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Abstract: In this paper, we propose a novel solution to
the general adaptive sparse-PCA (GAS-PCA), which was
developed by [3], to work with high dimensional data with
low sample size (HDDLSS).

1 Introduction

Principal Component Analysis (PCA) is a popular method-
ology for dimension reduction, but one of its drawbacks is
the interpretability of the principal components (PCs). Let
X 2 Rn⇥p and xi 2 Rp be its realization on the ith observa-
tion. Without loss of generality, suppose that E(X)=0 and
cov(X)=⌃, where ⌃ is some symmetric positive definite ma-
trix. Then ⌃ can be represented as an eigen decomposition,

⌃ = Q⇤QT

where ⇤ is a diagonal matrix whose entries are the eigen-
values of ⌃ and the columns of Q are its associated eigen-
vector. For the purpose of identifiability, we assume that
⇤11 > ⇤22 > · · · > ⇤pp > 0 and that the first nonzero
component of our eigenvectors is positive. Since the jth

4Research is partially supported by the DOST-PCIEERD, Philip-
pines.

Volume 3 Issue 2
October 2012

The MINDANAWAN
Journal of Mathematics



146 General Adaptive Sparse-PCA for High Dimensional...

principal component of xi is given by x
T

i
Q·j, then the PCs

are linear combinations of all the original p variables.
To have a better interpretability of the PCs, [5] intro-

duced a method called sparse-PCA (SPCA) using the lasso
to produce modified PCs with sparse loadings. By focusing
on the first k leading PCs, they transformed the original
problem into an equivalent least-squares problem. Then,
they apply the lasso to minimize the residual sum of squares
subject to the sum of the absolute value of the coe�cients
being less than a constant. Thus, the SPCA formulation is
given by

(Â, B̂) = argmin
A,B

(
1

n

nX

i=1

||xi � AB
T
xi||

2

+
p0X

j=1

(�j

pX

k=1

|�jk|)

)
, subject to A

T
A = I,

where �̄ = (�1,�2, · · · ,�p0)
T , and Â�̄ = (↵̂�̄,1, ↵̂�̄,2, · · · , ↵̂�̄,p0

),

B̂�̄ = (�̂�̄,1, �̂�̄,2, · · · , �̂�̄,p0
) are the resulting lasso estimator.

Here, the resulting estimator �̂�̄ is the SPCA estimator.

To improve the performance of SPCA, [3] proposed a
new methodology called general adaptive sparse-PCA (GAS-
PCA), where they replaced the least-squares objective func-
tion and the lasso penalty by a general least-squares objec-
tive function and an adaptive lasso penalty, respectively.
Under this new methodology, it allows the study of many
related sparse-PCA under a unified theoretical framework.
Reformulating the lasso penalty of SPCA, wherein,

p0X

j=1

(�j

pX

k=1

|�jk|) �!
p0X

j=1

pX

k=1

�jk|�jk|,
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resulted to a simple adaptive sparse-PCA (SAS-PCA). This
new reformulation of changing the lasso penalty to an adap-
tive lasso penalty allows di↵erent tuning parameters for dif-
ferent loading coe�cients. As stated in [3], for a fixed A
and up to a constant irrelevant to B, the SAS-PCA objec-
tive function is equivalent to

p0X

j=1

(
1

n

nX

i=1

(↵T

j
xi � �

T

j
xi)

2 +
pX

k=1

�jk|�jk|

)

=
p0X

j=1

(
(↵j � �j)

T ⌃̃(↵j � �j) +
pX

k=1

�jk|�jk|

)
,

which consists of p0 independent lasso problems. Now, given
the matrix A, GAS-PCAminimizes the general least-squares
objective function

p0X

j=1

(
(↵j � �j)

T ⌦̃(↵j � �j) +
pX

k=1

�jk|�jk|

)
,

where ⌦̃ is a positive definite matrix with probabilistic limit
⌦ and ⌦ is the kernel matrix. Then from the set of finite
solutions, select the optimal solution using the BIC-type
selection criterion

BIC�j = (↵̂�j � �̂�j)
T ⌦̃(↵̂�j � �̂�j) + df�j ⇥

log n

n
,

where df�j is the nummber of nonzero coe�cients identified
in �̂�j.

According to [3], ⌦̃ = ⌃̃ is unlikely the optimal choice
of ⌦̃ and suggest the use of ⌦̃ = ˆcov�1(�̃j). Since there
is no existing simple formula for cov(�̂j), [3] proposed the
following bootstrap method to estimate cov(�̂j). For given
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148 General Adaptive Sparse-PCA for High Dimensional...

⌃̂, apply PCA to bootstrap samples from N(0, ⌃̂) to pro-
duce a su�cient number of bootstrap estimates (denoted by
�̂
boot
j

) for �j. The sample covariance of �̂boot
j

can easily be

computed (denoted as Ĉj)as a natural estimate of cov(�̂j).
And then follow the procedure on [4] and fix ⌦̂ = Ĉ

�1
j

.

For HDDLSS, the cov(�̂j) tends to be singular due to the
collinearity of the bootstrap samples. Thus, this presents
us with the problem of solving for the ccov�1(�̃j).

In the next section, we propose a solution for solving
GAS-PCA for HDDLSS and its methodological details. Sim-
ulation results are provided in Section 3 and the article con-
cludes a short discussion in Section 4.

2 Methodology

Following the procedure in [3], we modify the ordinary method
of solving the inverse of cov(�̂j). A simple approach to solv-
ing ccov�1(�̃j) is to compute a best fit solution using the
Moore-Penrose general inverse. And since for any covari-
ance matrix ⌃, the Moore-Penrose general inverse exists and
is unique, then we always have a solution for the inverse co-
variance estimates.

In recent years, [1] develop a method called “glasso”
where they apply the lasso penalty in estimating the in-
verse covariance matrix which results to a sparse inverse
covariance matrix. An improvement over glasso, [2] develop
a method called “QUIC” which uses quadratic apprroxima-
tion in estimating the inverse covariance matrix. Here, we
propose to use sparse inverse covariance estimates as an al-
ternative to the Moore-Penrose general-inverse. We com-
pare two methods of sparse inverse covariance estimates
namely, glasso and QUIC, at di↵erent tuning parameters
and use the Moore-Penrose general inverse as a basis for
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comparison.

3 Simulation Results

For a fixed �, let X be a sample of n observations from
N(0,⌃), where ⌃ is some p ⇥ p positive definite matrix.
Then, let Y = X�+", where " ⇠ N(0, 1), be the true model
and Ŷ = X̂� be the estimated model, where X̂ = XQ and
Q be the PCA loadings. Setting our sample size to n < p,
we determine QMP, Qglasso, and QQUIC, the PCA loadings
using GAS-PCA with Moore-Penrose general inverse, with
glasso, and with QUIC method respectively for some fixed
number of PCs p0. We then generate a new sample of 1000
observations from N(0,⌃) and compute the MSE of the es-
timated model. To have a way of comparing the sparsity of
the PCA loadings between di↵erent methods, we just count
the number of non-zero elements of our PCA loadings Q.
We repeat this procedure for 50 random ⌃ and determine
the minimum, mean, maximum value of the MSE and the
number of non-zero elements of Q.

For n = 40 observations and p = 50 predictors, we have
the following results:
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We use 0.01, 0.03, and 0.05 as our tuning parameter for
glasso and QUIC methods. The results above shows a mini-
mal MSE and highly sparse PCA loadings on methods using
sparse inverse covariance estimates over the Moore-Penrose
general inverse. As we decrease the number of PCs, it is
evident that there is an increase in MSE and sparsity. And
as we vary our tuning parameters on glasso and QUIC, it
shows smaller MSE and higher sparsity.
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Fixing p = 50 while decreasing our number of observa-
tions to n = 30, we have the following results:

MP
GLA,0.01
GLA,0.03
GLA,0.05
QUIC,0.01
QUIC,0.03
QUIC,0.05

max
mean
min

p0=20

MSE

0

10
0

20
0

30
0

40
0

50
0

MP
GLA,0.01
GLA,0.03
GLA,0.05
QUIC,0.01
QUIC,0.03
QUIC,0.05

max
mean
min

p0=20

Sparsity

0 50 10
0

15
0

MP
GLA,0.01
GLA,0.03
GLA,0.05
QUIC,0.01
QUIC,0.03
QUIC,0.05

p0=10

MSE

0

10
0

20
0

30
0

40
0

MP
GLA,0.01
GLA,0.03
GLA,0.05
QUIC,0.01
QUIC,0.03
QUIC,0.05

p0=10

Sparsity

0 20 40 60 80 10
0

MP
GLA,0.01
GLA,0.03
GLA,0.05
QUIC,0.01
QUIC,0.03
QUIC,0.05

p0=5

MSE

0

10
0

20
0

30
0

40
0

MP
GLA,0.01
GLA,0.03
GLA,0.05
QUIC,0.01
QUIC,0.03
QUIC,0.05

p0=5

Sparsity

0 10 20 30 40 50 60 70

From the preceding results, the inverse covariance es-
timates greatly improves the GAS-PCA over the Moore-
Penrose pseudoinverse estimates in terms of minimal MSE
and sparsity. This motivates us to check if the same is true
for high dimensional data where n � p. For n = 1000 and
p = 50, we compare the original GAS-PCA procedure with
our modified procedure using the glasso as our method for
estimating the inverse covariance matrix.
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Lastly, we want to check if using Akaike Information
Criterion (AIC) as our model selection for GAS-PCA with
HDDLSS will improved our procedure. Thus, we compare a
GAS-PCA procedure using glasso method with tuning pa-
rameter rho=0.01 using AIC as its model selection over the
original model selection which is Bayesian Information Cri-
terion (BIC).
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4 Discussion

In this paper, we extend GAS-PCA to HDDLSS using esti-
mates of the inverse covariance matrix. In conclusion, us-
ing sparse inverse covariance estimates resulted to minimal
MSE and greatly improved the sparsity of the PCA load-
ings with HDDLSS. The numerical studies show that even
for data with n � p, the sparse inverse covariance estimates
is comparable to the ordinary method in terms of MSE and
sparsity of the PCA loadings. With respect to model selec-
tion, BIC is still the better choice even for HDDLSS.
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