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Equi-integrability in the Monotone
and the Dominated Convergence
Theorems for the McShane Integral

Julius V. Benitez?

Department of Mathematics, College of Science and
Mathematics, MSU-Iligan Institute of Technology, 9200
Lligan City

julius.benitez@g.msuiit.edu.ph

Abstract: In this paper, we prove the equi-integrability of
the sequences of functions in the monotone and dominated
convergence theorems for the McShane integral.
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1 Introduction

The Lebesgue integral is noted for its powerful convergence
theorems - the Monotone and Dominated Convergence the-
orems. Lee in [3] prove these two convergence theorems for
the Henstock integral. By following similar proofs, one can
also prove their corresponding versions for the McShane in-
tegral.

In this paper, we show that in each of these theorems, the
integrability of the sequence considered is in fact uniform in
the sense that, given € > 0, then the same gauge function is
valid simultaneously for the integrability of all the functions
in the sequence. This concept, called equi-integrability, is
due to Jaroslav Kurzweil [2].

3Research is partially supported by the Commission on Higher Ed-
ucation (CHEA), Philippines.
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2 Preliminary Concepts and Known
Results

We begin by defining important concepts, such as the Mec-
Shane integral and McShane equi-integrability, and stating
some of the known results we need for the main results.
Readers who seek to know the details of this integral are
referred to [1] and [8].

Definition 2.1 A function f : [a,b] — R is said to be
MecShane integrable to a real number A on |a,b] if for any
e > 0, there exists a gauge 0(£) > 0 on [a, b] such that for
any McShane d-fine division D = {([u,v],&)} of [a,b], we

have
(D)D" fE)w —u) - Al <e

If f:[a,b] — R is McShane integrable to A on [a,b], then
we write

A:(M)/abf.

By a McShane é-fine division D = {([u,v];€)} of [a, b]
we mean that [u,v] C (§ —0(§),& + (8)).

Definition 2.2 A sequence {f,,}22, of McShane integrable
functions on [a, b] is McShane equi-integrable (or simply equi-
integrable) on [a,b] if for any e > 0, there exists a gauge
d(§) > 0 on [a, b] such that for any McShane d-fine division
D = {([u,v],£)} of [a,b], we have

<€, forall n.

(D)3 50w -0 - ) [7,

Definition 2.2 requires the existence of a gauge thats
works uniformly for the integrability of all the functions f,.
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It should be noted that if for every € > 0 there exist 6(£) > 0
and N € N such that

<€

(D)3 50w -0 - ) [7,

for all n > N and McShane d-fine divisions D = {([u,v], &)}
of [a,b], then {f,}5°, is McShane equi-integrable.
Lemma 2.3 Let {f,}>2, be a sequence of McShane inte-
grable functions on [a,b]. If {f,}5°, is equi-integrable on
la,b] and

lim f,(z) = f(x)

n—oo

[e.e]

b
for each x € [a,b], then the sequence {(M)/ fn} is

a n=1
Cauchy in R.

Proof: Let € > 0. By equi-integrability of {f,}>2,, there
exists §(§) > 0 such that for each n

b
DY s@e-w- [ fl<e ©
whenever D = {([u,v],£)} is a McShane J-fine division of
la, b].

Fix a McShane ¢-fine division D' = {([u,v],£)} of [a, b].

Since

lim f,(z) = f(z),

n—oo

for each tag £ in D’ there exists a positive integer N () such
that for each n > N(§), we have

fal€) = 1(8)] <«
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Let N = max{N(§) : £ is atag point in D'}. Then for
eachn > N

M [ =) X 500 - )

M [ =003 50 v—u\
D’)an( v —u) Zf v—u‘

< e+e-(b—a)
= €1+ (b—a).

IA

Thus, for each n,m > N

M [ - [l
< ‘(M)/abfn— CODBFIGICE]
oL st w5,

< €2+2(b—a).

b
This shows that {(./\/l)/ fn} is Cauchy in R. O

The following is a simple convergence theorem involving
an equi-integrable sequence of functions.

Theorem 2.4 Let {f,}7°, be a sequence of McShane in-
tegrable functions on [a,b]. If {f.}32, is equi-integrable on
la,b] and

lim f,(z) = f(z)

n—o0
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104 Equi-integrability in Monotone and Dominated Convergence...

for each x € [a,b], then [ is McShane integrable and

gggo<M>/abfn:<M>/abf.

oo

b
Proof: Let € > 0. By Lemma 2.3, the sequence {(./\/l) / fn}

n=1
b

is Cauchy in R. Hence, {(/\/l) / fn} is convergent in R.

Let ‘

n—oo

A= lim (/\/l)/ fo. (10)

We claim that A = (./\/l)/ f. There exists §(§) > 0 such

that for all n, inequality (9)aholds whenever D = {([u, ], &)}
is a McShane é-fine division of [a,b]. Applying (10),we ob-
tain

(D) f©w—u) - 4| <e

for all McShane d-fine divisions D = {([u,v],£)} of [a,b].
This shows that f is McShane integrable on [a, b] and

(M)/abf:A:hm(M)/abfn. 0

n—oo

The following is a version of the Monotone Convergence
Theorem. This theorem, and its proof, for the Henstock
integral is well-known (see Lee [3]).

Theorem 2.5 Let {f,}>2; be an increasing sequence of Mc-
Shane integrable functions on [a,b] and

lim f,(z) = f(z)

n—o0
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b
for each x € [a,b]. If lim (M)/ fn = A, then [ is Mc-

Shane integrable on [a,b] and

(M)/abszz lim(M)/abfn-

n—oo

Definition 2.6 [8] A sequence {f,}>; of McShane inte-
grable functions on [a, b] is said to be uniformly gauge Cauchy
on [a,b] if for any € > 0, there exists a gauge 6(¢) > 0 and
a positive integer N such that for each n,m > N, we have

(D)D) fal&)w=1u) = (D) Y ful€)(v —u)| <e

whenever D = {([u,v],£)} is a McShane d-fine division of
la,b].

Theorem 2.7 [8] Let {f.}52, be a sequence of McShane
integrable functions on [a,b]. The following are equivalent:

(1) {fn}>2, is uniformly gauge Cauchy.

b o0
(i7) {(./\/l) / fn} converges and { f,}5°, is equi-integrable
a n=1

on la, b].

3 Results

First, we state and prove the following Lemmas.

Lemma 3.1 If {p,}32, is a decreasing sequence of Mec-
Shane integrable functions on [a,b] and for any t € [a,b),

lim ¢, (t) =0,
n—oo
then
b
lim (/\/l)/ ©n = 0.

n—o0
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106 Equi-integrability in Monotone and Dominated Convergence...

Proof: The sequence {—p, }22, is increasing and

lim (—p,(t)) = 0.

n—oo

By Theorem 2.5,

—<711Lngo(/\/l)/abson> = T}LH;O(M)/;(—%)
_ (M)/abo

= 0.

Hence,

b
lim (/\/l)/ ©n = 0. O

n—o0

Lemma 3.2 Let {f,}>2, be a sequence of McShane inte-
grable functions on [a,b] such that lim f,(t) = f(t) for each
n—o0

t € [a,b]. Suppose {@n}22, is a decreasing sequence of Mec-
Shane integrable functions on [a,b] such that lim ¢, (t) = 0,
n—o0

and for each n, there exists a positive integer M, such that
for each x € |a,b], we have

|fi(x) = f;(2)] < pnl2)

for each i,j > M,. Then {f,}>, is equi-integrable on |a, b
and f is McShane integrable on [a,b] with

n—oo

o [r=im o [ .

Proof: By Lemma 3.1,

b
lim (M)/ 0 = 0.
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We claim that {f,,}>2; is uniformly gauge Cauchy. Let ¢ > 0
be given. Then there exists a positive integer N such that

‘(M)/abSON

By hypothesis, corresponding to N, there exists a positive
integer My such that for each x € [a,b] and i,j > My, we

<€
2.

have
|fi(z) = fi(2)] < on().

Since each ,, is McShane integrable on [a, b], there exists
9, (&) > 0 such that whenever D = {([u,v],£)} is a McShane

dp-fine division of [a, b], we have
€

< —.
2

(D)3 eu(©)(0 — u) — (M) / on

We may assume that d,, > 9,41 for each n. Note that ¢, > 0

for each n. Define 6(¢) = dn (&) for each £ € [a, b], and let
D = {([ug,vi],&) + k = 1,2,...,r} be any McShane §-fine

division of [a,b]. Then

> on (G ok — w)

k=1

< | D el on = ue) — (M) [ on| +

(M)/abSDN

<e+6
2 2
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Therefore, for each 7,57 > My

(&) (vk — up) — Z fi (&) (v — up)

<z{

< Z v (&) (vk — )

k=1

filk) — f; fk)‘(vk _Uk)}

=€.
Consequently, {f,}22, is umformly gauge Cauchy. By The-

orem 2.7, / fn converges and {f,}>2, is equi-

integrable. The assertion

im0 [r=ow [ 5

follows from Theorem 2.4. OJ

Now follows the first desired result of this study.

Theorem 3.3 (Monotone Convergence Theorem) Let
{fn}22, be an increasing sequence of McShane integrable
functions on [a,b] such that

nh—>I£1<> fn(x) = f(z) , for each x € [a,b).

b

If sup{(./\/l)/ foin € N} < 00, then {f,}52, is equi-
integrable on [;, b and f is McShane integrable on |a,b] and

im0 [ =[5

The MINDANAWAN Volume 3 Issue 2
Journal of Mathematics October 2012




Benitez, J.V. 109

Proof: For each t € [a, ], the sequence {f,,(t)}°, converges
and thus, is bounded. Hence, for each t € [a, b], there exists
K(t) such that |f,(t)] < K(t) for each n. Then for ¢ > j
and t € [a, b],

filt) = £3() = [fi(t) = (O] < L@+ [f;(0)] < 2K(@).
For n < m, let
SOn,m:maX{fl_f]nSjSZSm}

Since f, are McShane integrable, ¢, ., is also McShane in-
tegrable on [a,b]. For a fix n,

Pnm = maX{fi_fj3n§j§i§m}
< max{fi—fj:ngjgigm—l—l}
Pn,m+1-
Hence, for each n, the sequence {@y,m ...} oo ; is increasing
and
lim ¢,,, = lim max{fi—fj:ngjgigm}
m—00 m—0o0

= sup{fi—f; :n<j<i}
Let gpn:sup{fi—fj:ngjgi}. For each n,
cpn:sup{fi—fjinﬁjﬁi}

>sup{fi— fjin+1<j<i}

= Pn+1

Thus, {¢,}22, is a decreasing sequence of non-negative Mc-
Shane integrable functions on [a, b] and

lim @, (t) = lim sup {fi(t) = f;(t) :n<j < i} =0.
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For each n and z € [a, b],
|[fi@) = fi(@)] < sup{[fi(t) = ;(t)] 1 <5 < i}
= sup {/i(t) = f5(1) :n <j < i}
= on(),

for each 7,7 > n. The conclusions follow immediately from
Theorem 3.2. ]

If {f,}5°, is decreasing, then by considering the se-
quence {—f,,}>°,, an analogous result also holds for decreas-
ing sequence.

We now state and prove the Dominated Convergence
Theorem.

Theorem 3.4 (Dominated Convergence Theorem) Let
{fn}>2, be a sequence of McShane integrable functions on
la,b] such that

li_>m fn(x) = f(x) , for each x € [a,b].

If g : [a,b] — R is McShane integrable on [a,b] and |f, —
fml < g for each n,m, then {f,}5°, is equi-integrable on
la,b] and f is McShane integrable on [a,b] with

b b
M) [ 5=t ) [
Proof: For any n < m, let
Pnm = max {|f; — f;| :n <i<j<m}.

Then each ¢, ,,, is McShane integrable on [a, b]. For a fix n,

Cngn = max{|fi— fil:n<i<j<m}
< max{|fi— fil:n<i<j<m+1}

= ©Pnm+1-
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Hence, for each n, the sequence {¢, . }oe_; is increasing and
converges to ¢, = Sup{|f2~ —filtn<i< j}. Note that
vn < g and since g is McShane integrable, we have

Slnlzp{(/\/l)/abs@n,m} < (M)/abg < oo.

By Monotone Convergence Theorem (Theorem 3.3), ¢, is
McShane integrable on [a, b] and

b b b
M) [ o= lim (M) [ o= ) [ g
for each n € N. Now, for each n € N
pn=sup{|fi = fi| :n <i<j}
>sup {|f; — fi| :n+1<i<j}
= Pn+1

so that {¢,}>°, is a decreasing sequence of McShane in-
tegrable non-negative functions on [a,b]. Moreover, since
fn(t) = f(t) for t € [a,b], we have

lim ¢, () = lim sup {|fi(t) = f;()] :n < i <j} =0

n—oo

for any t € [a,b]. By Theorem 3.1,

n—o0

b
lim (/\/l)/ ©n, = 0.
For each n and z € [a, ],

|fi(x) = fi(@)| < sup {£i(t) = fi(t) :n < j < i} = gu(a),
for each 4,5 > mn. Theorem 3.2 finally yields the desired
conclusions. 0

The condition |f, — fu| < g for each n,m is equivalent
to the usual dominated condition |f,| < h for each n.
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