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Abstract

In this paper, we introduced and characterized a new class of open set called θβ-open
set. Notably, the collection of all θβ-open sets forms a topology. We then examined the
relationship between θβ-open sets and other well-known concepts, such as classical open
sets, θ-open sets, and β-open sets. Additionally, we defined and investigated the concepts
of θβ-interior and θβ-closure of a set, as well as θβ-open functions, θβ-closed functions,
θβ-continuous functions, and θβ-connectedness. Finally, we present characterizations of θβ-
continuous functions from an arbitrary topological space into the product space, along with
some versions of separation axioms.

1 Introduction and Preliminaries

Over time, numerous mathematicians have been drawn to the idea of refining or expanding
classical topological concepts by replacing them with alternatives that possess either weaker or
stronger properties. This approach can be traced back to Levine [16] in 1963 when he introduced
the concepts of semi-open and semi-closed sets, as well as semi-continuity for functions. This
pioneering idea led to the development of new results, many of which serve as generalizations
of established theories.

In 1968, Velicko [21] introduced the concepts of θ-closure and θ-interior for subsets of a
topological space, and subsequently defined the notion of θ-continuity for functions in topological
spaces. Several authors then have obtained results related to θ-open sets, see [1, 4, 5, 6, 7, 8].

Let (X,T) be a topological space and A ⊆ X. The θ-closure and θ-interior of A are,
respectively, denoted and defined by

Clθ(A) = {x ∈ X : Cl(U) ∩A ̸= ∅ for every open set U containing x}

and

Intθ(A) = {x ∈ X : Cl(U) ⊆ A for some open set U containing x},
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where Cl(U) is the closure of U in X. A subset A of X is θ-closed if Clθ(A) = A and θ-open if
Intθ(A) = A. Equivalently, A is θ-open if and only if X \ A is θ-closed. It is known that the
collection Tθ of all θ-open sets forms a topology on X, which is strictly coarser that T.

In 1983, El-Monsef et al. [10] introduced the concept of β-open sets and expanded the
theory by defining and characterizing β-continuous functions and β-open mappings. Several
papers have studied the concepts of β-open sets and its corresponding topological concepts,
such as [3, 11, 18].

A subset A of a topological space (X,T) is said to be β-open if A ⊆ Cl(Int(Cl(A))). The
complement of β-open is called β-closed set. For a given subset A of a topological space (X,T),
βCl(A) = A ∪ Int(Cl(Int(A))) [11]. Moreover, the union of all β-open sets in X that are
contained in A is called β-interior of A and is denoted by βInt(A) [11]. Equivalently, A is
β-open (resp., β-closed) if and only if A = βInt(A) (resp., A = βCl(A)). It is worth noting
that the collection of all β-open sets is not necessarily a topology on X.

A topological space (X,T) is said to be connected (resp., θ-connected, β-connected [19]) if
X cannot be written as the union of two nonempty disjoint open (resp., θ-open, β-open) sets.
Otherwise, (X,T) is disconnected (resp., θ-disconnected, β-disconnected). Furthermore, it has
been shown in [13] that β-connected ⇒ connected.

It is known that Intθ(A) is the largest θ-open set contained in A and Clθ(A) is the smallest
θ-closed set containing A [14]. Moreover, x ∈ Intθ(A) if and only if there exists an open set U
containing x such that Cl(U) ⊆ A and x ∈ Clθ(A) (resp., x ∈ βCl(A)) if and only if for every
open set (resp., β-open set) U containing x, Cl(U) ∩A ̸= ∅ [21] (resp., U ∩A ̸= ∅ [11]).

Let A be an indexing set and {Yα : α ∈ A} be a family of topological spaces. For each α ∈ A,
let Tα be the topology on Yα. The Tychonoff topology on {Yα : α ∈ A} is the topology generated
by a subbase consisting of all sets ⟨Uα⟩ = p−1

α (Uα), where pα :
∏
{Yα : α ∈ A} → Yα, the αth

coordinate projection map is defined by pα(⟨Yβ⟩) = yα, Uα ranges over all members of Tα, and
α ranges over all elements of A. Corresponding to Uα ⊆ Yα, denote p

−1
α (Uα) by ⟨Uα⟩. Similarly,

for finitely many indices α1, α2, · · · , αn and sets Uα1 ⊆ Yα1 , Uα2 ⊆ Yα2 , · · · , Uαn ⊆ Yαn , the
subset

⟨Uα1⟩ ∩ ⟨Uα2⟩ ∩ · · · ∩ ⟨Uαn⟩ = p−1
α (Uα1) ∩ p−1

α (Uα2) ∩ · · · ∩ p−1
α (Uαn)

is denoted by ⟨Uα1 , Uα2 , · · · , Uαn⟩. We note that for each open set Uα subset of Yα, ⟨Uα⟩ =
p−1
α (Uα) = Uα×

∏
β ̸=α Yβ. Hence, a basis for the Tychonoff topology consists of sets of the form

⟨Bα1 , Bα2 , · · · , Bαk
⟩, where Bαi is open in Yαi for every i ∈ K = {1, 2, · · · , k}.

Now, the projection map pα :
∏
{Yα : α ∈ A} → Yα is defined by pα(⟨yβ⟩) = yα for each

α ∈ A. It is known that every projection map is a continuous open surjection. Also, it is well
known that a function f from an arbitrary space X into the Cartesian product Y of the family
of spaces {Yα : α ∈ A} with the Tychonoff topology is continuous if and only if each coordinate
function pα ◦ f is continuous, where pα is the α-th coordinate projection map.

In this paper, we introduced the concept of θβ-open sets and explore their relationships
with other well-established concepts in topology, including classical open sets, θ-open sets, and
β-open sets. Some topological concepts related to θβ-open sets are also defined and studied.

2 θβ-Open and θβ-Closed Functions

In this section, we define and characterize the concepts of θβ-open and θβ-closed functions.
Throughout this paper, if no confusion arise, let X and Y be topological spaces.

Definition 2.1. Let X be a topological space. A subset A of X is said to be θβ-open if for all
x ∈ A, there exists an open set U containing x such that βCl(U) ⊆ A. A subset F of X is said
to be θβ-closed if its complement X \ F is θβ-open.
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Theorem 2.2. Let X be a topological space and A ⊆ X. Then the following holds:

(i) If A is θ-open, then A is θβ-open.

(ii) If A is θβ-open, then A is open.

Proof. (i) Let A be θ-open and let x ∈ A. Then there exists an open set U containing x such
that Cl(U) ⊆ A. Moreover, βCl(U) ⊆ Cl(U) ⊆ A, see [2, Diagram I]. Thus, A is θβ-open.

(ii) Suppose that A is θβ-open and let x ∈ A. By Definition 2.1, there exists an open set U
containing x such that βCl(U) ⊆ A. Observe that U ⊆ βCl(U) ⊆ A. Hence, A is open.

Corollary 2.3. Let X be a topological space and A ⊆ X. Then the following holds:

(i) If A is θ-closed, then A is θβ-closed.

(ii) If A is θβ-closed, then A is closed.

Proof. (i) Suppose that A is θ-closed. Then X \A is θ-open so that by Theorem 2.2 (i), X \A
is θβ-open. Thus, X \ (X \A) = A is θβ-closed.

(ii) Assume that A is θβ-closed. Then X \ A is θβ-open and by Theorem 2.2 (ii), X \ A is
open. Hence, X \ (X \A) = A is closed.

In view of [2, Diagram I], Theorem 2.2, and Corollary 2.3, the following remark holds.

Remark 2.4. The following diagram holds for any subset of a topological space:

θ-open ====⇒ θβ-open ====⇒ open ====⇒ β-open.

We note that the above diagram is also true for their respective closed sets. The reverse
implications of Remark 2.4 are not true as shown in the next examples.

Example 2.5. Let X be a topological space given by X = {a, b, c, d} with topology T =
{∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. The sets {a}, {b}, {c}, {a, b}, {a, c}, and {b, c}
are θβ-open but not θ-open.

Example 2.6. Consider again the topological space X in Example 2.5. Observe that {a, b, c}
is open but not θβ-open.

Example 2.7. Consider the space X given in Example 2.5. Let A = {b, c, d}. Then A is β-open
not open.

Example 2.8. Consider the real line R with the standard topology TR. It is known that every
open interval (a, b) where a, b ∈ R and a < b is open in R. Now, we will show that every open
interval is θ-open.

Indeed, (a, b) is θ-open since for every x ∈ (a, b), there exists ε > 0 such that

x ∈ (x− ε, x+ ε) ⊆ Cl((x− ε, x+ ε)) = [x− ε, x+ ε] ⊆ (a, b).

Since every θ-open is θβ-open by Theorem 2.2 (i), (a, b) is also θβ-open. Therefore, TR = Tθ =
Tθβ in R with the usual topology.

The following result is likely known, but despite a thorough search of the literature, we were
unable to find a suitable reference. For the sake of completeness, we provide the statement and
proof below.
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L. A. Añora and M. Labendia

Lemma 2.9. Let X be a topological space and A,B ⊆ X. Then the following statements hold:

(i) If A ⊆ B, then βCl(A) ⊆ βCl(B).

(ii) βCl(A ∩B) ⊆ βCl(A) ∩ βCl(B).

Proof. (i) Let A ⊆ B and x ∈ βCl(A). Then for every β-open set U containing x, U ∩ A ̸= ∅.
Since A ⊆ B, U ∩B ̸= ∅. Thus, x ∈ βCl(B). Accordingly, βCl(A) ⊆ βCl(B).

(ii) Because A ∩B ⊆ A and A ∩B ⊆ B, we have βCl(A ∩B) ⊆ βCl(A) and βCl(A ∩B) ⊆
βCl(B) by (i). It follows that βCl(A ∩B) ⊆ βCl(A) ∩ βCl(B).

Remark 2.10. Let X be a topological space. Then

(i) The arbitrary union of θβ-open sets is θβ-open.

(ii) The finite intersection of θβ-open sets is θβ-open.

Proof. (i) Let {Oα : α ∈ A} be a collection of θβ-open subsets of X and let x ∈
⋃

α∈A
Oα. Then

x ∈ Oα0 for some α0 ∈ A. Since Oα0 is θβ-open, there exists an open set Fα0 containing x such
that βCl(Fα0) ⊆ Oα0 ⊆

⋃
α∈A

Oα. Thus,
⋃

α∈A
Oα is θβ-open.

(ii) Let G1 and G2 be θβ-open sets and x ∈ G1 ∩G2. Then there exist open sets U1 and U2

with x ∈ U1 ∩U2 such that βCl(U1) ⊆ G1 and βCl(U2) ⊆ G2. Now, U1 ∩U2 is an open set that
contains x so that

βCl(U1 ∩ U2) ⊆ βCl(U1) ∩ βCl(U2) ⊆ G1 ∩G2

by Lemma 2.9. Hence, G1 ∩G2 is θβ-open and the result follows.

Hence, in view of Remark 2.10, the family of all θβ-open subsets of a topological space X
forms a topology on X, denoted by Tθβ .

Corollary 2.11. Let X be a topological space. Then

(i) The arbitrary intersection of θβ-closed sets is θβ-closed.

(ii) The finite union of θβ-closed sets is θβ-closed.

Proof. (i) Let {Fα : α ∈ A} be a family of θβ-closed sets in X. Then X \ Fα is θβ-open for
all α ∈ A. By Remark 2.10 (i), X \

⋂
α∈A

Fα =
⋃

α∈A
(X \ Fα) is θβ-open. Therefore,

⋂
α∈A

Fα is

θβ-closed.
(ii) Let F1 and F2 be θβ-closed sets in X. Then X \ F1 and X \ F2 are θβ-open. Since

X \ (F1 ∪ F2) = (X \ F1) ∩ (X \ F2) is θβ-open by Remark 2.10 (ii), F1 ∪ F2 is θβ-closed.
Therefore, the conclusion hold.

Theorem 2.12. Let (X,T) be a topological space and A ⊆ X. Assume that A is open. If A is
β-closed, then A is θβ-open. In this case, T = Tθβ .

Proof. Let A be both open and β-closed. Then for all x ∈ A, we have x ∈ A ⊆ βCl(A) = A ⊆ A.
Hence, A is θβ-open and the claim holds.

Definition 2.13. Let X be a topological space and A ⊆ X.

(i) The θβ-interior of A, denoted by Intθβ (A), is defined by Intθβ (A) =
⋃
{U : U is a θβ-open

set and U ⊆ A}. By Remark 2.10, Intθβ (A) is the largest θβ-open set contained in A.
Moreover, x ∈ Intθβ (A) if and only if there exists a θβ-open sets U containing x such that
U ⊆ A.
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(ii) The θβ-closure of A denoted by Clθβ (A), is defined by Clθβ (A) =
⋂
{F : F is a θβ-

closed set and A ⊆ F}. In view of Remark 2.10, Clθβ (A) is the smallest θβ-closed set
containing A. Moreover, x ∈ Clθβ (A) if and only if for every θβ-open set U containing x,
U ∩A ̸= ∅.

The statements in the succeeding remark can be obtained using arguments similar to those
in classical topology and are therefore omitted.

Remark 2.14. Let X be a topological space and A,B ⊆ X. Then the following statements
hold:

(i) Intθβ (A) ⊆ A.

(ii) A ⊆ B implies that Intθβ (A) ⊆ Intθβ (B).

(iii) A is θβ-open if and only if A = Intθβ (A).

(iv) Intθβ (A) = Intθβ (Intθβ (A)).

(v) Intθβ (A ∩B) = Intθβ (A) ∩ Intθβ (B).

(vi) A ⊆ Clθβ (A).

(vii) A ⊆ B implies that Clθβ (A) ⊆ Clθβ (B).

(viii) A is θβ-closed if and only if A = Clθβ (A).

(ix) Clθβ (A) = Clθβ (Clθβ (A)).

(x) Clθβ (A ∪B) = Clθβ (A) ∪ Clθβ (B).

(xi) Intθβ (X \A) = X \ Clθβ (A).

(xii) Clθβ (X \A) = X \ Intθβ (A).

(xiii) x ∈ Intθβ (A) if and only if there exists an open set U containing x such that βCl(U) ⊆ A.

(xiv) x ∈ Clθβ (A) if and only if for every open set U containing x, βCl(U) ∩A ̸= ∅.

(xv) Intθ(A) ⊆ Intθβ (A) ⊆ Int(A) ⊆ A.

(xvi) A ⊆ Cl(A) ⊆ Clθβ (A) ⊆ Clθ(A).

We shall give some characterizations of θβ-open and θβ-closed functions.

Definition 2.15. Let X and Y be topological spaces. A function f : X → Y is said to be
θβ-open on X if f(G) is θβ-open in Y for every open set G in X.

Example 2.16. Consider X = {a, b, c} with the topology TX = {∅, X, {a, c}, {b}} and Y =
{1, 2, 3} with the topology TY = {∅, Y, {1}, {2}, {1, 2}, {1, 3}}. Define f : X → Y by f =
{(a, 1), (b, 2), (c, 3)}. Note that the open sets in X are ∅, X, {a, c}, and {b}. Also, f(∅) =
∅, f(X) = Y, f({a, c}) = {1, 3}, and f({b}) = {2}. Clearly, ∅ and Y are θβ-open in Y .
Moreover, since {2} is open in Y and βCl({2}) = {2} ⊆ {2}, {2} is θβ-open in Y . Similarly,
βCl({1, 3}) = {1, 3} ⊆ {1, 3} so that {1, 3} is θβ-open in Y . This implies that ∅, Y, {2}, and
{1, 3} are all θβ-open in Y . Thus, f is θβ-open function on X.
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Definition 2.17. Let X and Y be topological spaces. A function f : X → Y is said to be
θβ-closed on X if f(F ) is θβ-closed in Y for every closed set F in X.

Example 2.18. Consider X = {a, b, c} with the topology TX = {∅, X, {a, b}, {c}} and Y =
{1, 2, 3} with the topology TY = {∅, Y, {1}, {2}, {1, 2}, {1, 3}}. Define f : X → Y by f =
{(a, 3), (b, 1), (c, 2)}. Note that the closed sets in X are ∅, X, {c}, and {a, b}. Also, f(∅) =
∅, f(X) = Y, f({c}) = {2}, and f({a, b}) = {1, 3}. Clearly, ∅ and Y are θβ-closed in Y .
Furthermore, since {2} is open in Y and βCl({2}) = {2} ⊆ {2}, {2} is θβ-open in Y . Thus,
Y \ {2} = {1, 3} is θβ-closed in Y . Similarly, βCl({1, 3}) = {1, 3} ⊆ {1, 3} so that {1, 3} is
θβ-open in Y which implies that Y \ {1, 3} = {2} is θβ-closed in Y . Therefore, ∅, Y, {1, 3}, and
{2} are all θβ-closed in Y so that f is θβ-closed function on X.

In view of Remark 2.4, and Definitions 2.15 and 2.17, we have the following remark.

Remark 2.19. The following diagram holds for a function f : X → Y :

θ-open function ====⇒ θβ-open functionww�
β-open function ⇐==== open function

Note that the diagram is also true for their respective closed functions. Moreover, the reverse
implications of Remark 2.19 are not necessarily true as shown in the subsequent examples.

Example 2.20. Let X = {1, 2, 3, 4} with topology TX = {∅, X, {1, 2}, {3, 4}} and Y =
{a, b, c, d} with topology TY = {∅, Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Define a func-
tion f : X → Y by f = {(1, a), (2, c), (3, b), (4, d)}. Then f is θβ-open on X but not θ-open
since f({1, 2}) = {a, c} and f({3, 4}) = {b, d} are not θ-open in Y .

Example 2.21. Consider X = {0, 1, 2} with topology TX = {∅, X, {0}, {1}, {0, 1}} and Y =
{i, o, u} with topology TY = {∅, Y, {i}, {o}, {i, o}}. Define f : X → Y by f = {(0, i), (1, o), (2, u)}.
Then f is open on X but not θβ-open since f({0, 1}) = {i, o} is not θβ-open on Y .

Example 2.22. Consider X = {1, 2, 3, 4} and Y = {a, b, c, d} with respective topologies
TX = {∅, X, {1, 2}, {3, 4}} and TY = {∅, Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Define
a function f = {(1, c), (2, a), (3, b), (4, d)}. Then f is β-open on X but not open on X since
f({3, 4}) = {b, d} is not open on Y .

Theorem 2.23. Let X and Y be topological spaces and f : X → Y be a bijective function.
Then f is θβ-open if and only if f is θβ-closed.

Proof. Suppose that f is θβ-open on X and let F be closed on X. Then X \ F is open in X
and f(X \ F ) is θβ-open in Y . Since f is bijective, f(X \ F ) = Y \ f(F ) is θβ-open in Y , that
is f(F ) is θβ-closed in Y .

Conversely, assume that f is θβ-closed on X and let G be open on X. Then X \G is closed
on X and f(X \G) is θβ-closed in Y . Since f is bijective, f(X \G) = Y \ f(G) is θβ-closed in
Y , that is, f(G) is θβ-open in Y .

Theorem 2.24. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent

(i) f is θβ-open on X;

(ii) f(Int(A)) ⊆ Intθβ (f(A)) for each A ⊆ X; and
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(iii) f(B) is θβ-open for every basic open set B in X.

(iv) For each x ∈ X and for every open set O in X containing x, there exists an open set W
in Y containing f(x) such that βCl(W ) ⊆ f(O).

Proof. (i) ⇒ (ii) Suppose that f is θβ-open on X. Then f(G) is θβ-open for all open set
G ⊆ X. Let A ⊆ X. Observe that Int(A) ⊆ A so that f(Int(A)) ⊆ f(A). Since Int(A)
is open, f(Int(A)) is θβ-open and is contained in f(A). Note that Intθβ (f(A)) is the largest
θβ-open set contained in f(A) by Definition 2.13 (i). Thus, f(Int(A)) ⊆ Intθβ (f(A)).

(ii) ⇒ (iii) Assume that (ii) holds. Let B be a basic open set in X. Then B is an open set
in X and B = Int(B). By assumption,

f(B) = f(Int(B)) ⊆ Intθβ (f(B)) ⊆ f(B).

Hence, f(B) = Intθβ (f(B)). Therefore, f(B) is θβ-open by Remark 2.14 (iii).

(iii) ⇒ (iv) Suppose that (iii) holds. Let x ∈ X and let O be an open set in X containing
x. Then there exists a basic open set B containing x such that x ∈ B ⊆ O. This implies that
f(x) ∈ f(B) ⊆ f(O). Since f(B) is θβ-open, there exists an open set W in Y containing f(x)
such that βCl(W ) ⊆ f(B) ⊆ f(O).

(iv) ⇒ (i) Assume that (iv) holds. Let O be open in X and y ∈ f(O). Then there exists
x ∈ O such that f(x) = y. By assumption, there exists an open set W in Y containing f(x) = y
such that βCl(W ) ⊆ f(O). Hence, f(O) is θβ-open.

Theorem 2.25. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is θβ-closed in X.

(ii) Clθβ (f(A)) ⊆ f(Cl(A)) for every A ⊆ X.

Proof. (i) ⇒ (ii) Suppose that f is θβ-closed in X. Let A ⊆ X. Observe that A ⊆ Cl(A) so
that f(A) ⊆ f(Cl(A)). Since Cl(A) is closed, f(Cl(A)) is θβ-closed containing f(A). Moreover,
since Clθβ (f(A)) is the smallest θβ-closed set containing f(A), we have Clθβ (f(A)) ⊆ f(Cl(A)).

(ii) ⇒ (i) Suppose that (ii) holds. Let F be closed in X. Then F = Cl(F ). By assumption,

f(F ) ⊆ Clθβ (f(F )) ⊆ f(Cl(F )) = f(F ),

that is, f(F ) = Clθβ (f(F )). Thus, f(F ) is θβ-closed.

Theorem 2.26. Let X, Y , and Z be topological spaces. If f : X → Y is open on X and
g : Y → Z is θβ-open on Y , then the composition g ◦ f : X → Z is θβ-open on X.

Proof. Let x ∈ X and let U be open in X with x ∈ U . Since f is open on X, f(U) is open on
Y . This means that there exists an open set VY in Y containing f(x) such that VY ⊆ f(U).
Since g is θβ-open on Y , there exists an open set VZ in Z containing g(f(x)) = (g ◦ f)(x) such
that βCl(VZ) ⊆ g(VY ), by Theorem 2.24 (iv). Hence,

βCl(VZ) ⊆ g(VY ) ⊆ g(f(U)) = (g ◦ f)(U).

Therefore, by Theorem 2.24 (iv), g ◦ f is θβ-open on X.

Theorem 2.27. Let X and Y be topological spaces and TA be the subspace topology on A ⊆ X.
If f : X → Y is θβ-open on X and A is open on X, then f |A : A → Y is θβ-open on A.
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Proof. Let x ∈ A and G be open in A containing x. Then G = A ∩ U , where U is open in X.
Since A is open in X, G is also open in X. By assumption, f(G) is θβ-open in Y containing
f(x), that is, there exists an open set V in Y containing f(x) = f |A(x) such that

βCl(V ) ⊆ f(G) = f |A(G).

By Theorem 2.24 (iv), f |A : A → Y is θβ-open on A.

Theorem 2.28. Let (X,TX) and (Y,TY ) be topological spaces and let TB and TC be two respec-
tive subspace topologies on B,C ⊆ X. If X = B ∪ C and f : (X,TX) → (Y,TY ) is a function
such that f |B : (B,TB) → (Y,TY ) and f |C : (C,TC) → (Y,TY ) are θβ-open, then f : X → Y is
θβ-open on X.

Proof. Let x ∈ X and U ∈ TX containing x. Since X = B ∪ C, it follows that x ∈ B or x ∈ C.
If x ∈ B, then x ∈ B ∩ U ∈ TB. By assumption, there exists an open set W in Y containing
f |B(x) = f(x) such that

βCl(W ) ⊆ f |B(B ∩ U) ⊆ f(U).

Hence, f : X → Y is θβ-open by Theorem 2.24 (iv).

If x ∈ C, then C ∩ U ∈ TC with x ∈ C ∩ U . By a similar argument, f : X → Y is θβ-open
on X.

3 θβ-Continuous Functions

This section characterizes the concept of θβ-continuous functions and determines its relationship
to the other versions of continuity.

Definition 3.1. Let X and Y be topological spaces. A function f : X → Y is θβ-continuous
on X if f−1(U) is θβ-open for every open U in Y .

By Remark 2.4, we have the following remark.

Remark 3.2. The following diagram holds for a function f : X → Y :

θ-continuous ====⇒ θβ-continuousww�
β-continuous ⇐==== continuous

The following examples illustrate that the reverse implications of Remark 3.2 do not hold.

Example 3.3. Let X = {a, b, c, d} with topology TX = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},
{a, b, c}} and Y = {r, s, t, u} with topology TY = {∅, Y, {r, s}, {t, u}}. Define f : X → Y by
f = {(a, r), (b, t), (c, s), (d, u)}. Then f−1 = {(r, a), (t, b), (s, c), (u, d)}. Now, f is θβ-continuous
on X but not θ-continuous on X since f−1({r, s}) = {a, c} and f−1({t, u}) = {b, d} are not
θ-open in X.

Example 3.4. Consider X = {i, o, u} with topology TX = {∅, X, {i}, {o}, {i, o}} and Y =
{0, 1, 2} with topology TY = {∅, Y, {0}, {1}, {0, 1}}. Define a function f : X → Y by f =
{(i, 0), (o, 1), (u, 2)}. Then f−1 = {(0, i), (1, o), (2, u)}. Note that f is continuous on X but not
θβ-continuous on X since f−1({0, 1}) = {i, o} is not θβ-open in X.
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Example 3.5. Let X = {a, b, c, d} and Y = {1, 2, 3, 4} with respective topologies given by
TX = {∅, Y, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} and TY = {∅, X, {1, 2}, {3, 4}}. Define a
function f = {(c, 1), (a, 2), (b, 3), (d, 4)}. Then f−1 = {(1, c), (2, a), (3, b), (4, d)}. Observe that
f is β-continuous on X but not continuous on X since f−1({3, 4}) = {b, d} is not open on X.

Theorem 3.6. Let X and Y be topological spaces and f : X → Y be a function. Then the
following statements are equivalent:

(i) f is θβ-continuous on X.

(ii) f−1(F ) is θβ-closed in X for each closed subset F of Y .

(iii) f−1(B) is θβ-open for each (subbasic) basic open set B in Y .

(iv) For every x ∈ X and every open set V of Y containing f(x), there exists a θβ-open set U
containing x such that f(U) ⊆ V .

(v) f(Clθβ (A)) ⊆ Cl(f(A)) for each A ⊆ X.

(vi) Clθβ (f
−1(B)) ⊆ f−1(Cl(B)) for each B ⊆ Y .

Proof. (i) ⇒ (ii) Assume that f is θβ-continuous on X. Let F be closed in Y . Then Y \ F is
open. Since f is θβ-continuous, f

−1(Y \ F ) = X \ f−1(F ) is θβ-open in X. Thus, f−1(F ) is
θβ-closed in X.

(ii) ⇒ (i) Suppose that (ii) holds and let O be open in Y . Then Y \ O is closed. By
assumption, f−1(Y \ O) = X \ f−1(O) is θβ-closed in X. It follows that f−1(O) is θβ-open in
X so that f is θβ-continuous on X.

(i) ⇒ (iii) Assume that f is θβ-continuous on X. Since (subbasic) basic open sets are open,
(iii) holds.

(iii) ⇒ (i) Assume that (iii) holds. Let G be an open set in Y . Then G =
⋃
{B : B ∈ B∗}

where B∗ ⊆ B is a basis for a topology in Y . This implies that

f−1(G) =
⋃

{f−1(B) : B ∈ B∗},

where f−1(B) are θβ-open sets on X by assumption. By Remark 2.10 (i), the arbitrary union
of all θβ-open sets is θβ-open. Then f−1(G) is θβ-open in X. Consequently, f is θβ-continuous
on X.

(i) ⇒ (iv) Suppose that f is θβ-continuous on X. Let x ∈ X and let V be an open set
in Y containing f(x). Since f is θβ-continuous, f−1(V ) is θβ-open in X containing x. Set
U = f−1(V ). Then f(U) = f(f−1(V )) ⊆ V .

(iv) ⇒ (v) Assume that (iv) holds. Let A ⊆ X and x ∈ Clθβ (A). Let G be an open set in
Y containing f(x). By assumption, there exists a θβ-open set U in X containing x such that
f(U) ⊆ G. Since x ∈ Clθβ (A), U ∩A ̸= ∅ by Definition 2.13 (ii). Thus,

∅ ̸= f(U ∩A) ⊆ f(U) ∩ f(A) ⊆ G ∩ f(A).

It follows that f(x) ∈ Cl(f(A)). Accordingly, f(Clθβ (A)) ⊆ Cl(f(A)).
(v) ⇒ (vi) Let B ⊆ Y and let A = f−1(B). Then f(A) = f(f−1(B)) ⊆ B. By assumption,

f(Clθβ (A)) ⊆ Cl(f(A)). Hence,

Clθβ (f
−1(B)) ⊆ f−1(f(Clθβ (A))) ⊆ f−1(Cl(f(A))) ⊆ f−1(Cl(B)).

(vi) ⇒ (ii) Let F be a closed subset of Y . Then F = Cl(F ). By assumption,

Clθβ (f
−1(F )) ⊆ f−1(Cl(F )) = f−1(F ) ⊆ Clθβ (f

−1(F )).

Thus, f−1(F ) = Clθβ (f
−1(F )). By Remark 2.14 (viii), f−1(F ) is θβ-closed in X.
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Theorem 3.7. Let X and Y be topological spaces and fA : X → D the characteristic function
of a subset A of X, where D is the set {0, 1} with discrete topology. Then fA is θβ-continuous
if and only if A is both θβ-open and θβ-closed.

Proof. Suppose that A is both θβ-open and θβ-closed. Let U be an open set in {0, 1}. Then

f−1
A (U) =


∅ if U = ∅,
X if U = {0, 1},
A if U = {1},

X \A if U = {0}.

Hence, f−1
A is θβ-open and so fA is θβ-continuous.

Conversely, assume that fA is θβ-continuous. Let U1 = {1} and U2 = {0}. Then U1 and
U2 are both open in {0, 1}. Thus, f−1

A (U1) = A and f−1
A (U2) = X \ A are θβ-open in X.

Accordingly, A is both θβ-open and θβ-closed.

Theorem 3.8. Let X, Y , and Z be topological spaces. If f : X → Y is θβ-continuous on X
and g : Y → Z is continuous on Y , then the composition g ◦ f : X → Z is θβ-continuous on X.

Proof. Let U be open in Z. Since g is continuous on Y , g−1(U) is open on Y . By assumption,
f is θβ-continuous on X so that (g ◦ f)−1(U) = f−1(g−1(U)) is θβ-open on X. Thus, g ◦ f is
θβ-continuous on X.

4 θβ-Continuous Functions in the Product Space

The following results are related to θβ-continuous functions from an arbitrary topological space
into the product space.

In the succeeding results, if Y =
∏
{Yα : α ∈ A} is a product space and Aα ⊆ Yα for each

α ∈ A, we denote Aα1 × · · · × Aαn ×
∏
{Yα : α /∈ K} by ⟨Aα1 , . . . , Aαn⟩, K = {α1, . . . , αn}. If

Y =
∏
{Yi : 1 ≤ i ≤ n} is a finite product, we denote A1 × · · · ×An by ⟨A1, . . . , An⟩.

Theorem 4.1. Let Y =
∏
{Yi : 1 ≤ i ≤ n} be a finite product space and ∅ ̸= Oi ⊆ Yi for each

i = 1, . . . , n. Then O = ⟨O1, . . . , On⟩ is β-open if and only if each Oi is β-open.

Proof. Suppose that O = ⟨O1, . . . , On⟩ is β-open. Then

O ⊆ Cl(Int(Cl(O)))

= Cl(Int(Cl(⟨O1, . . . , On⟩)))
= Cl(Int(⟨Cl(O1), . . . , Cl(On)⟩))
= Cl(⟨Int(Cl(O1)), . . . , Int(Cl(On))⟩)
= ⟨Cl(Int(Cl(O1))), . . . , Cl(Int(Cl(On)))⟩.

Hence, for every i = 1, . . . , n, Oi ⊆ Cl(Int(Cl(Oi))). Therefore, each Oi is β-open.
Conversely, assume that eachOi is β-open. Then for every i = 1, . . . , n, Oi ⊆ Cl(Int(Cl(Oi))).

Thus,

O = ⟨O1, . . . , On⟩
⊆ ⟨Cl(Int(Cl(O1))), . . . , Cl(Int(Cl(On)))⟩
= Cl(⟨Int(Cl(O1)), . . . , Int(Cl(On))⟩)
= Cl(Int(⟨Cl(O1), . . . , Cl(On)⟩))
= Cl(Int(Cl(⟨O1, . . . , On⟩)))
= Cl(Int(Cl(O))).
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Therefore, O is β-open.

Theorem 4.2. Let Y =
∏
{Yi : 1 ≤ i ≤ n} be a finite product space and Ai ⊆ Yi for each

i = 1, . . . , n. Then
βCl(⟨A1, . . . , An⟩) ⊆ ⟨βCl(A1), . . . , βCl(An)⟩.

Proof. Observe that

βCl(⟨A1, . . . , An⟩) = ⟨A1, · · · , An⟩ ∪ Int(Cl(Int(⟨A1, · · · , An⟩)))
= ⟨A1, · · · , An⟩ ∪ Int(Cl(⟨Int(A1), . . . , Int(An)⟩))
= ⟨A1, · · · , An⟩ ∪ Int(⟨Cl(Int(A1)), . . . Cl(Int(An))⟩)
= ⟨A1, · · · , An⟩ ∪ ⟨Int(Cl(Int(A1))), . . . , Int(Cl(Int(An)))⟩
⊆ ⟨A1 ∪ Int(Cl(Int(A1))), . . . , A2 ∪ Int(Cl(Int(An)))⟩
= ⟨βCl(A1), . . . , βCl(An)⟩

thereby completing the proof.

Theorem 4.3. Let Y =
∏
{Yi : 1 ≤ i ≤ n} be a finite product space and Ai ⊆ Yi for each

i = 1, . . . , n. Then
Clθβ (⟨A1, · · · , An⟩) ⊆ ⟨Clθβ (A1), . . . , Clθβ (An)⟩.

Proof. Let x = ⟨ai⟩ ∈ Clθβ (⟨A1, · · · , An⟩). Then for all open set U containing x, βCl(U) ∩
⟨A1, · · · , An⟩ ≠ ∅. Suppose that for each j, there exists an open set Uj containing aj such that
βCl(Uj)∩Aj = ∅. Then ⟨U1, . . . , Uj , . . . , Un⟩ is an open set that contains x and by Theorem 4.2,

βCl(⟨U1, . . . , Uj , . . . , Un⟩) ∩ ⟨A1, . . . , Aj , . . . , An⟩
⊆ ⟨βCl(U1) ∩A1, . . . , βCl(Uj) ∩Aj , . . . , βCl(Un) ∩An⟩
= ∅,

a contradiction. Therefore, x ∈ ⟨Clθβ (A1), . . . , Clθβ (An)⟩.

Theorem 4.4. Let Y =
∏
{Yi : 1 ≤ i ≤ n} be a finite product space and Ai ⊆ Yi for each

i = 1, . . . , n. Then

⟨Intθβ (A1), . . . , Intθβ (An)⟩ ⊆ Intθβ (⟨A1, · · · , An⟩).

Proof. Let x = ⟨ai⟩ ∈ ⟨Intθβ (A1), . . . , Intθβ (An)⟩. Then ai ∈ Intθβ (Ai) for all i = 1, . . . , n.
This means that there exists an open set Ui containing ai such that βCl(Ui) ⊆ Ai. Then
⟨U1, . . . , Un⟩ is an open set containing x and so by Theorem 4.2

βCl(⟨U1, . . . , Un⟩) ⊆ ⟨βCl(U1), . . . , βCl(Un)⟩ ⊆ ⟨A1, · · · , An⟩.

Thus, x ∈ Intθβ (⟨A1, · · · , An⟩).

Theorem 4.5. Let Y =
∏
{Yi : 1 ≤ i ≤ n} be a finite product space and ∅ ̸= Oi ⊆ Yi for each

i = 1, . . . , n. If each Oi is θβ-open in Yi, then O = ⟨O1, . . . , On⟩ is θβ-open in Y .

Proof. Let x = ⟨ai⟩ ∈ O. Then ai ∈ Oi for all i = 1, . . . , n. This implies that for each i, there
exists an open set Ui containing ai such that βCl(Ui) ⊆ Oi. Let U = ⟨U1, . . . , Un⟩. Then U is
open containing x and by Theorem 4.2,

βCl(U) = βCl(⟨U1, . . . , Un⟩)
⊆ ⟨βCl(U1), . . . , βCl(Un)⟩
⊆ ⟨O1, . . . , On⟩
= O.

Hence, O = ⟨O1, . . . , On⟩ is θβ-open in Y .
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Theorem 4.6. Let X =
∏
{Xi : 1 ≤ i ≤ n} and Y =

∏
{Yi : 1 ≤ i ≤ n} be finite product spaces

and for each i = 1, . . . , n, let fi : Xi → Yi be a function. If each fi is θβ-continuous on Xi, then
the function f : X → Y defined by f(⟨xi⟩) = ⟨fi(xi)⟩ is θβ-continuous on X.

Proof. Let ⟨V1, . . . , Vn⟩ be a basic open set in Y . Then

f−1(⟨V1, . . . , Vn⟩) = ⟨f−1
1 (V1), . . . , f

−1
n (Vn)⟩.

Since each fi is θβ-continuous, f
−1
i (Vi) is θβ-open in Xi. Let x = ⟨xi⟩ ∈ f−1(⟨V1, . . . , Vn⟩).

Then xi ∈ f−1
i (Vi) for all i = 1, . . . , n. This means that there exists an open set Oi containing

xi such that βCl(Oi) ⊆ f−1
i (Vi). Then ⟨O1, . . . , On⟩ is open in X and contains x. By Theorem

4.2

βCl(⟨O1, . . . , On⟩) ⊆ ⟨βCl(O1), . . . , βCl(On)⟩
⊆ ⟨f−1

1 (V1), . . . , f
−1
n (Vn)⟩

= f−1(⟨V1, . . . , Vn⟩).

This implies that f−1(⟨V1, . . . , Vn⟩) is θβ-open on X. Therefore, f is θβ-continuous on X.

Theorem 4.7. Let X be a topological space and Y =
∏
{Yα : α ∈ A} be a product space. A

function f : X → Y is θβ-continuous if and only if pα ◦ f is θβ-continuous on X for every
α ∈ A.

Proof. Assume that f is θβ-continuous on X. Let a ∈ A and Uα be open in Yα. Since pα is
continuous, p−1

α (Uα) is open in Y . Hence,

f−1(p−1
α (Uα)) = (pα ◦ f)−1(Uα)

is θβ-open in X. Therefore, pα ◦ f is θβ-continuous on X for every α ∈ A.
Conversely, suppose that each coordinate function pα ◦ f is θβ-continuous on X. Let ⟨Oα⟩

be a subbasic open set in Y . Then Oα is open in Yα for every α ∈ A and

(pα ◦ f)−1(Oα) = f−1(p−1
α (Oα) = f−1(⟨Oα⟩)

is θβ-open in X. Thus, f is θβ-continuous on X.

Corollary 4.8. Let X be a topological space, Y =
∏
{Yα : α ∈ A} be a product space, and

fα : X → Yα be a function for each α ∈ A. Let f : X → Y be the function defined by
f(x) = ⟨fα(x)⟩. Then f is θβ-continuous on X if and only if each fα is θβ-continuous on X
for each α ∈ A.

Proof. For each α ∈ A and every x ∈ X, we have

(pα ◦ f)(x) = pα(f(x)) = pα(⟨fβ(x)⟩) = fα(x).

Hence, pα ◦ f = fα. The result follows from Theorem 4.7.

5 θβ-Connected Space and Versions of Separation Axioms

In this section, we provide characterizations of θβ-connected space and some versions of sepa-
ration axioms.

Definition 5.1. A topological space X is said to be a θβ-connected if it is not the union of two
nonempty disjoint θβ-open sets. Otherwise, X is θβ-disconnected.
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Theorem 5.2. Let X be a topological space. Then the following statements are equivalent:

(i) X is θβ-connected.

(ii) The only subsets of X that are both θβ-open and θβ-closed are ∅ and X.

(iii) No θβ-continuous function f : X → D is surjective.

Proof. (i) ⇒ (ii) Suppose that X is θβ-connected. Let F ⊆ X which is both θβ-open and θβ-
closed. Then X \ F is also both θβ-open and θβ-closed. Note that X = F ∪ (X \ F ). Since X
is θβ-connected, either F = ∅ or F = X.

(ii) ⇒ (iii) Suppose that (ii) holds and let f : X → D be a θβ-continuous surjection. Then
f−1({0}) ̸= ∅, X. Since {0} is both open and closed in D, f−1({0}) is both θβ-open and
θβ-closed in X, a contradiction. Thus, (iii) follows.

(iii) ⇒ (i) Assume that (iii) holds and let X = A∪B, where A and B are nonempty disjoint
θβ-open sets. Then X is θβ-disconnected. Note that A and B are also θβ-closed sets. Consider
the characteristic function fA : X → D of A ⊆ X, which is surjective. By Theorem 3.7, fA is
θβ-continuous. This gives a contradiction. Thus, X must be θβ-connected.

Theorem 5.3. Let X be a topological space. Then X is θβ-connected if and only if X is
θ-connected.

Proof. Assume that X is θβ-connected. Then X cannot be the union of two nonempty disjoint
θβ-open sets. By Theorem 2.2 (i), every θ-open set is θβ-open. It follows that X is not a union
of θ-open sets. Accordingly, X is θ-connected.

Conversely, suppose that X is θ-connected. Then X is connected. Hence, X cannot be the
union of two nonempty disjoint open sets. Since every θβ-open set is open by Theorem 2.2
(ii), it follows that X is not the union of two nonempty disjoint θβ-open sets. Therefore, X is
θβ-connected.

Corollary 5.4. Let X be a topological space. Then X is θβ-connected if and only if X is
connected.

Proof. Follows from Theorem 5.3 and from the fact that connected and θ-connected spaces are
equivalent [21].

Remark 5.5. The following diagram holds for a subset of a topological space.

β-connected =====⇒ connected~ww�
θβ-connected ⇐====⇒ θ-connected

The reverse implication for connected and β-connected spaces is not true as shown in the
next example.

Example 5.6. Let X = {a, b, c} with topology T = {∅, X, {a}, {b}, {a, b}}. Clearly, X is
connected but not β-connected since {a, c} and {b} are two disjoint β-open sets, with X =
{a, c} ∪ {b}.

Definition 5.7. A topological space X is said to be

(i) θβ-Hausdorff if given any pair of distinct points p, q in X, there exist disjoint θβ-open
sets U and V such that p ∈ U and q ∈ V ;
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(ii) θβ-regular if for each closed set F and each point x /∈ F , there exist disjoint θβ-open sets
U and V such that x ∈ U and F ⊆ V ;

(iii) θβ-normal if for every pair of disjoint closed sets E and F ofX, there exist disjoint θβ-open
sets U and V such that E ⊆ U and F ⊆ V .

Theorem 5.8. Let X be a topological space. Then the following statements are equivalent:

(i) X is θβ-Hausdorff.

(ii) For distinct x,w ∈ X, there exists a θβ-open set U containing x such that w /∈ Clθβ (U).

(iii) For each x ∈ X,

Cx =
⋂

{Clθβ (U) : U is θβ-open containing x} = {x}.

Proof. (i) ⇒ (ii) Let X be θβ-Hausdorff. By Definition 5.7 (i), for every pair of distinct points
x,w ∈ X, there exist disjoint θβ-open sets U and V such that x ∈ U and w ∈ V . This means
that U ∩ V = ∅. Thus, w /∈ Clθβ (U).

(ii) ⇒ (iii) Suppose that (ii) holds. Note that x ∈ Cx. By assumption, for every x ̸= w,
there exists a θβ-open set U containing x such that w /∈ Clθβ (U). Thus, w /∈ Cx. Since w is
arbitrary, Cx = {x}.

(iii) ⇒ (ii) Assume that (iii) holds. Let x,w ∈ X such that x ̸= w. By assumption, x ∈ Cx.
Since x ̸= w, w /∈ Cx, that is, w /∈

⋂
{Clθβ (U) : U is θβ-open containing x}. This means that

there exists a θβ-open set U containing x such that w /∈ Clθβ (U). This completes the proof.
(ii) ⇒ (i) Suppose that (ii) holds. Let x,w ∈ X such that x ̸= w. By assumption, there

exists a θβ-open set U containing x such that w /∈ Clθβ (U). By Definition 2.13 (ii), there exists
a θβ-open set V containing w such that U ∩ V = ∅. Hence, X is θβ-Hausdorff.

Theorem 5.9. Let X be a topological space. Then the following statements are equivalent:

(i) X is θβ-regular.

(ii) For each x ∈ X and an open set U containing x, there exists a θβ-open set V such that
x ∈ V ⊆ Clθβ (V ) ⊆ U .

(iii) For each x ∈ X and closed set F with x /∈ F , there exists a θβ-open set V containing x
such that F ∩ Clθβ (V ) = ∅.

Proof. (i) ⇒ (ii) Suppose that X is θβ-regular. Let x ∈ X and U be an open set containing x.
Then X \ U is closed and x /∈ X \ U . By assumption, there exist disjoint open sets V and W
such that x ∈ V and X \ U ⊆ W . Since V ∩W = ∅, V ⊆ X \W . By Theorem 2.14 (xii),

Clθβ (V ) ⊆ Clθβ (X \W ) = X \ Intθβ (W ) = X \W.

This means that Clθβ (V ) ∩W = ∅. Consequently,

Clθβ (V ) ∩ (X \ U) ⊆ Clθβ (V ) ∩W = ∅.

Hence, Clθβ (V ) ⊆ U . Thus, x ∈ V ⊆ Clθβ (V ) ⊆ U .
(ii) ⇒ (iii) Suppose that (ii) holds. Let x ∈ X and F be a closed set with x /∈ F . Then

X \ F is open and x ∈ X \ F . By assumption, there exists a θβ-open set V containing x such
that V ⊆ Clθβ (V ) ⊆ X \ F . This means that F ∩ Clθβ (V ) = ∅.

(iii) ⇒ (i) Let x ∈ X and F be a closed set such that x /∈ F . By assumption, there exists
a θβ-open set V containing x such that F ∩ Clθβ (V ) = ∅. Observe that X \ Clθβ (V ) is a
θβ-open set and F ⊆ X \ Clθβ (V ). Since V ⊆ Clθβ (V ), V ∩X \ Clθβ (V ) = ∅. Therefore, X is
θβ-regular.
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Theorem 5.10. Let X be a topological space. Then the following statements are equivalent:

(i) X is θβ-normal.

(ii) For each closed set A and an open set U ⊇ A, there exists a θβ-open set V containing A
such that Clθβ (V ) ⊆ U .

(iii) For each pair of disjoint closed sets A and B, there exists a θβ-open set V containing A
such that Clθβ (V ) ∩B = ∅.

Proof. (i) ⇒ (ii) Assume that X is θβ-normal. Let A be a closed set and U be an open set
such that A ⊆ U . Then A and X \ U are disjoint closed sets in X. By assumption, there exist
disjoint θβ-open sets V and W such that A ⊆ V and X \ U ⊆ W . Since X \ U ⊆ W and
V ∩W = ∅, X \W ⊆ U and V ⊆ X \W . By Theorem 2.14 (xii),

Clθβ (V ) ⊆ Clθβ (X \W ) ⊆ X \ Intθβ (W ) = X \W.

Thus, Clθβ (V ) ⊆ X \W ⊆ U .
(ii) ⇒ (iii) Suppose that (ii) holds. Let A and B be a pair of disjoint closed sets in X. Then

A ⊆ X \B and X \B is open. By assumption, there exists a θβ-open set V containing A such
that Clθβ (V ) ⊆ X \B. This means that Clθβ (V ) ∩B = ∅.

(iii) ⇒ (i) Suppose that (iii) holds. Let A and B be disjoint closed sets in X. By assumption,
there exists a θβ-open set V containing A such that Clθβ (V )∩B = ∅. Then B ⊆ X \Clθβ (V ).
Observe that Clθβ (V ) is a θβ-closed set. Thus, X \Clθβ (V ) is a θβ-open set. Since V ⊆ Clθβ (V ),
V ∩ (X \ Clθβ (V )) = ∅. Accordingly, X is θβ-normal.

A topological space X is said to be a T1-space if for each p, q ∈ X with p ̸= q, there exist
open sets U and V such that p ∈ U, q /∈ U , and q ∈ V, p /∈ V .

Theorem 5.11. Let X be a T1-space. Then the following statements hold:

(i) If X is θβ-regular, then X is θβ-Hausdorff.

(ii) If X is θβ-normal, then X is θβ-regular.

Proof. (i) Assume that X is θβ-regular. Let x,w ∈ X with x ̸= w. Since X is a T1-space,
there exist open sets U and V such that x ∈ U , w /∈ U , and w ∈ V , x /∈ V . This implies
that x /∈ X \ U , w ∈ X \ U , and X \ U is closed. Since X is θβ-regular, there exist disjoint
θβ-open sets A and B such that x ∈ A and X \ U ⊆ B. Since w ∈ X \ U , w ∈ B. Thus, X is
θβ-Hausdorff.

(ii) Let X be θβ-normal. Since X is a T1-space, there exist open sets U and V such that
x ∈ U , w /∈ U , and w ∈ V , x /∈ V . This implies that x /∈ X \ U , w /∈ X \ V and X \ U and
X \ V are disjoint closed sets. Since X is θβ-normal, there exist disjoint θβ-open sets E and F
such that X \U ⊆ E and X \ V ⊆ F . Note that x ∈ X \ V ⊆ F . Hence x ∈ F and X \U ⊆ E.
Therefore, X is θβ-regular.

By Theorem 5.11, we have the following remark.

Remark 5.12. For a T1-space, the following diagram holds:

θβ-normal ====⇒ θβ-regular ====⇒ θβ-Hausdorff.
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