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Abstract5

Dengue and leptospirosis are major public health concerns in tropical countries, where6

environmental conditions favor the spread of both vector-borne and waterborne pathogens.7

This paper presents a compartmental mathematical model that captures the coinfection8

dynamics of dengue and leptospirosis, accounting for their indirect transmission routes and9

potential interactions. The model incorporates both mosquito vectors for dengue and a10

contaminated water compartment for leptospirosis, allowing for dual transmission pathways11

through which each disease spreads. The disease-free equilibrium is established, and the12

basic reproduction number R0 is derived using the next-generation matrix approach. Model13

analysis shows that the disease-free equilibrium is locally asymptotically stable when R0 <14

1, and unstable otherwise. Numerical simulations reveal that if the basic reproduction15

number is greater than one, the infection persists in the population. Sensitivity analysis16

highlights that transmission rates significantly increase infection risk, while recovery and17

decay parameters contribute to disease mitigation. These findings emphasize the importance18

of integrated control strategies targeting both vector and water environments. Future studies19

may extend this model by incorporating optimal control interventions, seasonal climate20

effects, or vaccination strategies to better understand and manage coinfection dynamics.21

1 Introduction22

The Philippines, with its tropical climate and frequent rainfall, provides a conducive environ-23

ment for the spread of vector-borne and waterborne diseases. Vector-borne diseases are illnesses24

caused by parasites, viruses, or bacteria that are transmitted by vectors such as mosquitoes,25

ticks, sandflies, fleas, and lice [24]. Several diseases are classified as vector-borne, with dengue26

fever being one of the most prevalent. Dengue is caused by the dengue virus and is primar-27

ily transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Other well-known vector-28

borne diseases include malaria, caused by Plasmodium parasites and transmitted by Anopheles29

∗Corresponding author
2020 Mathematics Subject Classification: 34A34, 34D20, 92D25
Keywords and Phrases: coinfection model, vector-borne disease, waterborne disease, basic reproduction number,
mathematical epidemiology

This research is supported by the DOST-ASTHRDP Grant

https://journals.msuiit.edu.ph/tmjm
https://msuiit.edu.ph
http://doi.org/10.62071/tmjm.v7i1.794
mailto:rhea.merontos@g.msuiit.edu.ph
mailto:randy.caga-anan@g.msuiit.edu.ph
mailto:goetz@uni-koblenz.de


R. Merontos, R. Caga-anan, and T. Goetz

mosquitoes, and Zika virus, which is also spread by Aedes mosquitoes and is associated with30

neurological complications. Environmental conditions influence vector behavior and survival,31

contributing to disease transmission dynamics [3]. On the other hand, waterborne diseases are32

caused by pathogenic microorganisms such as bacteria, viruses, protozoa, and parasites that33

spread through contaminated water sources [13]. These diseases disproportionately affect pop-34

ulations without access to clean water and adequate sanitation. Infections are typically acquired35

through the consumption of or contact with contaminated water, or indirectly through surfaces36

exposed to infectious water [18]. One of the most significant waterborne diseases in tropical37

and subtropical areas is leptospirosis, caused by the Leptospira bacterium [17]. This bacterium,38

commonly found in the urine of infected animals like rodents, can persist in freshwater for39

extended periods. Humans usually contract the disease through exposure to contaminated wa-40

ter, especially during floods or when wading in stagnant water [11]. Coinfection with diseases41

such as dengue and leptospirosis presents a serious public health challenge due to overlapping42

symptoms such as fever, muscle pain, and headache. These similarities complicate diagnosis43

and treatment, increasing the risk of misdiagnosis and placing additional pressure on healthcare44

systems [21].45

Mathematical modeling is a powerful tool for understanding the transmission dynamics of46

infectious diseases and evaluating intervention strategies. Classical models such as the Ross-47

Macdonald model have provided foundational insights into vector-borne disease transmission48

[19, 15], while models for waterborne diseases often include environmental compartments to49

account for indirect transmission. Although many studies have investigated dengue and lep-50

tospirosis individually, few have explored their combined dynamics, especially in the context51

of coinfection. This study proposes a new mathematical model that captures the coinfection52

dynamics of dengue and leptospirosis by incorporating their distinct transmission pathways:53

vector-borne for dengue and waterborne for leptospirosis. In contrast to earlier studies like that54

of Alemneh et al. [1], which used general assumptions about direct transmission and simple SIR55

models, this study presents a more realistic model based on how the diseases actually spread.56

For dengue, an SIR framework is used to reflect that people gain immunity after recovery.57

For leptospirosis, an SIWR[20] structure is applied to include the role of contaminated water58

in spreading the disease. By explicitly modeling both mosquito dynamics and environmental59

contamination, the framework provides a realistic portrayal of how these diseases spread in60

tropical regions, especially under conditions of flooding and poor sanitation. It captures the61

potential interaction between the two pathways, which are typically examined separately in62

existing studies.63

2 Model Formulation64

The total human population at time t, denoted byNH(t), is subdivided into seven compartments65

denoted by the following variables: SH(t) represents the number of susceptible individuals, IV (t)66

denotes the number of individuals infected with the vector-borne disease, IW (t) represents the67

number of individuals infected with the waterborne disease, and IVW (t) accounts for those68

infected with both diseases. The recovered compartments include RV (t) for individuals who69

recovered from the vector-borne disease, RW (t) for those who recovered from the waterborne70

disease, and RVW (t) for individuals who recovered from both diseases. The vector population71

consists of susceptible (SA) and infected (IA) compartments, while the water compartment (W )72

represents the concentration of pathogens from the waterborne infection.73

Individuals are assumed to enter the human population through birth and are initially74

susceptible. The total human population is considered constant, as birth and natural death75

occur at the same rate, denoted by µH . Susceptible humans SH can become infected in two ways;76
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through contact with infected vectors or exposure to contaminated water. The vector-borne77

transmission occurs when a susceptible human is bitten by an infected mosquito, with infection78

occurring at a rate proportional to the density of infected vectors, modeled by βV
IA
NH

. In79

contrast, waterborne transmission is governed by the environmental concentration of pathogens,80

such that individuals in SH move to IW at a rate βWW . Once infected with a single disease,81

individuals may follow different pathways. Those in the vector-infected class IV may recover82

at rate ηV and move to RV , or may acquire a secondary waterborne infection, transitioning to83

the coinfected class IVW . Similarly, individuals in the water-infected class IW may recover at84

rate ηW and move to RW , or acquire a secondary vector-borne infection, also entering IVW .85

Coinfected individuals in IVW recover from both diseases at a combined rate φ and move to86

the recovery class RVW . All human compartments are subject to natural mortality at rate µH ,87

and there is no reinfection from recovery classes, as immunity is assumed.88

The mosquito vector population SA increases through birth rate µANA, and declines due to89

infection from biting humans in IV and IVW , which causes transition to the infected vector class90

IA at rate ρA
IV +IV W

NH
. Infected vectors die at rate µA, and do not recover, modeling lifelong91

infectiousness. For the water component W , the concentration of pathogen in water increases92

due to bacterial shedding from individuals in IW and IVW , at rate θ, and declines through93

natural decay at rate δ. The water compartment W tracks the concentration of bacterial94

pathogens in the environment. This compartment increases as infected individuals in IW and95

IVW shed bacteria into the water at a constant rate θ, representing contributions through urine,96

feces, or bodily fluids [4]. The pathogen load in the water decreases over time due to natural97

decay at a constant rate δ. The flow diagram of the model is given in Figure 1.98

Figure 1: State-flow diagram of the proposed model.
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The epidemic model is described by the following system of differential equations:99

dSH

dt
= µHNH − βV SH

IA
NH

− βWSHW − µHSH (1)

dIV
dt

= βV SH
IA
NH

− βW IV W − (ηV + µH) IV (2)

dIW
dt

= βWSHW − βV IW
IA
NH

− (ηW + µH)IW (3)

dIVW

dt
= βW IV W + βV IW

IA
NH

− (ηV + ηW + φ+ µH)IVW (4)

dRV

dt
= ηV (IV + IVW )− µHRV (5)

dRW

dt
= ηW (IW + IVW )− µHRW (6)

dRVW

dt
= φIVW − µHRVW (7)

dSA

dt
= µANA − ρA (IV + IVW )

NH
SA − µASA (8)

dIA
dt

=
ρA (IV + IVW )

NH
SA − µAIA (9)

dW

dt
= θ(IW + IVW )− δW. (10)

This system of equations is epidemiologically and mathematically well-posed on the domain

D =
{
(SH , IV , IW , IVW , RV , RW , RVW , SA, IA,W ) ∈ R10

+ |

SH > 0, IV ≥ 0, IW ≥ 0, IVW ≥ 0, RV ≥ 0, RW ≥ 0,

RVW ≥ 0, SA > 0, IA ≥ 0,W ≥ 0
}
.

The space R10
+ denotes the positive orthant in R10.100

3 Main Results101

3.1 Model Analysis102

Theorem 3.1. Assuming that the initial conditions lie in D, the system of equations (1)− (10)103

has a unique solution that exists and remains nonnegative in D for all time t ≥ 0.104

Proof. The right-hand side of the system of equations (1)–(10) is continuous with continuous105

partial derivatives in D. Hence, by the Cauchy-Lipschitz theorem, the system admits a unique106

local solution for initial conditions in D.107

We now show that the set D is positively invariant, that is, any solution starting in D108

remains in D for all t ≥ 0. This is equivalent to showing that each compartment remains109

nonnegative over time.110

Consider SH = 0. Then,
dSH

dt
= µHNH > 0,
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which implies that SH(t) remains nonnegative for all t ≥ 0. Similarly, if IV = IW = IVW = 0
and IA,W ≥ 0, then

dIV
dt

= βV SH
IA
NH

≥ 0,

dIW
dt

= βWSHW ≥ 0,

dIVW

dt
= βW IV W + βV IW

IA
NH

≥ 0.

Thus, IV (t), IW (t), and IVW (t) remain nonnegative for all t ≥ 0. If RV = RW = RVW = 0,
then

dRV

dt
= ηV (IV + IVW ) ≥ 0,

dRW

dt
= ηW (IW + IVW ) ≥ 0,

dRVW

dt
= φIVW ≥ 0,

so RV (t), RW (t), and RVW (t) remain nonnegative for all t ≥ 0.111

For the vector and environmental compartments, if SA = 0, then

dSA

dt
= µANA ≥ 0,

and if IA = 0, then
dIA
dt

=
ρA(IV + IVW )

NH
SA ≥ 0.

Also, if W = 0, then
dW

dt
= θ(IW + IVW ) ≥ 0.

Hence, SA(t), IA(t), and W (t) also remain nonnegative for all t ≥ 0. Hence, all state variables112

remain in the nonnegative orthant for all t ≥ 0, and the set D is positively invariant.113

Now, to show boundedness, define the total human and vector populations by

NH(t) = SH(t) + IV (t) + IW (t) + IVW (t) +RV (t) +RW (t) +RVW (t),

NA(t) = SA(t) + IA(t).

Adding equations (1)–(7) and using the fact that the birth and death rates are equal,

dNH

dt
= µHNH − µHNH = 0 ⇒ NH(t) = NH(0) for all t ≥ 0.

Similarly, adding equations (8)–(9),

dNA

dt
= µANA − µANA = 0 ⇒ NA(t) = NA(0) for all t ≥ 0.

Thus, the human and vector populations remain constant and bounded. Since all compartments114

are nonnegative and their sums are bounded above by NH(0) and NA(0), each state variable is115

uniformly bounded on [0,∞). Therefore, the local solution remains in D for all t ≥ 0.116
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Definition 3.2. [2]A steady state solution is a solution to the system that is constant for any
time t. That is, a solution (SH(t), IV (t), IW (t), IVW (t), RV (t), RW (t), RVW (t), SA(t), IA(t),W (t))
such that (

dSH

dt
,
dIV
dt

,
dIW
dt

,
dIVW

dt
,
dRV

dt
,
dRW

dt
,
dRVW

dt
,
dSA

dt
,
dIA
dt

,
dW

dt

)
= 0⃗.

Definition 3.3. [2] A disease-free equilibrium (DFE) is a steady state solution of an epidemic117

model with all infected variables equal to zero.118

Theorem 3.4. The disease free equilibrium (DFE) point of the model in (1)− (10) is given by

E0 = (NH , 0, 0, 0, 0, 0, 0, NA, 0, 0).

Proof. Let (SH , IV , IW , IVW , RV , RW , RVW , SA, IA,W ) be a DFE point. Then IV = IW =

IVW = IA = W = 0 and

(
dSH

dt
,
dIV
dt

,
dIW
dt

,
dIVW

dt
,
dRV

dt
,
dRW

dt
,
dRVW

dt
,
dSA

dt
,
dIA
dt

,
dW

dt

)
= 0⃗.

Substituting these values to our system of equations (1)− (10), we have

µHNH − µHSH = 0

µANA − µASA = 0.

Since µA, µH > 0, we get SH = NH and SA = NA.119

3.2 Reproduction Number120

The basic reproduction number for a compartmental model is computed by using the next-121

generation matrix method. This method was initially introduced by Diekmann et al. [6] and122

P. van den Driessche and Watmough [22]. In the next generation method, R0 is defined as the123

largest eigenvalue or spectral radius of the next generation operator K. The formation of K124

involves in formulating the infected and non-infected compartments from the model equations.125

Definition 3.5. [6]The basic reproduction number, R0 is the average number of secondary126

infectious cases when a single infectious individual is introduced into the whole susceptible127

population. The disease dies out if the basic reproduction number R0 < 1, and the disease128

persists whenever R0 > 1.129

Theorem 3.6. The basic reproduction number for system (1)-(10) is R0 = max{R1,R2} where

R1 =

√
ρAβV NA

µA(ηV + µH)NH
and R2 =

√
θβWNH

δ(ηW + µH)
.

Proof. Let X be a vector of infected classes and Y be a vector of the other classes. Hence,

X =


IV
IW
IVW

IA
W

 ,Y =


SH

RV

RW

RVW

SA

 .
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Let F(X,Y) be the vector of new infection rates(flows from Y to X) and let V(X,Y) be the
vector of all other rates (not new infections). Then,

F(X) =


βV SHIA

NH

βWSHW

βW IV W + βV IW IA
NH

ρA(IV +IV W )SA

NH

θ(IW + IVW )

 =


F1

F2

F3

F4

F5



V(X) =


βW IV W + (ηV + µH)IV
βV IW

IA
NH

+ (ηW + µH)IW
(ηV + ηW + φ+ µH)IVW

µAIA
δW

 =


V1

V2

V3

V4

V5

 .

The next generation operator formed is K = FV −1 where F =

[
∂F(E0)

∂X

]
and V =

[
∂V(E0)

∂X

]
,

where E0 is the disease-free equilibrium. This becomes

F =


0 0 0 βV 0
0 0 0 0 βWNH

0 0 0 0 0
ρANA
NH

0 ρANA
NH

0 0

0 θ θ 0 0

 ,

V =


ηV + µH 0 0 0 0

0 ηW + µH 0 0 0
0 0 ηV + ηW + φ+ µH 0 0
0 0 0 µA 0
0 0 0 0 δ

 .

Thus, the next generation matrix is given by

K = FV −1

=


0 0 0 βV 0
0 0 0 0 βWNH

0 0 0 0 0
ρANA
NH

0 ρANA
NH

0 0

0 θ θ 0 0




1
ηV +µH

0 0 0 0

0 1
ηW+µH

0 0 0

0 0 1
ηV +ηW+φ+µH

0 0

0 0 0 1
µA

0

0 0 0 0 1
δ



=


0 0 0 βV

µA
0

0 0 0 0 βWNH
δ

0 0 0 0 0
ρANA

NH(ηV +µH) 0 ρANA

NH(ηV +ηW+φ+µH) 0 0

0 θ
ηW+µH

θ
ηV +ηW+φ+µH

0 0

 .

Solving for eigenvalues of K, the characteristic matrix K − λI is given by

K − λI =


−λ 0 0 βV

µA
0

0 −λ 0 0 βWNH
δ

0 0 −λ 0 0
ρANA

NH(ηV +µH) 0 ρANA

NH(ηV +ηW+φ+µH) −λ 0

0 θ
ηW+µH

θ
ηV +ηW+φ+µH

0 −λ


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and by cofactor expansion, the determinant is computed as

det |K − λI| = 0

−λ

[
λ2

(
λ2 − θβWNH

δ(ηW + µH)

)
− ρAβV NA

µA(ηV + µH)NH

(
λ2 − θβWNH

δ(ηW + µH)

)]
= 0

−λ

[(
λ2 − ρAβV NA

µA(ηV + µH)NH

)(
λ2 − θβWNH

δ(ηW + µH)

)]
= 0.

The eigenvalues are

λ = 0,

λ2 − ρAβV NA

µA(ηV + µH)NH
= 0 =⇒ λ = ±

√
ρAβV NA

µA(ηV + µH)NH
and

λ2 − θβWNH

δ(ηW + µH)
= 0 =⇒ λ = ±

√
θβWNH

δ(ηW + µH)
.

Thus, by taking the dominant eigenvalue of matrix K, we have R0 = max{R1,R2} where

R1 =

√
ρAβV NA

µA(ηV + µH)NH
and R2 =

√
θβWNH

δ(ηW + µH)
.

Here, R1 captures the contribution from vector-borne transmission, while R2 reflects the effect130

of waterborne transmission.131

3.3 Stability of the disease-free equilibrium point132

The stability of the equilibrium point can be performed by calculating the roots of the eigen-
equation

det(J(E0)− I10λ) = 0

where J(E0) is the Jacobian evaluated at the equilibrium point, and I10 is the identity matrix.133

Since there are ten differential equations, the characteristic polynomial of degree 10. Let the134

matrix for equations (1) - (10) be given by135

[
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

]T
=

[
dSH

dt

dIV
dt

dIW
dt

dIVW

dt

dRV

dt

dRW

dt

dRVW

dt

dSA

dt

dIA
dt

dW

dt

]T
where the independent variables are

[
SH IV IW IVW RV RW RVW SA IA W

]T
=

[
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

]T
.

The superscript T refers to transpose of the matrix.136

Hence, J(x1, x2, . . . , x10) =

[
∂yi
∂xj

]
for i = 1, . . . , 10. The Jacobian matrix is the 10 × 10
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matrix given by

J(x1, x2, . . . , x10) =



J11 0 0 0 0 0 0 0 J19 J1,10
J21 J22 0 0 0 0 0 0 J29 J2,10
J31 0 J33 0 0 0 0 0 J39 J3,10
0 J42 J43 J44 0 0 0 0 J49 J4,10
0 J52 0 J54 J55 0 0 0 0 0
0 0 J63 J64 0 J66 0 0 0 0
0 0 0 J74 0 0 J77 0 0 0
0 J82 0 J84 0 0 0 J88 0 0
0 J92 0 J94 0 0 0 J98 J99 0
0 0 J10,3 J10,4 0 0 0 0 0 J10,10


where,137

J11 = −βV
IA
NH

− βWW − µH

J19 = −βV
SH

NH

J1,10 = −βWSH

J21 = βV
IA
NH

J22 = βWW − (ηV + µH)

J29 = βV
SH

NH

J2,10 = −βW IV

J31 = βWW

J33 = −βV
IA
NH

− (ηW + µH)

J39 = −βV
IW
NH

J3,10 = βWSH

J42 = βWW

J43 = βV
IA
NH

J44 = −(ηV + ηW + φ+ µH)

J49 = βV
IW
NH

J4,10 = βW IV

J52 = ηV

J54 = ηV

J55 = −µH

J63 = ηW

J64 = ηW

J66 = µH

J74 = φ

J77 = −µH

J82 = −ρASA

NH

J84 = −ρASA

NH

J88 = −ρA(IV + IW )

NH
− µA

J92 =
ρASA

NH

J94 =
ρASA

NH

J98 =
ρA(IV + IW )

NH

J99 = −µA

J10,3 = θ

J10,4 = θ

J10,10 = −δ .

Theorem 3.7. [2, Theorem 2] Let A ∈ Rn×n. Let u∗ be the equilibrium point of the initial138

value problem139

u′(t) = Au(t)

u(0) = u0.
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This equilibrium is:140

(i) locally asymptotically stable if ∀λ ∈ σ(A), Re(λ) < 0;141

(ii) stable if ∀λ ∈ σ(A), Re(λ) < 0 or Re(λ) = 0 and dim(Ker(A−λI)) = m, where m is the142

multiplicity of λ;143

(iii) unstable if ∃λ ∈ σ(A), Re(λ) > 0,144

where σ(A) is the set of eigenvalues of A, Re(λ) represents the real part of the eigenvalue λ145

and dim(Ker(A−λI)) denotes the dimension of the kernel (null space) of the matrix (A−λI),146

where λ is an eigenvalue of A.147

Theorem 3.8. The disease-free equilibrium point (NH , 0, 0, 0, 0, 0, 0, NA, 0, 0) is locally asymp-148

totically stable if R0 < 1 and unstable if R0 > 1.149

150

Proof. The Jacobian matrix of the system at disease-free equilibrium (DFE) is given by151

J =



−µH 0 0 0 0 0 0 0 −βV −βWNH
0 −(ηV + µH ) 0 0 0 0 0 0 βV 0
0 0 −(ηW + µH ) 0 0 0 0 0 0 βWNH
0 0 0 −(ηV + ηW + φ + µH ) 0 0 0 0 0 0
0 ηV 0 ηV −µH 0 0 0 0 0
0 0 ηW ηW 0 −µH 0 0 0 0
0 0 0 φ 0 0 −µH 0 0 0

0 − ρANA
NH

0 − ρANA
NH

0 0 0 −µA 0 0

0
ρANA
NH

0
ρANA
NH

0 0 0 0 −µA 0

0 0 θ θ 0 0 0 0 0 −δ


Using the cofactor expansion, the determinant of J becomes

det |J − λI| =(−(ηV + ηW + φ+ µH)− λ)(−µH − λ)4(−µA − λ)[
(−θβWNH)(λ2 + (µA + ηV + µH)λ+ (ηV + µH)µA) +

(
λ2 + (ηW + µH + δ)λ+

δ(ηW + µH)
)(
λ2 + (µA + ηV + µH)λ+ (ηV + µH)µA − βV ρANA

NH

)]
.

Hence, the eigenvalues are

λ1 = −ηV − ηW − µH − φ

λ2 = −µH(multiplicity of 4)

λ3 = −µA

λ4,5 = −ηV
2

− µA

2
− µH

2
±

√
NH

(
4NAβV ρA +NH

(
ηV − µA + µH)2

))
2NH

λ6,7 = −δ

2
− ηW

2
− µH

2
±

√
4NHβW θ + (δ − ηW − µH)2

2
.

Since λ1, λ2, λ3 are always negative, then the stability of DFE is determined by λ4,5 and

λ6,7. With R1 =
√

ρAβV NA

µA(ηV +µH)NH
gives

4NAβV ρA = 4NHR2
1µA(ηV + µH)
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and substituting it to λ4,5, yields

λ4,5 = −ηV
2

− µA

2
− µH

2
±

√
NH

(
4NHR2

1µA(ηV + µH) +NH

(
ηV − µA + µH)2

))
2NH

= −ηV
2

− µA

2
− µH

2
±

√
N2

H

(
4R2

1µA(ηV + µH) +
(
ηV − µA + µH)2

))
2NH

λ4,5 = −ηV
2

− µA

2
− µH

2
±

√
4R2

1µA(ηV + µH) + (ηV − µA + µH)2

2
.

Moreover, with R2 =
√

θβWNH

δ(ηW+µH) , gives 4NHβW θ = 4R2
2δ(ηW + µH). Substituting it to

λ6,7, the expression becomes

λ6,7 = −δ

2
− ηW

2
− µH

2
±

√
4R2

2δ(ηW + µH) + (δ − ηW − µH)2

2
.

Observe that 0 < ηV , ηW , µH , µA, δ < 1. Consequently, when R1 < 1, the term152 √
4R2

1µA(ηV + µH) + (ηV − µA + µH)2

is real, positive, and relatively small compared to the negative terms. Similarly, when R2 < 1,153

the expression154 √
4R2

2δ(ηW + µH) + (δ − ηW − µH)2

will not dominate the negative terms. Hence, λ4,5,6,7 are all negative. Therefore, by Theorem 3.7,155

if R0 = max{R1,R2} < 1, the disease-free equilibrium point (NH , 0, 0, 0, 0, 0, 0, NA, 0, 0) is156

locally asymptotically stable; and if R0 > 1, the DFE is unstable.157

3.4 Sensitivity Analysis158

Sensitivity analysis is performed to identify the most influential parameters for the spreading
out as well as control of infection in the community. The normalized forward sensitivity index
of R0 with respect to a parameter ,say p is given by

γR0
p =

∂R0

∂p
× p

R0
.

Positive (negative) values indicate a positive (negative) correlation with R0, whereas the mag-
nitude determines the importance of the parameter [8]. Since R0 = max{R1,R2}, we obtain
the sensitivity analysis of R1 and R2 separately in the following way:

γR1
βV

=
∂R1

∂βV
× βV

R1

=
1

2

(
ρAβV NA

µA(ηV + µH)NH

)− 1
2
(

ρANA

µA(ηV + µH)NH

)(
βV
R1

)
=

1

2

γR1
ρA

=
∂R1

∂ρA
× ρA

R1

=
1

2

(
ρAβV NA

µA(ηV + µH)NH

)− 1
2
(

βV NA

µA(ηV + µH)NH

)(
ρA
R1

)
=

1

2
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γR1
ηV

=
∂R1

∂ηV
× ηV

R1

=
1

2

(
ρAβV NA

µA(ηV + µH)NH

)− 1
2
(
− ρAβV NA

µANH(ηV + µH)2

)(
ηV
R1

)
= − ηV

2(ηV + µH)
< 0

γR1
µA

=
∂R1

∂µA
× µA

R1

=
1

2

(
ρAβV NA

µA(ηV + µH)NH

)− 1
2
(
− ρAβV NA

µ2
A(ηV + µH)NH

)(
µA

R1

)
= −1

2

γR1
µH

=
∂R1

∂µH
× µH

R1

=
1

2

(
ρAβV NA

µA(ηV + µH)NH

)− 1
2
(
− ρAβV NA

µANH(ηV + µH)2

)(
µH

R1

)
= − µH

2(ηV + µH)
< 0

γR2
βW

=
∂R2

∂βW
× βW

R2

=
1

2

(
θβWNH

δ(ηW + µH)

)− 1
2
(

θNH

δ(ηW + µH)

)(
βW
R2

)
=

1

2

γR2
θ =

∂R2

∂θ
× θ

R2

=
1

2

(
θβWNH

δ(ηW + µH)

)− 1
2
(

βWNH

δ(ηW + µH)

)(
θ

R2

)
=

1

2

γR2
δ =

∂R2

∂δ
× δ

R2

=
1

2

(
θβWNH

δ(ηW + µH)

)−1/2(
− θβWNH

δ2(ηW + µH)

)(
δ

R2

)
= −1

2

γR2
ηW

=
∂R2

∂ηW
× ηW

R2

=
1

2

(
θβWNH

δ(ηW + µH)

)− 1
2
(
− θβWNH

δ(ηW + µH)2

)(
ηW
R2

)
= − ηW

2(ηW + µH)

γR2
µH

=
∂R2

∂µH
× µH

R2

=
1

2

(
θβWNH

δ(ηW + µH)

)− 1
2
(
− θβWNH

δ(ηW + µH)2

)(
µH

R2

)
= − µH

2(ηW + µH)
.

Parameters with positive sensitivity indices, such as βV , ρA, βW , and θ, play a crucial role159

in increasing the spread of vector-borne, waterborne diseases, and their coinfection within the160

community. Conversely, parameters with negative sensitivity indices, including ηV , ηW , µA,161

µH , and δ, are key to reducing the transmission of these diseases, highlighting their potential162

for disease control when their values are increased.163
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Parameter Baseline Value Sensitivity Index

βV 0.75 +1
2

ρA 0.375 +1
2

ηV 0.3 -0.4286
µA 0.1 −1

2
βW 0.005 +1

2
θ 0.0002 +1

2
δ 0.5 −1

2
ηW 0.2 -0.4

Table 1: Sensitivity indices of R0 evaluated at the baseline parameter values.

4 Numerical Simulation164

In this section, model simulations were performed using Python to evaluate the model’s behavior165

under different scenarios. The system of differential equations (1)–(10) was numerically solved166

using the adaptive Runge-Kutta method of order 45 (RK45). A semi-logarithmic scale was167

employed in plotting the compartmental dynamics to better illustrate exponential decay and168

oscillatory behavior, which are less visible in linear plots. In semi-log plots, exponential growth169

or decay appears as a straight line, making it easier to observe both the early fast changes and170

long-term behavior of the system.171

The simulations were performed to evaluate model behavior under different parameter172

regimes and to check the stability properties of the disease-free equilibrium and endemic equi-173

librium. The parameter values used for the simulations are summarized in Table 3, and the174

initial conditions are given in Table 2.175

State Variable Description Value

SH(0) Initial condition for susceptible humans 500,000
IV (0) Initial condition for vector-borne infected humans 7,000
IW (0) Initial condition for waterborne infected humans 4,000
IVW (0) Initial condition for coinfected humans 800
RV (0) Initial condition for recovered from vector-borne disease 0
RW (0) Initial condition for recovered from waterborne disease 0
RVW (0) Initial condition for recovered from both diseases 0
SA(0) Initial condition for susceptible vectors 200,000
IA(0) Initial condition for infected vectors 20,000
W (0) Initial condition for waterborne pathogen concentration 100

Table 2: Initial conditions of the model.
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Notation Description Value Source

βV Transmission rate of the
vector-borne disease

0.75 [5]

βW Transmission rate of the wa-
terborne disease

0.005 Assumed

θ Shedding rate of pathogens
into water

0.0002 [7]

δ Natural decay rate of the
pathogen in water

0.5 [16]

ηV Recovery rate from the
vector-borne disease

0.3 [9]

ηW Recovery rate from the water-
borne disease

0.2 [10]

φ Recovery rate from coinfec-
tion

0.05 Assumed

µH Birth (and death) rate of hu-
mans

0.05 Assumed

µA Birth (and death) rate of vec-
tors

0.1 [14]

ρA Effective contact rate for
vector-borne transmission

0.375 [5, 14]

Table 3: Parameters of the model.

4.1 Effect of transmission rates βV and βW on coinfectious individual176

Figure 2: Effect of vector-borne transmission
rate (βV ) on coinfectious population

Figure 3: Effect of waterborne transmission
rate (βW ) on coinfectious population

An increase in the vector-borne transmission rate (βV ) leads to a higher number of coinfected177

individuals, as observed in Figure 2. This behavior is expected since a higher βV implies an178

increased probability of susceptible individuals acquiring the infection through contact with179

infected vectors. The curve exhibits positive sensitivity, indicating that βV significantly con-180

tributes to the spread of coinfection. Similarly, Figure 3 illustrates the effect of the waterborne181

transmission rate (βW ) on coinfectious individuals. Increasing βW results in a rise in coinfection182
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cases due to greater exposure to contaminated water sources, demonstrating the critical role of183

waterborne transmission in disease persistence.184

4.2 Effect of recovery rates ηV and ηW on coinfectious individual185

Figure 4: Effect of vector-borne recovery
rate(ηv) on coinfectious population

Figure 5: Effect of waterborne recovery
rate(ηw) on coinfectious population

On the other hand, recovery rates show an inverse relationship with the coinfected population.186

Figure 4 presents the effect of the vector-borne recovery rate (ηV ), where an increase in ηV187

reduces the number of coinfected individuals. This occurs because a higher recovery rate means188

infected individuals clear the infection more rapidly, reducing the duration of disease transmis-189

sion. Similarly, Figure 5 displays the impact of the waterborne recovery rate (ηW ), showing that190

an increase in ηW leads to a decline in coinfection cases. These results highlight the importance191

of improving treatment strategies to accelerate recovery and mitigate disease spread.192

The sensitivity analysis, as summarized in Table 1, confirms these findings. The transmission193

rates (βV , βW ) have positive sensitivity indices, meaning that increasing these rates amplifies194

disease transmission. In contrast, the recovery rates (ηV , ηW ) have negative sensitivity indices,195

signifying their role in reducing the infection burden. These numerical results emphasize that196

controlling transmission through vector and water sanitation interventions, along with enhanc-197

ing recovery rates through medical treatment, are crucial strategies for mitigating the impact198

of coinfections.199

4.3 Model Dynamics when R0 < 1200

In Figure 6, both the vector-borne and waterborne basic reproduction numbers, R1 and R2, are201

less than one. This means the infection cannot spread widely, and all the infected compartments202

eventually go to zero. The susceptible human population starts to decrease but later rises again,203

while recovered individuals increase and then stabilize. The number of infected vectors and the204

amount of pathogen in water also drop to zero. This shows that the system tends toward the205

disease-free equilibrium over time.206
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Figure 6: Plot showing the dynamics of the model compartments when R1 ≈ 0.2478 < 1 and
R2 ≈ 0.2023 < 1. Parameter values used: ρA = 0.05, βV = 0.1, θ = 0.0001, βW = 0.0001.
These ensure R0 < 1.

4.4 Model Dynamics when R0 > 1207

Figure 7 shows the behavior of all model compartments under the condition R0 > 1. In208

this scenario, the infection persists in the population. The infected human compartments,209

infected vectors, and environmental pathogen concentration exhibit oscillations before reaching210

an endemic equilibrium. The susceptible human population declines and does not return to211

its original level, indicating sustained transmission and the failure of the disease-free state to212

remain stable.213
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Figure 7: Plot showing the dynamics of the model compartments when R1 > 1 and R2 > 1.
Parameter values used are given in Table 3. These parameter values lead to R0 > 1 indicating
the potential for epidemic spread.

To further illustrate this behavior, Figure 8 provides a detailed view of the infected com-214

partments. Specifically, the vector-borne infected population IV experiences an early, sharp215

outbreak, followed by a secondary peak around day 770. This is primarily driven by the high216

transmission rate (βV = 0.75) and the initially large infected vector population. In contrast,217

the waterborne infection IW exhibits a delayed resurgence due to slower environmental accu-218
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mulation of pathogens governed by the shedding rate θ and decay rate δ. Figure 8 also shows219

that coinfection (IVW ) only becomes significant when both IV and IW rise together, around day220

700. Despite starting with 800 individuals, it quickly declines and only resurges briefly, with a221

peak near day 800. The short duration is due to rapid recovery and removal from the coinfected222

class. These results highlight that the vector-borne pathway drives early transmission, while223

coinfection depends on the combined presence of both single infections.224

Figure 8: Dynamics over time of the vector-borne (IV ), waterborne (IW ), and coinfected (IVW )
human compartments over a 1000-day simulation.

These results show that when both reproduction numbers are less than one, the disease will225

eventually disappear. But if even one of them is greater than one, the infection can remain in the226

population for a long time. Therefore, controlling both the vector and waterborne transmission227

is necessary to eliminate the disease.228

5 Conclusion229

In this study, a mathematical model was formulated to investigate the coinfection dynamics230

of dengue and leptospirosis, two diseases of significant public health concern in tropical re-231

gions. The model incorporated indirect transmission mechanisms: vector-borne transmission232

for dengue and waterborne transmission for leptospirosis. The biological and mathematical233

well-posedness of the system was established by proving the positivity and boundedness of234

solutions within a feasible domain. Furthermore, the disease-free equilibrium was identified235

and analyzed using the next-generation matrix method, yielding a basic reproduction number236

expressed as R0 = max{R1,R2}. The model analysis demonstrated that when both reproduc-237

tion numbers are less than one, the disease-free equilibrium is locally asymptotically stable.238

Conversely, if either reproduction number exceeds one, the infection persists, and the system239

exhibits oscillatory dynamics before reaching an endemic state. Sensitivity analysis further re-240

vealed that parameters associated with transmission, such as the vector-borne transmission rate241

and pathogen shedding rate, positively influence disease persistence, while recovery and decay242

rates have mitigating effects. The numerical simulations supported the theoretical findings and243

provided insight into the dynamics of each compartment over time. Simulations under different244

scenarios illustrated the interplay between the two transmission pathways and the critical role245

of coinfection dynamics. It was observed that coinfection becomes significant only when both246
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single infections peak simultaneously. The results emphasize the need for integrated control247

strategies that address both vector management and water sanitation. This model provides a248

robust framework for understanding how dual transmission mechanisms interact and influence249

disease outcomes in endemic settings. For future research, it is recommended to extend the250

model to include seasonal variations in transmission rates, optimal control strategies such as251

targeted interventions, and the impact of vaccination. Further extensions may consider the252

incorporation of stochastic effects or spatial heterogeneity to reflect real-world complexity.253
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