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Abstract

Dengue and leptospirosis are major public health concerns in tropical countries, where
environmental conditions favor the spread of both vector-borne and waterborne pathogens.
This paper presents a compartmental mathematical model that captures the coinfection
dynamics of dengue and leptospirosis, accounting for their indirect transmission routes and
potential interactions. The model incorporates both mosquito vectors for dengue and a
contaminated water compartment for leptospirosis, allowing for dual transmission pathways
through which each disease spreads. The disease-free equilibrium is established, and the
basic reproduction number R is derived using the next-generation matrix approach. Model
analysis shows that the disease-free equilibrium is locally asymptotically stable when Ry <
1, and unstable otherwise. Numerical simulations reveal that if the basic reproduction
number is greater than one, the infection persists in the population. Sensitivity analysis
highlights that transmission rates significantly increase infection risk, while recovery and
decay parameters contribute to disease mitigation. These findings emphasize the importance
of integrated control strategies targeting both vector and water environments. Future studies
may extend this model by incorporating optimal control interventions, seasonal climate
effects, or vaccination strategies to better understand and manage coinfection dynamics.

1 Introduction

The Philippines, with its tropical climate and frequent rainfall, provides a conducive environ-
ment for the spread of vector-borne and waterborne diseases. Vector-borne diseases are illnesses
caused by parasites, viruses, or bacteria that are transmitted by vectors such as mosquitoes,
ticks, sandflies, fleas, and lice [24]. Several diseases are classified as vector-borne, with dengue
fever being one of the most prevalent. Dengue is caused by the dengue virus and is primar-
ily transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Other well-known vector-
borne diseases include malaria, caused by Plasmodium parasites and transmitted by Anopheles
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mosquitoes, and Zika virus, which is also spread by Aedes mosquitoes and is associated with
neurological complications. Environmental conditions influence vector behavior and survival,
contributing to disease transmission dynamics [3]. On the other hand, waterborne diseases are
caused by pathogenic microorganisms such as bacteria, viruses, protozoa, and parasites that
spread through contaminated water sources [13]. These diseases disproportionately affect pop-
ulations without access to clean water and adequate sanitation. Infections are typically acquired
through the consumption of or contact with contaminated water, or indirectly through surfaces
exposed to infectious water [18]. One of the most significant waterborne diseases in tropical
and subtropical areas is leptospirosis, caused by the Leptospira bacterium [17]. This bacterium,
commonly found in the urine of infected animals like rodents, can persist in freshwater for
extended periods. Humans usually contract the disease through exposure to contaminated wa-
ter, especially during floods or when wading in stagnant water [11]. Coinfection with diseases
such as dengue and leptospirosis presents a serious public health challenge due to overlapping
symptoms such as fever, muscle pain, and headache. These similarities complicate diagnosis
and treatment, increasing the risk of misdiagnosis and placing additional pressure on healthcare
systems [21].

Mathematical modeling is a powerful tool for understanding the transmission dynamics of
infectious diseases and evaluating intervention strategies. Classical models such as the Ross-
Macdonald model have provided foundational insights into vector-borne disease transmission
[19, 15], while models for waterborne diseases often include environmental compartments to
account for indirect transmission. Although many studies have investigated dengue and lep-
tospirosis individually, few have explored their combined dynamics, especially in the context
of coinfection. This study proposes a new mathematical model that captures the coinfection
dynamics of dengue and leptospirosis by incorporating their distinct transmission pathways:
vector-borne for dengue and waterborne for leptospirosis. In contrast to earlier studies like that
of Alemneh et al. [1], which used general assumptions about direct transmission and simple SIR
models, this study presents a more realistic model based on how the diseases actually spread.
For dengue, an SIR framework is used to reflect that people gain immunity after recovery.
For leptospirosis, an SIWR][20] structure is applied to include the role of contaminated water
in spreading the disease. By explicitly modeling both mosquito dynamics and environmental
contamination, the framework provides a realistic portrayal of how these diseases spread in
tropical regions, especially under conditions of flooding and poor sanitation. It captures the
potential interaction between the two pathways, which are typically examined separately in
existing studies.

2 Model Formulation

The total human population at time ¢, denoted by N (t), is subdivided into seven compartments
denoted by the following variables: Sp () represents the number of susceptible individuals, Iy (t)
denotes the number of individuals infected with the vector-borne disease, Iy (t) represents the
number of individuals infected with the waterborne disease, and Iy (t) accounts for those
infected with both diseases. The recovered compartments include Ry (t) for individuals who
recovered from the vector-borne disease, Ry (t) for those who recovered from the waterborne
disease, and Ry (t) for individuals who recovered from both diseases. The vector population
consists of susceptible (S4) and infected (I4) compartments, while the water compartment (1)
represents the concentration of pathogens from the waterborne infection.

Individuals are assumed to enter the human population through birth and are initially
susceptible. The total human population is considered constant, as birth and natural death
occur at the same rate, denoted by pr. Susceptible humans Sy can become infected in two ways;
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through contact with infected vectors or exposure to contaminated water. The vector-borne
transmission occurs when a susceptible human is bitten by an infected mosquito, with infection
occurring at a rate proportional to the density of infected vectors, modeled by BVI%I’ In
contrast, waterborne transmission is governed by the environmental concentration of pathogens,
such that individuals in Sy move to Iy at a rate ByyW. Once infected with a single disease,
individuals may follow different pathways. Those in the vector-infected class Iy, may recover
at rate ny and move to Ry, or may acquire a secondary waterborne infection, transitioning to
the coinfected class Iy . Similarly, individuals in the water-infected class Iy may recover at
rate ny and move to Ryy, or acquire a secondary vector-borne infection, also entering Iy .
Coinfected individuals in Iy recover from both diseases at a combined rate ¢ and move to
the recovery class Ry . All human compartments are subject to natural mortality at rate up,
and there is no reinfection from recovery classes, as immunity is assumed.

The mosquito vector population S4 increases through birth rate g4 /N4, and declines due to
infection from biting humans in Iy and Iy, which causes transition to the infected vector class
14 at rate pAW. Infected vectors die at rate pa, and do not recover, modeling lifelong
infectiousness. For the water component W, the concentration of pathogen in water increases
due to bacterial shedding from individuals in Iy and Iy, at rate 6, and declines through
natural decay at rate §. The water compartment W tracks the concentration of bacterial
pathogens in the environment. This compartment increases as infected individuals in Iy and
Iyw shed bacteria into the water at a constant rate 0, representing contributions through urine,
feces, or bodily fluids [4]. The pathogen load in the water decreases over time due to natural
decay at a constant rate 6. The flow diagram of the model is given in Figure 1.

LN

RV iy Ry

iy Ryw
—_—

Figure 1: State-flow diagram of the proposed model.
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The epidemic model is described by the following system of differential equations:

ds I
=R — upNyg - By Sp~2 — By SgW — HwHSH (1)
dt Ny
drl I
Y= BySu-2 — BwlyW — (nv + pm) Iy (2)
dt Ny
dl I
W = BwSEW — Byl — (mw + pm)Iw (3)
dt Nu
dI I
YW = By IyW + Byly = — (v +nw + ¢ + pa)lvw (4)
dt Ny
dR
ditv = nv v + Iyw) — pa Ry (5)
dR
TtW = nw (Uw + Ivw) — puRw (6)
dR
d‘;W = olyw — pgRyvw (7)
dSa pa Iy + Iyw)
A N, PAVYV T VW) o
pn paN 4 Ny Sa—paSa (8)
dl4 pa Iy + Ivw)
Ca_ AV E VW) g AT 9
dt Ny AT Hala (9)
aw

This system of equations is epidemiologically and mathematically well-posed on the domain

D = {(SHaIVaIW7IVWaRV7RW7RVW7SA,IA,W) eRY |
Sy >0,Iy >20,Iw > 0,Iyw 2 0,Ry >0, Ry > 0,

RVWZO,SA>O,IA20,W20}.

The space Rfro denotes the positive orthant in R'°.

3 Main Results

3.1 Model Analysis

Theorem 3.1. Assuming that the initial conditions lie in D, the system of equations (1) — (10)
has a unique solution that exists and remains nonnegative in D for all time t > 0.

Proof. The right-hand side of the system of equations (1)-(10) is continuous with continuous
partial derivatives in D. Hence, by the Cauchy-Lipschitz theorem, the system admits a unique
local solution for initial conditions in D.

We now show that the set D is positively invariant, that is, any solution starting in D
remains in D for all ¢ > 0. This is equivalent to showing that each compartment remains
nonnegative over time.

Consider Sy = 0. Then,
dSy

—— = pugNg >0
dt HHINH 5
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which implies that S (t) remains nonnegative for all ¢ > 0. Similarly, if Iy = Iy = Iyw =0
and I4, W > 0, then

dly 14

— =By Syg—>0

7 Bv Hy o 20

Al

—_— = SgW >0

7 Bw SeW >0,
dIVW IA

= Iy W Iyw— > 0.

i Bw Iy W + By N, D

Thus, Iy (t), Iw(t), and Iyw(t) remain nonnegative for all ¢t > 0. If Ry = Ry = Ryw = 0,
then

dR
ditv =nv(ly + Ivw) > 0,
dR
T:V =nw(Iw + Iyvw) >0,
dRyw
= ol >0
dt plvw =2 U,

so Ry (t), Rw(t), and Ry (t) remain nonnegative for all ¢t > 0.
For the vector and environmental compartments, if S4 = 0, then
dS4
—= = ANy >0
and if /4 = 0, then
dla _ pa(ly + Iyw)

— Sa>0.
dt Ny A=

Also, if W =0, then
aw
dt
Hence, Sa(t), La(t), and W (t) also remain nonnegative for all t > 0. Hence, all state variables
remain in the nonnegative orthant for all ¢ > 0, and the set D is positively invariant.

=0(Iw + Iyw) > 0.

Now, to show boundedness, define the total human and vector populations by

Ny (t) = Sy(t) + Iv(t) + Iw (t) + Ivw (t) + Ry (t) + Rw (t) + Ryw (1),
Na(t) = Sa(t) + La(t).

Adding equations (1)—(7) and using the fact that the birth and death rates are equal,

dN
Tf:MHNH_MHNH:o = Ng(t) = Nyg(0) forallt>0.

Similarly, adding equations (8)—(9),

dN 4

W:#ANA—,UANA:O = Ny(t) = N4(0) for all t> 0.

Thus, the human and vector populations remain constant and bounded. Since all compartments
are nonnegative and their sums are bounded above by Ny (0) and N4(0), each state variable is
uniformly bounded on [0, 00). Therefore, the local solution remains in D for all ¢ > 0. O
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Definition 3.2. [2]A steady state solution is a solution to the system that is constant for any
time ¢. That is, a solution (Sg(t), Iy (t), Iw (t), Iyw (t), Ry (t), Rw (t), Ryw (t), Sa(t), La(t), W(t))
such that

dSy dly dly dlyw dRy dRw dRyw dSa dlx dW\ -
dt > dt dt dt  dt ' dt ' dt  dt ' dt’ dt '

Definition 3.3. [2] A disease-free equilibrium (DFE) is a steady state solution of an epidemic
model with all infected variables equal to zero.

Theorem 3.4. The disease free equilibrium (DFE) point of the model in (1) — (10) is given by
Ey = (Ng,0,0,0,0,0,0,N4,0,0).

Proof. Let (Sg,Iv,Iw,lvw, Ry, Rw, Ryw,Sa,14,W) be a DFE point. Then Iy = Iy =

dSy dly dlw dlyw dRy dRw dRyw dSa dla dW -

IVW:IA:W:Oand = L.

dt ' dt’ dt’ dt ' odt ' odt ’ dt odt’ dt’ dt
Substituting these values to our system of equations (1) — (10), we have

paNg — pp Sy =0
paNA — paSa = 0.

Since pa, pg > 0, we get Spr = N and S = Ny. O

3.2 Reproduction Number

The basic reproduction number for a compartmental model is computed by using the next-
generation matrix method. This method was initially introduced by Diekmann et al. [6] and
P. van den Driessche and Watmough [22]. In the next generation method, Ry is defined as the
largest eigenvalue or spectral radius of the next generation operator K. The formation of K
involves in formulating the infected and non-infected compartments from the model equations.

Definition 3.5. [6]The basic reproduction number, Ry is the average number of secondary
infectious cases when a single infectious individual is introduced into the whole susceptible
population. The disease dies out if the basic reproduction number Ry < 1, and the disease
persists whenever Ry > 1.

Theorem 3.6. The basic reproduction number for system (1)-(10) is Ry = max{R1, Ra} where

Ry = paBvNa and Ry — 08w Nu
pa(nv + pr)Nu S(nw + pm)

Proof. Let X be a vector of infected classes and Y be a vector of the other classes. Hence,

Iy Su
Iy Ry
X=|Iyvw|,Y=| Rw
I Ryw
w Sa
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Let F(X,Y) be the vector of new infection rates(flows from Y to X) and let V(X,Y) be the
vector of all other rates (not new infections). Then,

_ Sl i,
/BVNZI A 7
BWSHW .FQ
F(X) = 5M/IVVLY+‘§Z%%§LA = | F3
pA(Iv+Ivw)Sa Fu
Ny
0(Iw + Lvw) J5
[ BwIvW + (v + pm) Iy Vi
Bv Iw s + (mw + pr) w Vs
VX)=| (v +nw +¢+pm)vw | = |Vs
pAala Vi
ow Vs
OF (E OV(E
The next generation operator formed is K = FV ! where F = { 8()(0)} and V = [ Va(XO)} )
where Ej is the disease-free equilibrium. This becomes
[0 0 0 By 0
0 0 0 0 BwNpu
F= 0 0 0 0 0 ,
P?VJZA 0 P,?VZA 0 0
| O 0 0 0 0
(v + pw 0 0 0 0
0 nw + 1y 0 0 O
V= 0 0 nv+nw+e+pug 0 0
0 0 0 ua O
|0 0 0 0 9
Thus, the next generation matrix is given by
K=Fv!
0 0 0 By 0 O 0 0 0]
1
R Tl | S R S
= 0 0 0 0
nv+nw te+uH
afa o 2fla 0 0 0 0 0 L0
0 0 0 0 0 0 0 0 0 %
0 0 0 Bv. g ]
HA N
0 0 0 0 BSwla
= 0 0 0 0 0
paNa 0 paNA 0 0
Nu (v +pm) ) NH(UV‘H?gV‘HO‘HLH)
- 0 nw+HH nv+nwt+et+pn 0 0 |
Solving for eigenvalues of K, the characteristic matrix K — AI is given by
[ = 0 0 B g ]
HA B Nz
0 —-A 0 0 s
K-\ = 0 0 A 0 0
palNa 0 pANA ~ 0
Nu(nv+um) NH(nv+n5v+so+uH)
L 0 nw+unH nv+nwt+etun 0 —A
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and by cofactor expansion, the determinant is computed as

det |K — | =0

) [)\2 <)\2 _ 0BwNy > _ paBvNy <)\2 _ 0BwNy )] 0
S(nw + ) pa(mv + pa)Nu S(nw + pm)

B 2 paBv Na 2 %WNH)] _
A [<>\ MA(Uv+MH)NH> (A S(nw + pm) N

The eigenvalues are

A =0,

N N
pABvNA L0 A pABvNA
pa(ny + pa)Nu pa(nv + pe)Nu

N, N
\2 08w Nu 0 — A=+ 08w Ny .
o(nw + pm) S(nw + pm)
Thus, by taking the dominant eigenvalue of matrix K, we have Ry = max{R1, Ro} where

N 08w N,
Ry = pABVNA and Ry = BwNu '
pa(ny + pua)Nu S(nw + pm)

/\2 _ and

Here, R1 captures the contribution from vector-borne transmission, while Ro reflects the effect
of waterborne transmission. O

3.3 Stability of the disease-free equilibrium point

The stability of the equilibrium point can be performed by calculating the roots of the eigen-
equation

det(J(E()) — 110/\) =0

where J(Fp) is the Jacobian evaluated at the equilibrium point, and I is the identity matrix.
Since there are ten differential equations, the characteristic polynomial of degree 10. Let the
matrix for equations (1) - (10) be given by
T
[vi w2 Y3 wa ys Y6 Y7 Ys Yo Yo
dSy dIy dIy dlyw dRy dRw dRyw dSa dIn dw|"

dt  dt  dt dt dt dt dt dt dt dt

where the independent variables are

Sz Iv Iw Iyw Rv Rw Ryw Sa Ia W]T=[$1 Ty Ty T4 Ts T Ty Tg T 9610]T

The superscript 1" refers to transpose of the matrix.

v
Hence, J(x1,x9,...,210) = [ayz} for i = 1,...,10. The Jacobian matrix is the 10 x 10
Ly
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matrix given by

[Jii O 0 0 0 0 0 0 Jig Ji0]
Jo1 Jao 0 0 0 0 0 0 Jog J2,10
J31 0 J33 0 0 0 0 0 Jsg J3710
0 Jago Ja3 Jsu 0 0 0 0 Jy Jsi0
J(w . . ) 10 J59 0 Jsa  Jss5 O 0 0 0 0
DEDo 00 = g 00 Jes Jau 0 Jgg O 0 0 0
0 0 0 J74 0 0 Js O 0 0
0 Jso 0 Js4 0 0 0 Jgg O 0
0 Jgo 0 Jo4 0 0 0 Jog Jgo 0
L0 0 Jiwoz Jiwwa 0 0 0 0 0 Jigaol
where,
I _
Ju = —/3VN72 — BwW — pm T = v
g Jss = —p
Ji9 = —By -
19 Ny Jo3 = nw
J110 = —BwSH Joa = nw
I _
Jo1 = 5VN7A Joo = 1m
H
Juu=¢p
Joo = PwW — (nv + pu)
Jrr = —pn
Jog = f3 Si
20 =0V Teo ____;33?{4
Ja10 = —Bwly 1
Jey — _ padSa
Js1 = PwW 7 TN,
B Ia pa(ly + Iw)
J33 = ﬁvNH (mw + pm) Jsg = _T _
IW pASA
Jsg = — By W _
39 BV NH J92 NH
J310 = BwSH J _ paSa
04 = "
Jag = Bw W Z T Iw)
pally W
Iy J.
— a4 N
Ju3 Bv’hhq H
J —
Ju=—(v +nw + o+ pm) % A
Iy Jioz =10
Jig = 5VN7H o4 = 6
J4,10 = ﬁWIV J10710 =-6.
Js2 = ny

Theorem 3.7. [2, Theorem 2] Let A € Ryxpn. Let u* be the equilibrium point of the initial
value problem

u(t) = Au(t)
u(0) = up.

MSU-ILIGAN INSTITUTE OF TECHNOLOGY
http://doi.org/10.62071/tmjm.v7il.794



https://msuiit.edu.ph
http://doi.org/10.62071/tmjm.v7i1.794
https://msuiit.edu.ph

R. Merontos, R. Caga-anan, and T. Goetz

This equilibrium is:
(i) locally asymptotically stable if VA € o(A), Re(\) < 0;

(ii) stable if VA € o(A), Re(\) <0 or Re(A) =0 and dim(Ker(A— X)) = m, where m is the
multiplicity of A;

(iii) unstable if X € o(A), Re(\) > 0,

where o(A) is the set of eigenvalues of A, Re(\) represents the real part of the eigenvalue A
and dim(Ker(A — X)) denotes the dimension of the kernel (null space) of the matriz (A — \I),
where \ is an eigenvalue of A.

Theorem 3.8. The disease-free equilibrium point (Ng,0,0,0,0,0,0, N4,0,0) is locally asymp-
totically stable if Rg < 1 and unstable if Rg > 1.

Proof. The Jacobian matrix of the system at disease-free equilibrium (DFE) is given by

—pn 0 0 0 0 0 0 0 —Bv  —BwNH]
0 —(v +rH) 0 0 0 0 0 0 Bv 0
0 —(mw + rmH) 0 0 0 0 0 0 Bw Nu
0 0 0 —(nv +nmw +e+pg) 0 0 0 0 0 0
0 ny 0 ny — 0 0 0 0 0
J = 0 0 nw nw 0 —KH 0 0 0 0
0 0 0 @ 0 0 —u 0 0 0
0 — %\V 0 7’)/%,\1;A 0 0 0 —ua 0 0
0 P 0 P 0 0 0 0 —pa 0
L o 0 0 0 0 0 0 0 0 -5

Using the cofactor expansion, the determinant of J becomes

det |J — M| =(=(pv + 1w + ¢ + pr) — N (= — N)*(—pa — )
[(=0BwNu)N? + (pa +nv + p)A+ (v + pe)pa) + (N + (qw + pwr + 6) A+

BvpalNa
S(nw + ) (N + (pa +nv + pa) X + (v + pm)pa — WTH)]
Hence, the eigenvalues are
AL ==V —Nw — bH — ¢
Ao = —ppr(multiplicity of 4)
A3 = —pia
N _BA_m \/NH(4NA/BVPA + Nu(nv — pa+ pw)?))
0 2 2 2 2Ny
0w pm | VANEBwO+ (6 —nw — pm)?
)\6 = = — = — + .
’ 2 2 2 2
Since A1, A2, A3 are always negative, then the stability of DFE is determined by A45 and
Xo,7 With Ry = [ —LABVEA— gives

AN4Bypa = ANgRIpa(nv + pu)
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and substituting it to A4 5, yields

o pa _pm \/NH(4NHR%MA(TIV + i) + N (nv — pa + pm)?))

ME= T T T 2N
W pa pm \/NIQ:{(4R%MA(77V+MH)+(UV_MA+,UH)2))
22 2 2Ny
N W Ha pa VAR + pa) + (v — pat pa)®
45 =—"5 — " — - :
2 2 2 2
Moreover, with Ro = %, gives 4Ny Byl = 4R35(nw + pw). Substituting it to

6,7, the expression becomes

o nw Mii\/4R§5(le+MH)+(5—77w—HH)2
’ 2 2 2 2 ’

Observe that 0 < ny, nw, 1, a,d < 1. Consequently, when Ry < 1, the term

VAR A + 1) + (v — pia+ urr)?

is real, positive, and relatively small compared to the negative terms. Similarly, when Ry < 1,
the expression

VARZS (myr + ) + (0 —mw — purr)?

will not dominate the negative terms. Hence, A4 56 7 are all negative. Therefore, by Theorem 3.7,
if Ry = max{R1,R2} < 1, the disease-free equilibrium point (Ng,0,0,0,0,0,0, N4,0,0) is
locally asymptotically stable; and if Ry > 1, the DFE is unstable. O

3.4 Sensitivity Analysis

Sensitivity analysis is performed to identify the most influential parameters for the spreading
out as well as control of infection in the community. The normalized forward sensitivity index
of Ry with respect to a parameter ,say p is given by

Ro _ ORo b

— X =
p op  Ro
Positive (negative) values indicate a positive (negative) correlation with Rg, whereas the mag-
nitude determines the importance of the parameter [8]. Since Ro = max{Ri, R2}, we obtain
the sensitivity analysis of R and Ry separately in the following way:
R,  OR1 _ Bv

Tov = 9By " Ry

1
_ 1 < paBvNa ) 2 < paNa > (BV) 1
2 \pa(nv + pr)Nu wa(nv + pe)Ni ) \R1 2
OR
Ry _ 91 PA
Toa Opa 8 R1
_1
:1< paBvNa ) 2 < BvNa > (/)A):l
2 \palnv + pu)Ne palny +pu)Ny ) \Rq 2
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SR IR v
o ony o Ry

_ 1 ( paBvNa >
2 \pa(nv + pa)Nu
OR1 _ pa
Ri _ o A
Tha opa  Ri

_1
1 ( paBv N4 > 2 <_ pABvNa ) <,UA> _ 1
2 \pa(nv + pr)Ny w4 (nv + pa)Ne ) \Ra 2
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Parameters with positive sensitivity indices, such as Sy, pa, Bw, and 6, play a crucial role
in increasing the spread of vector-borne, waterborne diseases, and their coinfection within the
community. Conversely, parameters with negative sensitivity indices, including ny, nw, pa,
wir, and 9, are key to reducing the transmission of these diseases, highlighting their potential
for disease control when their values are increased.
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Parameter Baseline Value Sensitivity Index

Bv 0.75 +%
pa 0.375 +3
v 0.3 -0.4286
A 0.1 —%
Bw 0.005 +3

0 0.0002 +3

5 0.5 —3
nw 0.2 -0.4

Table 1: Sensitivity indices of Ry evaluated at the baseline parameter values.

4 Numerical Simulation

In this section, model simulations were performed using Python to evaluate the model’s behavior
under different scenarios. The system of differential equations (1)—(10) was numerically solved
using the adaptive Runge-Kutta method of order 45 (RK45). A semi-logarithmic scale was
employed in plotting the compartmental dynamics to better illustrate exponential decay and
oscillatory behavior, which are less visible in linear plots. In semi-log plots, exponential growth
or decay appears as a straight line, making it easier to observe both the early fast changes and
long-term behavior of the system.

The simulations were performed to evaluate model behavior under different parameter
regimes and to check the stability properties of the disease-free equilibrium and endemic equi-
librium. The parameter values used for the simulations are summarized in Table 3, and the
initial conditions are given in Table 2.

State Variable Description Value
Sy (0) Initial condition for susceptible humans 500,000
I (0) Initial condition for vector-borne infected humans 7,000
Iy (0) Initial condition for waterborne infected humans 4,000
Iy (0) Initial condition for coinfected humans 800

Ry (0) Initial condition for recovered from vector-borne disease 0

Ry (0) Initial condition for recovered from waterborne disease 0
Ryw(0) Initial condition for recovered from both diseases 0

S4(0) Initial condition for susceptible vectors 200,000
14(0) Initial condition for infected vectors 20,000
W (0) Initial condition for waterborne pathogen concentration 100

Table 2: Initial conditions of the model.
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Notation | Description Value Source
Bv Transmission rate of the | 0.75 [5]
vector-borne disease
Bw Transmission rate of the wa- | 0.005 Assumed
terborne disease
0 Shedding rate of pathogens | 0.0002 [7]
into water
) Natural decay rate of the | 0.5 [16]
pathogen in water
ny Recovery rate from the | 0.3 [9]
vector-borne disease
nw Recovery rate from the water- | 0.2 [10]
borne disease
© Recovery rate from coinfec- | 0.05 Assumed
tion
WH Birth (and death) rate of hu- | 0.05 Assumed
mans
KA Birth (and death) rate of vec- | 0.1 [14]
tors
pA Effective contact rate for | 0.375 [5, 14]

vector-borne transmission

Table 3: Parameters of the model.

4.1 Effect of transmission rates Jy and Sy on coinfectious individual

Coinfected Papulation

3 6
Time (Months) Time {Manths)

Figure 2: Effect of vector-borne transmission  Figure 3: Effect of waterborne transmission
rate (By) on coinfectious population rate (Bw) on coinfectious population

An increase in the vector-borne transmission rate (fy) leads to a higher number of coinfected
individuals, as observed in Figure 2. This behavior is expected since a higher Sy implies an
increased probability of susceptible individuals acquiring the infection through contact with
infected vectors. The curve exhibits positive sensitivity, indicating that Sy significantly con-
tributes to the spread of coinfection. Similarly, Figure 3 illustrates the effect of the waterborne
transmission rate (Sy) on coinfectious individuals. Increasing Sy results in a rise in coinfection
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cases due to greater exposure to contaminated water sources, demonstrating the critical role of
waterborne transmission in disease persistence.

4.2 Effect of recovery rates 7, and 7y on coinfectious individual

Coinfected Population
2

H

Coinfected Population

2000

2000
1000

3 6
Time (Months) Time (Months)

Figure 4: Effect of vector-borne recovery  Figure 5: Effect of waterborne recovery
rate(1,) on coinfectious population rate(),,) on coinfectious population

On the other hand, recovery rates show an inverse relationship with the coinfected population.
Figure 4 presents the effect of the vector-borne recovery rate (ny), where an increase in 7y
reduces the number of coinfected individuals. This occurs because a higher recovery rate means
infected individuals clear the infection more rapidly, reducing the duration of disease transmis-
sion. Similarly, Figure 5 displays the impact of the waterborne recovery rate (ny ), showing that
an increase in 7y leads to a decline in coinfection cases. These results highlight the importance
of improving treatment strategies to accelerate recovery and mitigate disease spread.

The sensitivity analysis, as summarized in Table 1, confirms these findings. The transmission
rates (By, Bw) have positive sensitivity indices, meaning that increasing these rates amplifies
disease transmission. In contrast, the recovery rates (ny,nw ) have negative sensitivity indices,
signifying their role in reducing the infection burden. These numerical results emphasize that
controlling transmission through vector and water sanitation interventions, along with enhanc-
ing recovery rates through medical treatment, are crucial strategies for mitigating the impact
of coinfections.

4.3 Model Dynamics when Ry < 1

In Figure 6, both the vector-borne and waterborne basic reproduction numbers, R1 and Rz, are
less than one. This means the infection cannot spread widely, and all the infected compartments
eventually go to zero. The susceptible human population starts to decrease but later rises again,
while recovered individuals increase and then stabilize. The number of infected vectors and the
amount of pathogen in water also drop to zero. This shows that the system tends toward the
disease-free equilibrium over time.

MSU-ILIGAN INSTITUTE OF TECHNOLOGY
http://doi.org/10.62071/tmjm.v7il.794



https://msuiit.edu.ph
http://doi.org/10.62071/tmjm.v7i1.794
https://msuiit.edu.ph

R. Merontos, R. Caga-anan, and T. Goetz

Susceptible Human Infected (Vector-borne)
5.125 % 10° 0
51%10°
_ 5.075x10° L
g 5.05x10° g 1
£ 5.025 % 10° E
2 2
&2 5% 10° & 1=
4.975 x 10° 107
4.95x10°
0 10 00 800 0 1000 ] %0 0 500 0 1000
Timeldays) Time{days)
o Infected {Waterbomne) Coinfected
1
- g
g e £ w
H 2 10
& 07 2w
107 10~
o 10 00 00 00 1000 0 10 00 &0 o0 1000
Time{days] Time{days]
Recovered {Vector-borne) Recovered {Waterborne)
10°
1w w
g 5 1
5w i
S S
& 10 Rty
10 0
o 00 400 600 00 1000 [ 200 00 00 00 1000
Time{days] Time{days]
Recovered {Coinfection) Susceptible Vector
10 22 x 107
2.175 % 107
10 2.15 % 10°
< £ 2.125 x 107
- ] 2.1x%10
B B 2.075 % 107
2.05 x 10°
107 2.025 x 107
2x10°
[} 00 400 600 00 1000 ] 200 00 00 00 1000
Time{days] Time{days]
Infected Vector Pathogen in Water
jly
10°
g - s
8 107 B 1
E‘ 10 E
10 L
[} 00 400 600 200 1000 ] 200 00 €00 00 1000
Time{days) Time{days]

Figure 6: Plot showing the dynamics of the model compartments when R; ~ 0.2478 < 1 and
Ro ~ 0.2023 < 1. Parameter values used: pq = 0.05, Sy = 0.1, 8 = 0.0001, By = 0.0001.
These ensure Rg < 1.

4.4 Model Dynamics when Ry > 1

Figure 7 shows the behavior of all model compartments under the condition Rg > 1. In
this scenario, the infection persists in the population. The infected human compartments,
infected vectors, and environmental pathogen concentration exhibit oscillations before reaching
an endemic equilibrium. The susceptible human population declines and does not return to
its original level, indicating sustained transmission and the failure of the disease-free state to
remain stable.
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Figure 7: Plot showing the dynamics of the model compartments when Ry > 1 and Ry > 1.
Parameter values used are given in Table 3. These parameter values lead to Rg > 1 indicating
the potential for epidemic spread.

To further illustrate this behavior, Figure 8 provides a detailed view of the infected com-
partments. Specifically, the vector-borne infected population Iy, experiences an early, sharp
outbreak, followed by a secondary peak around day 770. This is primarily driven by the high
transmission rate (8 = 0.75) and the initially large infected vector population. In contrast,
the waterborne infection Iy exhibits a delayed resurgence due to slower environmental accu-
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mulation of pathogens governed by the shedding rate 6 and decay rate §. Figure 8 also shows
that coinfection (Iyy) only becomes significant when both Iy and Iy rise together, around day
700. Despite starting with 800 individuals, it quickly declines and only resurges briefly, with a
peak near day 800. The short duration is due to rapid recovery and removal from the coinfected
class. These results highlight that the vector-borne pathway drives early transmission, while
coinfection depends on the combined presence of both single infections.

Infected Compartments Over Time

==l Vecworbome
= lw: Waterborne
—— lew: Coinfected

10°

Population

102

EI! 260 460 560 B(iﬂ 1060
Time {days)
Figure 8: Dynamics over time of the vector-borne (Iy), waterborne (Iyy), and coinfected (Iyw)
human compartments over a 1000-day simulation.

These results show that when both reproduction numbers are less than one, the disease will
eventually disappear. But if even one of them is greater than one, the infection can remain in the
population for a long time. Therefore, controlling both the vector and waterborne transmission
is necessary to eliminate the disease.

5 Conclusion

In this study, a mathematical model was formulated to investigate the coinfection dynamics
of dengue and leptospirosis, two diseases of significant public health concern in tropical re-
gions. The model incorporated indirect transmission mechanisms: vector-borne transmission
for dengue and waterborne transmission for leptospirosis. The biological and mathematical
well-posedness of the system was established by proving the positivity and boundedness of
solutions within a feasible domain. Furthermore, the disease-free equilibrium was identified
and analyzed using the next-generation matrix method, yielding a basic reproduction number
expressed as Ry = max{R1, R2}. The model analysis demonstrated that when both reproduc-
tion numbers are less than one, the disease-free equilibrium is locally asymptotically stable.
Conversely, if either reproduction number exceeds one, the infection persists, and the system
exhibits oscillatory dynamics before reaching an endemic state. Sensitivity analysis further re-
vealed that parameters associated with transmission, such as the vector-borne transmission rate
and pathogen shedding rate, positively influence disease persistence, while recovery and decay
rates have mitigating effects. The numerical simulations supported the theoretical findings and
provided insight into the dynamics of each compartment over time. Simulations under different
scenarios illustrated the interplay between the two transmission pathways and the critical role
of coinfection dynamics. It was observed that coinfection becomes significant only when both
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single infections peak simultaneously. The results emphasize the need for integrated control
strategies that address both vector management and water sanitation. This model provides a
robust framework for understanding how dual transmission mechanisms interact and influence
disease outcomes in endemic settings. For future research, it is recommended to extend the
model to include seasonal variations in transmission rates, optimal control strategies such as
targeted interventions, and the impact of vaccination. Further extensions may consider the
incorporation of stochastic effects or spatial heterogeneity to reflect real-world complexity.
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