg,(A) if and only if for every open set U containing z, SCI(U) N A # @.
(xv) Intg(A) C Intg,(A) C Int(A) C A.

)

(xvi) A C CI(A) C Clg,(A) C Cly(A).

We shall give some characterizations of g-open and 63-closed functions.

Definition 2.15. Let X and Y be topological spaces. A function f : X — Y is said to be
s-open on X if f(G) is Og-open in Y for every open set G in X.

Example 2.16. Consider X = {a,b, c} with the topology Tx = {&, X, {a,c},{b}} and ¥ =
{1,2,3} with the topology Ty = {@,Y,{1},{2},{1,2},{1,3}}. Define f : X — Y by f =
{(a,1),(b,2),(c,3)}. Note that the open sets in X are @, X, {a,c}, and {b}. Also, f(@) =
@, f(X) =Y, f({a,c}) = {1,3}, and f({b}) = {2}. Clearly, @ and Y are #-open in Y.
Moreover, since {2} is open in Y and SCI({2}) = {2} C {2}, {2} is §g-open in Y. Similarly,
BCL({1,3}) = {1,3} C {1,3} so that {1,3} is Oz-open in Y. This implies that @,Y, {2}, and
{1,3} are all #3-open in Y. Thus, f is #3-open function on X.
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Definition 2.17. Let X and Y be topological spaces. A function f : X — Y is said to be
fs-closed on X if f(F') is g-closed in Y for every closed set F' in X.

Example 2.18. Consider X = {a,b, c} with the topology Tx = {&, X, {a,b},{c}} and ¥ =
{1,2,3} with the topology Ty = {&,Y,{1},{2},{1,2},{1,3}}. Define f : X — Y by f =
{(a,3),(b,1),(c,2)}. Note that the closed sets in X are @, X, {c}, and {a,b}. Also, f(@) =
@, f(X) =Y, f({c}) = {2}, and f({a,b}) = {1,3}. Clearly, @ and Y are #s-closed in Y.
Furthermore, since {2} is open in Y and BCI({2}) = {2} C {2}, {2} is 03-open in Y. Thus,
Y \ {2} = {1,3} is f-closed in Y. Similarly, 5CI({1,3}) = {1,3} C {1,3} so that {1,3} is
fs-open in Y which implies that Y\ {1,3} = {2} is fs-closed in Y. Therefore, @,Y, {1, 3}, and
{2} are all fg-closed in Y so that f is #-closed function on X.

In view of Remark 2.4, and Definitions 2.15 and 2.17, we have the following remark.

Remark 2.19. The following diagram holds for a function f: X — Y:

#-open function === fg-open function

l

[B-open function <——= open function

Note that the diagram is also true for their respective closed functions. Moreover, the reverse
implications of Remark 2.19 are not necessarily true as shown in the subsequent examples.

Example 2.20. Let X = {1,2,3,4} with topology Tx = {9, X,{1,2},{3,4}} and Y =
{a,b,c,d} with topology Ty = {2,Y,{a}, {b},{c},{a,b},{a,c},{b,c}, {a,b,c}}. Define a func-
tion f: X =Y by f={(1,a),(2,¢),(3,0),(4,d)}. Then f is §g-open on X but not #-open
since f({1,2}) = {a,c} and f({3,4}) = {b,d} are not f-open in Y.

Example 2.21. Consider X = {0,1,2} with topology Tx = {&, X,{0},{1},{0,1}} and ¥ =
{i,0,u} with topology Ty = {@,Y, {i}, {0}, {i,0}}. Define f : X — Y by f = {(0,14), (1,0), (2,u)}.
Then f is open on X but not #z-open since f({0,1}) = {4, 0} is not €3-open on Y.

Example 2.22. Consider X = {1,2,3,4} and Y = {a,b,c,d} with respective topologies
Tx = {9, X,{1,2},{3,4}} and Ty = {9,Y,{a}, {b},{c},{a,b},{a,c},{b,c},{a,b,c}}. Define
a function f = {(1,¢),(2,a),(3,b),(4,d)}. Then f is B-open on X but not open on X since
f({3,4}) = {b,d} is not open on Y.

Theorem 2.23. Let X and Y be topological spaces and f : X — Y be a bijective function.
Then f is 0g-open if and only if f is 0g-closed.

Proof. Suppose that f is 6g-open on X and let F' be closed on X. Then X \ F is open in X
and f(X \ F) is fg-open in Y. Since f is bijective, f(X \ F) =Y \ f(F) is Og-open in Y, that
is f(F) is g-closed in Y.

Conversely, assume that f is §g-closed on X and let G be open on X. Then X \ G is closed
on X and f(X \ G) is fg-closed in Y. Since f is bijective, f(X \ G) =Y \ f(G) is Os-closed in
Y, that is, f(G) is §g-open in Y. O

Theorem 2.24. Let X and Y be topological spaces and f : X — Y be a function. Then the
following statements are equivalent

(i) f is 03-open on X;
(ii) f(Int(A)) C Intg,(f(A)) for each A C X; and
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(iii) f(B) is Oz-open for every basic open set B in X.

(iv) For each x € X and for every open set O in X containing x, there exists an open set W
in'Y containing f(x) such that BCI(W) C f(O).

Proof. (i) = (ii) Suppose that f is fg-open on X. Then f(G) is fg-open for all open set
G C X. Let A C X. Observe that Int(A) C A so that f(Int(A)) C f(A). Since Int(A)
is open, f(Int(A)) is 0s-open and is contained in f(A). Note that Inty,(f(A)) is the largest
fs-open set contained in f(A) by Definition 2.13 (i). Thus, f(Int(A)) C Intg,(f(A)).

(ii) = (iii) Assume that (ii) holds. Let B be a basic open set in X. Then B is an open set
in X and B = Int(B). By assumption,

f(B) = f(Int(B)) C Intg,(f(B)) C f(B).

Hence, f(B) = Intg,(f(B)). Therefore, f(B) is #g-open by Remark 2.14 (iii).

(iii) = (iv) Suppose that (iii) holds. Let x € X and let O be an open set in X containing
x. Then there exists a basic open set B containing x such that x € B C O. This implies that
f(z) € f(B) C f(O). Since f(B) is #g-open, there exists an open set W in Y containing f(x)
such that sCI(W) C f(B) C f(0).

(iv) = (i) Assume that (iv) holds. Let O be open in X and y € f(O). Then there exists
x € O such that f(z) = y. By assumption, there exists an open set W in Y containing f(z) =y
such that SCI(W) C f(O). Hence, f(O) is §g-open. O

Theorem 2.25. Let X and Y be topological spaces and f : X — Y be a function. Then the
following statements are equivalent:

(i) f is O3-closed in X.
(i) Cl, (f(A)) € F(CI(A)) for every A C X.

Proof. (i) = (ii) Suppose that f is f3-closed in X. Let A C X. Observe that A C CI(A) so
that f(A) C f(Cl(A)). Since CI(A) is closed, f(CI(A)) is Og-closed containing f(A). Moreover,
since Clg, (f(A)) is the smallest 63-closed set containing f(A), we have Clg, (f(A)) C f(CI(A)).

(ii) = (i) Suppose that (ii) holds. Let F be closed in X. Then F' = CI(F'). By assumption,

f(F) € Clg, (f(F)) € f(CUEF)) = f(F),
that is, f(F) = Clp, (f(F)). Thus, f(F) is 0g-closed. O

Theorem 2.26. Let X, Y, and Z be topological spaces. If f : X — Y is open on X and
g:Y — Z is tg-open on Y, then the composition go f: X — Z is Og-open on X.

Proof. Let z € X and let U be open in X with z € U. Since f is open on X, f(U) is open on
Y. This means that there exists an open set V3 in Y containing f(z) such that Vy C f(U).
Since g is fg-open on Y, there exists an open set V7 in Z containing g(f(z)) = (g o f)(x) such
that 8CI(Vz) C g(Vy), by Theorem 2.24 (iv). Hence,

BCU(Vz) € g(Vy) € g(f(U)) = (g0 f)(U).
Therefore, by Theorem 2.24 (iv), g o f is #3-open on X. O
Theorem 2.27. Let X and Y be topological spaces and T 4 be the subspace topology on A C X.

If f: X =Y is 6g-open on X and A is open on X, then fla: A—Y is g-open on A.

MSU-ILIGAN INSTITUTE OF TECHNOLOGY
http://doi.org/10.62071/tmjm.v7i1.793



https://msuiit.edu.ph
http://doi.org/10.62071/tmjm.v7i1.793
https://msuiit.edu.ph

251

252

253

254

255

256

257

258

259

260

261

262

264

265

266

267

268

269

271

272

273

274

275

277

278

279

L. A. Anora and M. Labendia

Proof. Let © € A and G be open in A containing x. Then G = AN U, where U is open in X.
Since A is open in X, G is also open in X. By assumption, f(G) is f3-open in Y containing
f(z), that is, there exists an open set V in Y containing f(x) = f|a(z) such that

BCUV) C f(G) = fla(G).
By Theorem 2.24 (iv), f|la: A =Y is fg-open on A. O

Theorem 2.28. Let (X,Tx) and (Y, Ty) be topological spaces and let Tp and T¢ be two respec-
tive subspace topologies on B,C C X. If X = BUC and f: (X,Tx) — (Y,Ty) is a function
such that f|p : (B,TB) = (Y,Ty) and f|lc : (C,Tc) = (Y,Ty) are O3-open, then f: X =Y is
g-open on X.

Proof. Let x € X and U € Tx containing x. Since X = B U (), it follows that x € B or z € C.
If € B, then x € BNU € Tp. By assumption, there exists an open set W in Y containing
flB(x) = f(z) such that

BCIW) C fls(BNU) C f(U).

Hence, f : X — Y is #3-open by Theorem 2.24 (iv).
If x € C,then CNU € TJo with x € CNU. By a similar argument, f: X — Y is g-open
on X. O

3 03-Continuous Functions

This section characterizes the concept of 63-continuous functions and determines its relationship
to the other versions of continuity.

Definition 3.1. Let X and Y be topological spaces. A function f : X — Y is fg-continuous
on X if f~1(U) is Og-open for every open U in Y.

By Remark 2.4, we have the following remark.

Remark 3.2. The following diagram holds for a function f: X — Y:

f-continuous === 0g-continuous

|

[B-continuous <——= continuous

The following examples illustrate that the reverse implications of Remark 3.2 do not hold.

Example 3.3. Let X = {a,b, ¢,d} with topology Tx = {@, X, {a}, {b}, {c}, {a,b},{a,c}, {b,c},
{a,b,c}} and Y = {r, s, t,u} with topology Ty = {@,Y,{r,s},{t,u}}. Define f: X — Y by
f={(a,r),(b,t),(c,s),(d,u)}. Then f~={(r,a),(t,b),(s,c), (u,d)}. Now, f is Os-continuous
on X but not #-continuous on X since f~'({r,s}) = {a,c} and f~'({t,u}) = {b,d} are not
f-open in X.

Example 3.4. Consider X = {i,0,u} with topology Tx = {&, X,{i},{o},{i,0}} and ¥ =
{0,1,2} with topology Ty = {@,Y,{0},{1},{0,1}}. Define a function f : X — Y by f =
{(3,0), (0,1), (u,2)}. Then f=1 = {(0,4), (1,0), (2,u)}. Note that f is continuous on X but not
63-continuous on X since f~1({0,1}) = {i, o} is not fz-open in X.
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Example 3.5. Let X = {a,b,¢,d} and Y = {1,2,3,4} with respective topologies given by
Tx ={9,Y,{a}, {b},{c}, {a,b},{a,c},{b,c},{a,b,c}} and Ty = {@, X, {1,2},{3,4}}. Define a
function f = {(c, 1), (a,2), (b,3),(d,4)}. Then f=! = {(1,¢),(2,a),(3,b),(4,d)}. Observe that
f is B-continuous on X but not continuous on X since f~1({3,4}) = {b,d} is not open on X.

Theorem 3.6. Let X and Y be topological spaces and f : X — Y be a function. Then the
following statements are equivalent:

(i) f is Og-continuous on X.
(i

) f7Y(F) is O5-closed in X for each closed subset F of Y.
(iii) f~1(B) is 63-open for each (subbasic) basic open set B in'Y .
)

(iv) For every x € X and every open set V of Y containing f(x), there exists a 6g-open set U
containing x such that f(U) C V.

(v) f(Clg,(A)) € Cl(f(A)) for each A C X.
(vi) Clg,(f~1(B)) € f~1(CU(B)) for each BCY .

Proof. (i) = (ii) Assume that f is §g-continuous on X. Let F' be closed in Y. Then Y \ F is
open. Since f is fs-continuous, f~H(Y \ F) = X \ f~1(F) is Og-open in X. Thus, f~1(F) is
fg-closed in X.

(ii) = (i) Suppose that (ii) holds and let O be open in Y. Then Y \ O is closed. By
assumption, f~1(Y \ O) = X \ f71(O) is Og-closed in X. It follows that f~1(O) is fz-open in
X so that f is fg-continuous on X.

(i) = (iii) Assume that f is #3-continuous on X. Since (subbasic) basic open sets are open,
(iii) holds.

(iii) = (i) Assume that (iii) holds. Let G be an open set in Y. Then G = |J{B : B € B*}
where B* C B is a basis for a topology in Y. This implies that

UG =i ') BeBY,

where f~1(B) are 0g-open sets on X by assumption. By Remark 2.10 (i), the arbitrary union
of all 0g-open sets is 0g-open. Then HQ) is g-open in X. Consequently, f is 6z-continuous
on X.

(i) = (iv) Suppose that f is fg-continuous on X. Let z € X and let V' be an open set
in Y containing f(x). Since f is @z-continuous, f~(V) is fz-open in X containing z. Set
U = f~1(V). Then f(U) = f(f~1(V)) € V.

(iv) = (v) Assume that (iv) holds. Let A C X and x € Clp,(A). Let G be an open set in
Y containing f(z). By assumption, there exists a 6g-open set U in X containing = such that
f(U) € G. Since x € Cly,(A), UN A # & by Definition 2.13 (ii). Thus,

g# f(UNA)CfU)N[f(A) CGnflA).

It follows that f(z) € CI(f(A)). Accordingly, f(Cly,(A)) C CI(f(A)).

(v) = (vi) Let BCY and let A= f~1(B). Then f(A) = f(f~1(B)) C B. By assumption,
F(Cloy(A)) C CUf(A)). Hence,

Clo, (f1(B)) € F7(f(Clo,(A))) € fHCUF(A)) € fF7HCUB)).
(vi) = (ii) Let F be a closed subset of Y. Then F' = CI(F). By assumption,
Clo, (fH(F)) € f7HCUF)) = f7H(F) C Clo, (£ (F)).

Thus, f~1(F) = Clg,(f~'(F)). By Remark 2.14 (viii), f7YU(F) is Og-closed in X. O
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Theorem 3.7. Let X and Y be topological spaces and fa : X — D the characteristic function
of a subset A of X, where D is the set {0,1} with discrete topology. Then fa is 03-continuous
if and only if A is both O3-open and 03-closed.

Proof. Suppose that A is both fg-open and #s-closed. Let U be an open set in {0,1}. Then

o ifU =g,
_ X ifU={0,1}
1 _ ’ )
W=y a4 v=q,
X\ A ifU={0}.
Hence, f;l is f3-open and so f4 is fg-continuous.
Conversely, assume that f4 is 6g-continuous. Let U; = {1} and U = {0}. Then U; and
Us are both open in {0,1}. Thus, fgl(Ul) = A and f;l(UQ) = X \ A are fg-open in X.
Accordingly, A is both 63-open and 6-closed. O

Theorem 3.8. Let X, Y, and Z be topological spaces. If f : X — Y is g-continuous on X
and g : Y — Z is continuous on Y, then the composition go f : X — Z is 0g-continuous on X.

Proof. Let U be open in Z. Since g is continuous on Y, g~'(U) is open on Y. By assumption,

f is Og-continuous on X so that (go f)~H(U) = f~1(g~1(U)) is Os-open on X. Thus, go f is
t)g-continuous on X. O

4 @3-Continuous Functions in the Product Space

The following results are related to 63-continuous functions from an arbitrary topological space
into the product space.

In the succeeding results, if Y = [[{Ya : @ € A} is a product space and A4, C Y, for each
a € A, we denote Ay, X -+ X Ay, X [[{Ya :a ¢ K} by (Any,..., An,), K ={a1,...,an}. If
Y =][{Y:: 1 <i<mn} is a finite product, we denote A; x --- x A, by (41,...,Ay).
Theorem 4.1. Let Y = [[{Y; : 1 < i < n} be a finite product space and & # O; CY; for each
i=1,...,n. Then O = (01,...,0,) is f-open if and only if each O; is -open.

Proof. Suppose that O = (O, ...,0,,) is B-open. Then
o (Int(C1(0)))
(Int(CU((O1,...,0n))))
= Cl(Int({CL(O1),...,Cl(On))))
= Cl ((Int(C’l(Ol)) Int(Cl(On))>)
= (Cl(Int(C (01))) -, Cl(Int(CL(On))))-
Hence, for every i = 1,...,n, O; C Cl(Int(Cl(0;))). Therefore, each O; is B-open.

Conversely, assume that each O; is S-open. Then foreveryi =1,...,n, O; C Cl(Int(CIl(0O;))).
Thus,

Cl(In
Cl(In

O = (01,...,00)
C (CUInt(CLOL))), ..., ClInt(CUO,))))
= CU{Int(CUOL)), ..., Int(CL(O))))
= ClInt({CLOy),...,CLOMN)))
= ClInt(CL({Oy,...,0.))))
= ClU(Int(CLO))).
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0s-Open Sets and Oz-Continuous Functions in the Product Space

Therefore, O is S-open. U
Theorem 4.2. Let Y = [[{Y; : 1 < i < n} be a finite product space and A; C'Y; for each
i=1,....,n. Then

BCI(Ar,.., A)) C (BCU(AL), .., BOI(AL).
Proof. Observe that

BCIU((A1,...,An)) = (A1, -, Ap) UInt(Cl(Int({(A1, -+, An))))
= (A, Ap) UInt(Cl({(Int(A1),...,Int(An))))
= (A, ,Ap) UInt((Cl(Int(Ar)), . Cl(Int(A )
= (A, ,Ap) U{Int(Cl(Int(A1))), ..., Int(Cl(Int(An))))
C (A UInt(Cl(Int(Ay))),..., AU Int(Cl(Int( n))))
= (BCU(AY), .., BCI(AL))
thereby completing the proof. O

Theorem 4.3. Let Y = [[{Y; : 1 < i < n} be a finite product space and A; C'Y; for each
i=1,...,n. Then

Clo,({(A1, -+, An)) € (Cly, (A1), ..., Clg,(An)).
Proof. Let r = (a;) € Clg,({A1,--+,Ap)). Then for all open set U containing =, 3CI(U) N

(Aq,---,A,) # @. Suppose that for each j, there exists an open set U; containing a; such that
N = . en (Uy,...,U;,...,Uy,) 1s an open set that contains x an eorem 4.2,
BCUU;)NA; Then (U U;j Up) i h i d by Th 4.2

,BCZ(<U1,...,Uj,...,Un>)ﬂ<A1,...,Aj,...,An>

- <ﬂCl(U1)ﬂA1,,5Cl(U]) ,,,BCZ( )ﬂA >
a contradiction. Therefore, x € (Clg,(A1),...,Cly,(An)). O

Theorem 4.4. Let Y = [[{Y; : 1 < i < n} be a finite product space and A; C'Y; for each
i=1,...,n. Then

(Intg, (A1), .., Intg,(An)) C Tntg, (A1, -+ , An)).

Proof. Let x = (a;) € (Intg,(A1),...,Intg,(An)). Then a; € Intg,(A;) for all i = 1,...,n
This means that there exists an open set U; containing a; such that SCI(U;) € A;. Then

(Uy,...,Uy) is an open set containing x and so by Theorem 4.2
BCI({(Uy, ..., Uy)) C(BCLUUL),...,BCLHU,)) C (A1, -, Ap).
Thus, x € Intg,((A1,---, An)). O

Theorem 4.5. Let Y = [[{Y: : 1 < i < n} be a finite product space and & # O; CY; for each
i=1,...,n. If each O; is Og-open in Y;, then O = (O1,...,0y) is Og-open in Y.

Proof. Let © = (a;) € O. Then a; € O; for all i = 1,...,n. This implies that for each i, there
exists an open set U; containing a; such that SCI(U, ) C O Let U = (Uy,...,U,). Then U is
open containing x and by Theorem 4.2,

BCUU) = pCI{Uy,...,Uy))

C (O1,...,0y)
= 0.
Hence, O = (O1,...,0y) is §g-open in Y. O
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Theorem 4.6. Let X = [[{X;:1<i<n} andY =][{Y;: 1 <1i < n} be finite product spaces
and for eachi=1,...,n, let f; : X; = Y; be a function. If each f; is 0g-continuous on X;, then
the function f: X =Y defined by f({(x;)) = (fi(x:)) is 0g-continuous on X.

Proof. Let (V4,...,V,) be a basic open set in Y. Then

FHOAL VR = ), (V).

Since each f; is fs-continuous, f;'(V;) is g-open in X;. Let x = (z;) € f~1((Vi,..., V).
Then z; € fi_l(Vi) for all = 1,...,n. This means that there exists an open set O; containing
x; such that BCL(O;) C f; 1 (Vi). Then (O1,...,0y) is open in X and contains z. By Theorem
4.2

BCI((O1,...,0,)) C (BCIUOy),...,BCLOy))
C <f1_1(V1)77fn_1(Vn)>
= YV, L V).

This implies that f~'((Vq,...,V,)) is g-open on X. Therefore, f is §g-continuous on X. [

Theorem 4.7. Let X be a topological space and Y = [[{Ys : @ € A} be a product space. A
function f : X — Y is 0g-continuous if and only if po o f is Og-continuous on X for every
a e A.

Proof. Assume that f is €g-continuous on X. Let a € A and U, be open in Y,. Since p, is
continuous, p,*(U,) is open in Y. Hence,

FH 03 (Ua)) = (pa o )71 (Ua)

is 0g-open in X. Therefore, p, o f is 0g-continuous on X for every a € A.
Conversely, suppose that each coordinate function p, o f is 3-continuous on X. Let (O,)
be a subbasic open set in Y. Then O, is open in Y, for every a € A and

(Pa © f)_l(oa) = f_l(pgl(OOJ = f_1(<0a>>
is 0g-open in X. Thus, f is 63-continuous on X. O

Corollary 4.8. Let X be a topological space, Y = [[{Ya : @ € A} be a product space, and
fa : X — Y, be a function for each a« € A. Let f : X — Y be the function defined by
f(x) = (fa(x)). Then f is z-continuous on X if and only if each fo is Og-continuous on X
for each a € A.

Proof. For each a € A and every x € X, we have
(Pa © f)(x) = pa(f(@)) = Pa({f3(2))) = fal).

Hence, po o f = f,. The result follows from Theorem 4.7. U

5 0-Connected Space and Versions of Separation Axioms

In this section, we provide characterizations of 6g-connected space and some versions of sepa-
ration axioms.

Definition 5.1. A topological space X is said to be a 03-connected if it is not the union of two
nonempty disjoint 6g-open sets. Otherwise, X is g-disconnected.
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0s-Open Sets and Oz-Continuous Functions in the Product Space

Theorem 5.2. Let X be a topological space. Then the following statements are equivalent:
(i) X is O3-connected.
(ii) The only subsets of X that are both Og-open and g-closed are @ and X .

(ili) No 6g-continuous function f : X — D is surjective.

Proof. (i) = (ii) Suppose that X is fg-connected. Let F' C X which is both fz-open and 63-
closed. Then X \ F'is also both g-open and #s-closed. Note that X = F'U (X \ F). Since X
is 0g-connected, either ' =@ or F' = X.

(i) = (iii) Suppose that (ii) holds and let f : X — D be a #z-continuous surjection. Then
f71({0}) # @,X. Since {0} is both open and closed in D, f~1({0}) is both #s-open and
fs-closed in X, a contradiction. Thus, (iii) follows.

(iii) = (i) Assume that (iii) holds and let X = AU B, where A and B are nonempty disjoint
g-open sets. Then X is 03-disconnected. Note that A and B are also 03-closed sets. Consider
the characteristic function f4 : X — D of A C X, which is surjective. By Theorem 3.7, f4 is
tg-continuous. This gives a contradiction. Thus, X must be 63-connected. O

Theorem 5.3. Let X be a topological space. Then X is @g-connected if and only if X is
f-connected.

Proof. Assume that X is §g-connected. Then X cannot be the union of two nonempty disjoint
fg-open sets. By Theorem 2.2 (i), every 6-open set is §g-open. It follows that X is not a union
of f-open sets. Accordingly, X is #-connected.

Conversely, suppose that X is 6-connected. Then X is connected. Hence, X cannot be the
union of two nonempty disjoint open sets. Since every 6g-open set is open by Theorem 2.2
(ii), it follows that X is not the union of two nonempty disjoint f3-open sets. Therefore, X is
t)g-connected. O

Corollary 5.4. Let X be a topological space. Then X is 8g-connected if and only if X is
connected.

Proof. Follows from Theorem 5.3 and from the fact that connected and §-connected spaces are
equivalent [21]. O

Remark 5.5. The following diagram holds for a subset of a topological space.

(B-connected ——=> connected

!

t)g-connected <= @-connected

The reverse implication for connected and [-connected spaces is not true as shown in the
next example.

Example 5.6. Let X = {a,b,c} with topology T = {@, X, {a},{b},{a,b}}. Clearly, X is
connected but not [S-connected since {a,c} and {b} are two disjoint S-open sets, with X =
{a,c} U {b}.

Definition 5.7. A topological space X is said to be

i) Og-Hausdorff if given any pair of distinct points p,q in X, there exist disjoint 6z-open
(i) s g y p p.q ] 5
sets U and V such that p € U and q € V;
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(ii) Og-regular if for each closed set F' and each point ¢ F, there exist disjoint f3-open sets
U and V such that x € U and FF C V;

(ili) @g-normal if for every pair of disjoint closed sets E and F' of X, there exist disjoint #3-open
sets U and V such that E C U and F C V.

Theorem 5.8. Let X be a topological space. Then the following statements are equivalent:
(i) X is 03-Hausdorff.
(ii) For distinct x,w € X, there exists a Og-open set U containing x such that w ¢ Clg,(U).
(iii) For each x € X,

C, = ﬂ{ClgB (U) : U is 03-open containing x} = {x}.

Proof. (i) = (ii) Let X be 6g-Hausdorff. By Definition 5.7 (i), for every pair of distinct points
z,w € X, there exist disjoint #g-open sets U and V such that x € U and w € V. This means
that UNV = @. Thus, w ¢ Cly,(U).

(ii) = (iii) Suppose that (ii) holds. Note that x € C,. By assumption, for every = # w,
there exists a 0g-open set U containing = such that w ¢ Clg,(U). Thus, w ¢ C,. Since w is
arbitrary, Cy = {z}.

(iii) = (ii) Assume that (iii) holds. Let z,w € X such that = # w. By assumption, = € Cj,.
Since x # w, w ¢ Cy, that is, w ¢ ({Clg,(U) : U is s-open containing z}. This means that
there exists a fg-open set U containing z such that w ¢ Clg,(U). This completes the proof.

(ii) = (i) Suppose that (ii) holds. Let z,w € X such that = # w. By assumption, there
exists a Og-open set U containing x such that w ¢ Clg, (U). By Definition 2.13 (ii), there exists
a g-open set V' containing w such that U NV = @. Hence, X is 0g-Hausdorff. O

Theorem 5.9. Let X be a topological space. Then the following statements are equivalent:
(i) X is Og-regular.

(ii) For each x € X and an open set U containing x, there exists a 0g-open set V such that

x €V CClg,(V)CU.

(i) For each x € X and closed set F' with x ¢ F, there exists a 0g-open set V containing x
such that F'0 Clg, (V) = 2.

Proof. (i) = (ii) Suppose that X is fg-regular. Let € X and U be an open set containing x.
Then X \ U is closed and = ¢ X \ U. By assumption, there exist disjoint open sets V and W
such that z € V and X \U C W. Since VNW =@, V C X \ W. By Theorem 2.14 (xii),

Clg, (V) C Clpy (X \ W) = X \ Intg,(W) = X \ W.
This means that Clg, (V) "W = @. Consequently,
Clo,(V)N(X\U) CClp,(V)NW = 2.

Hence, Cly, (V) CU. Thus, x € V C Clg, (V) C U.

(ii) = (iii) Suppose that (ii) holds. Let z € X and F be a closed set with « ¢ F. Then
X \ Fis open and z € X \ F. By assumption, there exists a fg-open set V' containing x such
that V' C Clp, (V) € X \ F. This means that F'N Cly, (V) = @.

(iii) = (i) Let z € X and F be a closed set such that x ¢ F. By assumption, there exists
a Op-open set V containing x such that F'N Cly, (V) = @. Observe that X \ Clp, (V) is a
fs-open set and F' C X \ Clp, (V). Since V' C Cly,(V), VN X \ Cly, (V) = &. Therefore, X is
t)g-regular. O
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Theorem 5.10. Let X be a topological space. Then the following statements are equivalent:
(i) X is 83-normal.

(ii) For each closed set A and an open set U D A, there exists a Og-open set V' containing A
such that Clg,(V) C U.

iii) For each pair of disjoint closed sets A and B, there exists a 0z-open set V containing A
B

such that Clg, (V)N B = @.

Proof. (i) = (ii) Assume that X is #g-normal. Let A be a closed set and U be an open set
such that A C U. Then A and X \ U are disjoint closed sets in X. By assumption, there exist
disjoint #z-open sets V' and W such that A C V and X \ U C W. Since X \ U C W and
VAW =g, X\WCU and V C X\ W. By Theorem 2.14 (xii),

Clg, (V) C Clg, (X \ W) C X \ Intg,(W) = X\ W.

Thus, Clg, (V) C X\ W CU.

(ii) = (iii) Suppose that (ii) holds. Let A and B be a pair of disjoint closed sets in X. Then
AC X\ Band X \ B is open. By assumption, there exists a fg-open set V' containing A such
that Clp, (V) C X \ B. This means that Clp, (V)N B = @.

(iii) = (i) Suppose that (iii) holds. Let A and B be disjoint closed sets in X. By assumption,
there exists a fg-open set V' containing A such that Cly, (V)N B = @. Then B C X \ Cly, (V).
Observe that Clg, (V') is a fs-closed set. Thus, X\ Clg, (V) is a 5-open set. Since V' C Clg, (V),
VN (X\Clg,(V)) = @. Accordingly, X is 6g-normal. O

A topological space X is said to be a Ti-space if for each p,q € X with p # ¢, there exist
open sets U and V such that p e U,q ¢ U, and g€ V,p ¢ V.

Theorem 5.11. Let X be a T1-space. Then the following statements hold:
(i) If X is 0g-regular, then X is Og-Hausdorff.
(ii) If X is Og-normal, then X is 6g-regular.

Proof. (i) Assume that X is fg-regular. Let z,w € X with 2 # w. Since X is a Tj-space,
there exist open sets U and V such that € U, w ¢ U, and w € V, ¢ V. This implies
that « ¢ X \U, w € X\ U, and X \ U is closed. Since X is #g-regular, there exist disjoint
fs-open sets A and B such that x € A and X \ U C B. Since w € X \ U, w € B. Thus, X is
6 3-Hausdorff.

(ii) Let X be #g-normal. Since X is a Tj-space, there exist open sets U and V' such that
xeU,w¢U,and w eV, z ¢ V. This implies that x ¢ X \ U, w ¢ X \ V and X \ U and
X \ V are disjoint closed sets. Since X is §g-normal, there exist disjoint §g-open sets £ and F'
such that X \U C E and X \V C F. Note that z € X \V C F. Hence z € F and X \U C E.
Therefore, X is 0g-regular. O

By Theorem 5.11, we have the following remark.

Remark 5.12. For a Tj-space, the following diagram holds:

0g-normal === 0g-regular === 03-Hausdorff.
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